• No results found

Automated monitoring of urination events from grazing cattle

N/A
N/A
Protected

Academic year: 2020

Share "Automated monitoring of urination events from grazing cattle"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Patron: Her Majesty The Queen

Rothamsted Research

Harpenden, Herts, AL5 2JQ

Telephone: +44 (0)1582 763133

Web: http://www.rothamsted.ac.uk/

Rothamsted Research is a Company Limited by Guarantee Registered Office: as above. Registered in England No. 2393175. Registered Charity No. 802038. VAT No. 197 4201 51. Founded in 1843 by John Bennet Lawes.

Rothamsted Repository Download

A - Papers appearing in refereed journals

Misselbrook, T. H., Fleming, H. R., Camp, V., Umstatter, C., Duthie, C-A.,

Nicholl, L. and Waterhouse, T. 2016. Automated monitoring of urination

events from grazing cattle. Agriculture, Ecosystems & Environment. 230

(16 August), pp. 191-198.

The publisher's version can be accessed at:

https://dx.doi.org/10.1016/j.agee.2016.06.006

The output can be accessed at:

https://repository.rothamsted.ac.uk/item/8v244/automated-monitoring-of-urination-events-from-grazing-cattle

.

© 18 June 2016, CC-BY terms apply

(2)

Misselbrook, T., Fleming, H., Camp, V., Umstatter, C., Duthie, C-A.,

Nicoll, L. and Waterhouse, T. (2016) Automated monitoring of

urination events from grazing cattle. Agriculture, Ecosystems and

Environment, 230, pp.191-198. ISSN 0167-8809.

© 2016 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

http://hdl.handle.net/11262/11056

http://dx.doi.org/10.1016/j.agee.2016.06.006

(3)

Automated

monitoring

of

urination

events

from

grazing

cattle

T.

Misselbrook

a,

*

,

H.

Fleming

a

,

V.

Camp

a

,

C.

Umstatter

b

,

C.-A.

Duthie

b

,

L.

Nicoll

b

,

T.

Waterhouse

b

aRothamstedResearch,NorthWyke,Okehampton,DevonEX202SB,UK

bSRUC,FutureFarmingSystems,WestMainsRoad,Edinburgh,EH93JGScotland,UK

ARTICLE INFO

Articlehistory:

Received10April2016

Receivedinrevisedform3June2016 Accepted4June2016

Availableonlinexxx

Keywords:

Urinesensor Nitrogen Ammoniaemission Spatialdistribution

ABSTRACT

Urinepatchesdepositedbygrazingcattlerepresent‘hot-spots’ofveryhighnitrogen(N)loadingfrom whichenvironmentallyimportantlossesofNmayoccur(ammoniaandnitrousoxideemissions,nitrate leaching).InformationonthequantitiesofNdepositedtograzedpasturesasurine,thespatialand temporal distributionofurine patchesandhowthesemay be influencedbypasturemanagement practicesislimited.Theobjectivesofthisstudyweretoassessthepotentialofrecentlydevelopedurine sensorsforprovidingdataonurinationbehaviourbygrazingcattleandrelatethistomeasurementsof ammoniaemissionsfromthegrazedpaddocks.Atotalofsixtrialswereconductedacrosstwosites;two ona1hapaddockatEasterBushnearEdinburghusingbeefcattle(c.630kgliveweight)andfourona 0.5hapaddockatNorthWykeinDevonusingin-calfdairyheifers(c.450kgliveweight).Laboratory calibrationswereconductedtoprovidesensor-specificfunctionsforurinevolumeandNconcentration. The quantityand qualityof data from theurine sensors improvedwith successive trials through modificationstothemethodofattachmenttothecow.Thenumberofurinationeventsperanimalper daywasgreaterforthedairyheifers,withameanvalueof11.6(se0.70)comparedwith7.6(se0.76)for thebeefcattle.Volumeperurinationevent(mean1.8,range0.4–6.4L)andurineNconcentration(range 0.6–31.5gL 1, excluding outliers) were similar for the two groups of cattle. Ammonia emission measurementswereunsuccessfulinmostofthetrials.Theurinesensorshavepotentialtoprovideuseful informationonurineNdepositionbygrazingcattlebutsuggestedimprovementsincludingmakingthe sensorslighter,designingabettermethodofattachmenttothecowandincluding amorereliable locationsensor.

ã2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1.Introduction

Cattleurinecontainssignificantquantitiesofnitrogen(N),with concentrationstypicallyintherange2–20gL 1(Whitehead, 1995), mostlyinaverylabileform(Bristowetal.,1992).Therelatively smallareacoveredbyaurinepatchfromcattlegrazingatpasture thereforeresultsinveryhighNloadingratestothesoil,exceeding thecapacityofthegrasstofullyutiliseit.Urinepatchestherefore represent‘hot-spots’fromwhichlossesofNmayoccurthrough ammonia volatilisation, nitrate leaching and nitrous oxide emissions(Allenetal.,1996;DiandCameron,2007;Jarvisetal., 1989;Laubachetal.,2013)withpotentiallydamagingimpactson theenvironment(Gallowayetal.,2003).

TheNcontentandspatialandtemporaldistributionofurine patchesareimportantfactorsaffectingthesepotentiallossesand

maybeinfluencedbycattlediet,grazingmanagement, environ-mentandseason.OurabilitytomodelNlossesandutilisationin grazed pasture systems and tooptimise management practices requires good information on cattle urination behaviour. In particular,model representationoftheurine patch,withahigh Nloadingtoasmallspatialareaisimportantratherthanassuming anevendistributionofgrazingNreturnsacrossthewholegrazed paddock(e.g.Hutchingsetal.,2007).Non-linearitybetweenNloss andNloadingtoaurinepatch(Ledgard,2001)meanthatscaling upbasedonestimatesofaveragevaluesforurinepatchNloading maydiffersubstantiallyfromthatwhichtakesintoaccountthe variationinNconcentrationandvolumeperurinationeventand thepossibilityofurinepatchoverlap(Lietal.,2012).Additionally, it maybe important to represent the spatial distributionof N returnsinurineinrelationtovariationinsoiland environment parameters (e.g.wetness,compaction,slope).However,todate, there havebeen few publisheddataonurination behaviourby grazingcattleasfieldobservationsaredifficulttomake.Thosethat * Correspondingauthor.

E-mailaddress:tom.misselbrook@rothamsted.ac.uk(T. Misselbrook).

http://dx.doi.org/10.1016/j.agee.2016.06.006

0167-8809/ã2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/). Agriculture,EcosystemsandEnvironment230(2016)191–198

ContentslistsavailableatScienceDirect

Agriculture,

Ecosystems

and

Environment

(4)

havebeenmadesuggestthaturinepatchdistributionandoverall spatialextentcanbe influencedby factorsincludingfence line positions,watertankpositions,fieldslopesandpreferrednight restingareas(Auerswaldetal.,2010;Augustineetal.,2013;White etal.,2001).

Betteridge et al. (2010) described an automated urination sensorwhich,whenusedinconjunctionwithaGPSunit,couldgive information on thetiming and location of urination events by grazingcattleorsheep.Theyshowedthaturinepatchdistribution wasverynon-uniformforsheepandcattlegrazingonhillpastures inNewZealand.FurtherdevelopmentofthesensorbyBetteridge etal.(2013)enabledmeasurementofurinevolumeandNcontent foreachurinationeventandreportedthatfrequencydistribution patternsofurinaryNconcentrationcouldhavealargeeffecton modelledNleachingloss.Thesensorsalsohadthepotential to recordlocationofurinationevents,usingZigBeecommunication (www.zigbee.org) by triangulation with fixed location ZigBee referencenodesaroundthegrazedpaddock.

Theobjectiveofourstudywastoassessthepotentialofthe urine sensorstoprovide detailed spatialand temporal data on urination behaviour and urine N content for grazing cattle. A secondary objective was to determine the proportion of the urinaryNexcretedbythegrazingcattlethatwassubsequentlylost totheatmosphereviaammoniavolatilisation.

2.Materialsandmethods

2.1.Urinesensors

Purposely designed urine sensors (AgResearch, Palmerston North,NewZealand)wereusedinthetrials.Theurinesensorwas attachedtothecowbygluingoverthevulva,suchthatallurine

flowedthroughthesensor,andwassupportedbyattachmentto thecowsback. Development ofthe methodofattachment and supportcontinuedthroughoutthetrialsfromaninitialconfi gura-tionwherebyVelcrostrapsweregluedtothecow’sback(Fig. 1a)to afinalversionwheretheweightofthesensorwasbettersupported byaharnesswornbythecow.Lateralmovementofthesensorwas minimised by supporting straps fixed to the lower end and a shroud was fitted to minimiserisk of contamination by faecal material(Fig.1b).

Urineflowthroughthesensorinitiatedsensorfunctioningand providedatime-stampfortheurinationevent.Theurineflowed through a funnel within the sensor from which the majority drainedawaytothegroundwhileasmallsubsample(10–20mL) wasretainedinthebottomofthechamber.Urinevolumefora givenurinationeventwasdeterminedbyrecordingthepressure head of urine (recorded every two seconds while urine was

flowing)inthesensorfunnelforthedurationittakestodrainaway. Thearea under thepressuretime curve was related to urine volume. Urinary N concentration was determined from the refractiveindexreadingintheresidual10–20mLofurineinthe sensor.Thisresidualurinewastotallydisplacedbyfreshurineat thenexturinationevent;retentionofthissmallvolumeofurinein thechamberminimisedthelikelihoodofamineralfilmformingon therefractiveindexsensorwindow.Urinesensorsalsoincludeda ZigBeesystemforlocationofthesensorforeachurinationevent relative to fixed position nodes located around the grazed paddocks.

TheRothamstedResearchandSRUCEthicalReviewCommittees andassociatedprofessionalveterinarianwereinvolvedthroughout thisstudyandweresatisfiedthat theproceduresand materials useddidnotadverselyaffectthecattle,withnosignificantskin damagearoundthe vulvaareafromgluing andremoval ofthe sensors and no impact on cattle behaviour. There were some problemsintheearliertrialswiththeanimalsbeingawareofthe

sensorbecauseoflateralmovemente.g.whilewalkingandthisled to some instances of animal bucking and sensor detachment. However,asthemethodofattachmentwasimproved,particularly through the use of lateral supports to minimise any lateral movementofthesensor(Fig.1b),thiswasnolongeraproblemand fromvisualobservations animals veryquickly resumednormal behaviouraftersensorattachment.

Calibrationfunctionswere derivedfor each urine sensorfor volumeandNconcentrationusingcattleurinecollectedfromdairy cows duringmilking ata local dairy farm. Volumecalibrations wereperformedbypouringvolumesofbetween1and4L,in0.5L graduations,throughthesensorandrelatingurinevolumetothe integral of the pressuretime curve. Nitrogen concentration calibrations were performed using cattle urine of known N concentrationatfourdifferentdilutionsandrelatingN concentra-tiontotherefractiveindexreading.

2.2.Trialsites

TwograzingtrialswereconductedinSeptemberandOctober 2012 using 14 beef cows (Charolais cross, Limousin cross and Aberdeen Angus cross, average live weight 630kg) on a 1ha paddockatEasterBush,nearEdinburgh,Scotland,andafurther fourtrialsconductedfromJulytoSeptember2013usingbetween7 and12in-calfdairyheifers(Holstein-Friesian,averageliveweight 450kg) ona 0.5ha paddockat North Wyke in Devon,England (Table1).Bothsiteswerepermanentpasture,withtotalfertiliserN

Fig. 1.Attachmentofurinesensortothecow:A,showinginitialconfigurationusing Velcrostrapsgluedtocow;B,finalconfigurationusingaharnesswithtopandside strapstosupportsensorweightandminimiselateralmovement.GPScollaralso shownonthebeefcowinA.

(5)

applicationsof140and160kgha 1toEasterBushandNorthWyke

(appliedastwosplitsinMarchandMayof90and50kgha 1at

EasterBushand100and60kgha 1atNorthWyke),respectively, duringtherelevantyear.Immediatelypriortograzing,eitherallor asub-setofthecattlewerefittedwithurinesensors,whichwere thenremoved3–5dayslater.AttheEasterBushsite,cattlewere alsofittedwithGPStrackingcollars(AgTrex,BlueSkyTelemetry, Aberfeldy, UK), which gave positional information at a 1-min resolution.

2.3.Ammoniaemissionmeasurements

Ammoniaemissionsfromtheplotduringthegrazingperiod were measured using a backward Lagrangian stochastic (bLS) modellingapproach(Fleschetal.,2007),basedonmeasurements of ammonia concentration at fixed points around the grazed paddocks and of wind statistics using a sonic anemometer (Windmaster, Gill Instruments Ltd, Hampshire, UK). Ammonia concentrationsweremeasuredusingtwoenhancedperformance LosGatos EconomicalAmmonia Analysers (Los Gatos Research, California,USA)and,attheNorthWykesiteusingALPHApassive samplers(Tangetal.,2001; Walkeretal., 2014)atlocationsas shown in Fig. 2. The Los Gatos analysers were sampling at approximately1-minintervalsataheightof1.4maboveground through15mPTFEtubingwithheat-tracetoprevent condensa-tion.TheALPHAsamplerswereusedintriplicateateachofthefour samplinglocationsshowninFig.2b,mountedat1.5mheightand werechangedevery24h.Thesoftware‘Windtrax’(ThunderBeach Scientific, NovaScotia, Canada) wasused toestimate ammonia

emission rates, using either 20min average concentration and windstatisticsor,fortheALPHAsamplerderivedconcentrations using24haverageconcentration,windspeedandwinddirection data.TheuseoflongersamplingintervalswiththebLSapproach has beenpreviously verified (Sanzet al., 2010; Sommer et al., 2005).

3.Results

3.1.Urinesensorcalibrationandperformance

TypicalcalibrationcurvesforurinevolumeandNconcentration aregiveninFig.3.Forurinevolume,verygoodregressionfitswere obtained(r2>0.97inallcases)andtheslopeofthettedlinevaried

between11.3and16.5forthedifferentsensors.Goodcalibration functionswerealsoobtainedforurineNconcentration(r2>0.99) withregressionslopevaluesvaryingbetween0.109and0.116.

Datawerenotusedfromanysensorsthatonremovalfromthe cowwerefoundtobeblockedorpartiallyblockedbyfaecesor fromanythat werenotcapturingtheentiretyof urineflow(as identifiedthroughfieldobservations).Theproportionofsensors providingreliabledataimprovedinthelaterexperiments,asthe methodofsensorattachmenttothecowwasimproved.Thus,the numberofsensorsremainingattachedproperlyforperiodsof1 dayorlongeralsoimproved(Table2).

Onefeatureoftheurine sensorswhichdidnotfunctionwell wasthelocationrecording,withnoreliabledatabeingrecorded. Theonlylocationdatainrelationtourineeventswasthatobtained usingtheGPScollarsattheEasterBushsite.The1-mininterval

Table1

DetailsofthegrazingexperimentsatEasterBush(EB)andNorthWyke(NW).

Expt. Site No.cattle No.withurinesensors Startofgrazing Urinesensorremoval Endofammoniaemissionmeasurement

1 EB 14 7 03/09/201219:00 06/09/201214:00 07/09/201209:00

2 EB 14 9 01/10/201211:00 05/10/201210:00 05/10/201211:00

3 NW 7 7 01/07/201316:00 05/07/201308:45 11/07/201314:00

4 NW 8 8 05/08/201312:00 09/08/201309:00 15/08/201309:15

5 NW 12 7 02/09/201312:40 06/09/201309:00 12/09/201309:15

6 NW 12 6 24/09/201311:15 27/09/201314:00 03/10/201311:25

Fig.2.Trialsites:Site1,EasterBush–1hapermanentpasturewithammoniaconcentrationsamplinglocations(LosGatosanalysers)atAandB.Site2,NorthWyke–0.5ha permanentpasturewithLosGatosammoniaanalyserammoniaconcentrationsamplinglocationsatAandCandALPHApassiveammoniasamplersatA–D.Prevailingwind directionforbothsiteswasSW.

(6)

locationswithinthepaddockoverasingle24hperiodofthefour cattlefor which sufficient urine sensordata wererecordedare showninFig.4(opencircles,individualanimalsnotidentied).In thisperiod,thecattleshowedadistinctpreferencefortheSWpart ofthepaddock,particularlyalongthefencelines(notshown).The gatetothepaddockwasintheWcornerandtherewasahedge along the SW boundary, an area which the animals used particularly forresting at night time. Urination events arealso shownin Fig.4,differentiatedby daytimeevents(filled yellow circles)andnighttimeevents(filledbluecircles).Whilethereare insufficientdatatodrawstrongconclusions,thenighttimeevents mostlyoccurredattheSWend of thefield,wheretheanimals predominantlyrestedatnight,whereasdaytimeeventsweremore distributedaccordingtotheanimalpresenceacrossthepaddock.

3.2.Urinationbehaviour

Atotalof119and559individualurinationeventswererecorded forthebeefanddairycattle,respectively,withanaveragenumber of urination events per animal per day of 7.6 (n=9, standard error=0.76)forthebeefcattleand11.6(n=24,se=0.70)forthe dairy heifers. The frequency distributions in urine volume, N concentrationandNloadingperurinationeventweresimilarin shapeforthebeefanddairycattle(Fig.5).Fourhighvaluesfor dairyheiferurineNconcentration(>35gNL 1)wereconsideredto beoutliers,possiblyasaresultofcontaminationofthecellwindow throughwhichtherefractiveindexmeasurementtakesplace,and were excluded from the analysis. Mean values were similar betweenthecattletypes,withrespectivemeanvolumesof1.75 (se0.05)and1.80(se0.08)Lperurinationevent,meanurineN concentrationsof14.4(se0.33)and13.1(se0.26)gL 1andmeanN

loadingof25.6(se1.39)and22.0(se0.66)gperurinationeventfor thebeefanddairycattle,respectively.Withthegreaternumberof urination events per day, the urine N excretion was therefore

greaterforthedairyheifersthanthebeefcattle,withrespective valuesof255and194gNperanimalperday.

Therewas obviousdiurnal variation in the urine volume,N concentration and N loadingper urination event for the dairy heifers(Fig.6),withmaximumvolumepereventintheearlyhours ofthemorningandminimumatmidnight,andminimumurineN concentrationinthemiddleoftheday.Thispatternwasconsistent acrossallfourtrialsattheNorth Wykesite (experiments3–6). Therewereinsufficientdatafromthebeefcattletrialstoevaluate diurnalvariation.

3.3.Ammoniaemissions

Foralltrials,thedatafromtheLosGatosEconomicalAmmonia Analysers were insufficiently robust to be used. Despite initial calibration of both instruments against a standard, there was significantdriftintherecordedvaluesforsubsequentcalibration checks between instruments that was of a similar(or greater) order ofmagnitude tothe expecteddifferencesin upwind and downwind concentrations. The emissions from the grazed paddocks were therefore below the limit of detection for the LosGatosinstrumentsusedinthisway.

UsingtheALPHAsamplerswitha24hexposuretimewasalso generally insufficient to be able to reliably measure ammonia emissions from the grazed paddocks. For two of the trials (experiments5and6),therewasnosignificantdifferencebetween theamountofammoniacollectedontheexposedALPHAsamplers andthatontheunexposedblanksamplers.Forexperiments3and 4,exposedsamplerconcentrationswereabovethoseoftheblanks andemissionestimatescouldbemadeusingthebLSmodelling approach.Averagemeasuredfluxeswere0.11and0.57kgha 1d 1

NH3-Nforexperiments3and4,respectively,whichrepresented

8.6and33.5%oftheestimatedurineNdepositiontothepastures during the grazing period. However, these results are not

Fig.3.Urinevolume(A)andNconcentration(B)calibrationcurvesforoneoftheurinesensorsusedinthestudy.

Table2

Urinesensorperformance.

Expt. No.sensorsgivingreliabledata Durationofdatarecording(h) No.ofsensorsgivingdataformorethan

Average Minimum Maximum 24h 48h

1 4 39 34 47 4 0

2 5 59 21 92 4 2

3 5 38 14 87 3 1

4 6 53 25 94 6 2

5 7 59 20 82 6 5

6 5 56 38 72 5 3

(7)

consideredreliableandfurtherresearchisrequiredtogathervalid ammoniaemissiondatausingthismethod.

4.Discussion

The urine sensors have enabled us to collect data in an automated wayfrom a large number of urination events from grazingcattleacrossmultipleanimalsonmultipleoccasions.This wouldhavebeenextremelydifficult,ifnotimpossible,toachieve throughmanualsamplingandobservation. Thesensorsusedin thisstudy,asdesignedbyAgResearch(Betteridgeetal.,2013)were aconsiderableimprovementonthosedescribedbyBetteridgeetal. (2010)inthattheymeasurevolumeandNconcentrationforeach urinationeventinadditiontotiming.Unlikethesensorsusedby Betteridgeetal.(2010),which wereattachedtotheanimalsby insertionintothevagina,thoseusedbyBetteridgeetal.(2013)and in this study were non-invasive. However, potential effects on animalwelfaremuststillbetakenintoconsideration,hencethe inclusion the Rothamsted Research and SRUC ethical review committeesandassociatedveterinarians.

Inter-animal and temporal variation in urination behaviour (amounts,location)andNconcentrationrequirethesamplingof sufficient animals and occasionstoprovide representativedata and,asdiscussedabove,theurinesensorshavethepotentialto provide this. However, improvements to sensor design and functioningcouldbemadetoincreasethereliabilityandquality ofdatacaptured.Asnotedabove,themethodofsensorattachment was improved throughout the study resulting in increased durationofmonitoring.Thiscouldbefurtherrefinedtoincrease theproportion ofsensors remainingattachedfor threedays or longer.Reducingsensorweight(currentlyc.1.3kg)mayalsohelp withthis.TheZigBeesystemforlocationrecordingdidnotwork successfullyinanyofthetrials,possiblybecauseofthepresenceof the cattle interfering with the signals between sensors and reference nodes, sofor spatial information the sensors should becombinedwiththeuseofGPSdevices,ideallyco-locatedwith thesensors(GPScollarswillgivelocationdisplacedfromtheurine patchbyapproximately2mbutwithanunknownorientation).

Theurinationfrequency,volumeandNcontentdataobserved in this study comparewell with literaturevalues. Selbie et al.

Fig.4.Mapshowing1-minintervalsforanimallocations(opencircles)anddayandnighttimeurinationevents(yellowandbluecircles,respectively)for4monitoredgrazing beefcattleovera24hperiodattheEasterBushsite.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(8)
(9)

(2015),inareviewofavailable literature,notedthatdailyurine volumeand frequencyvariedwidely. Theyreportedanaverage frequencyofurinationof10–12eventsperdayforcattle(range 5–18withinindividualstudies),similartothatof8–12eventsper day reported by Whitehead (1995). The average volume per urinationeventwasreportedas2.1Lfordairycattleand1.2Lfor beef cattle but within individual studies was in the range `0.9–20.5Lacrossallcattle(Selbieetal.,2015).Meancattleurine Nconcentrationforcattlewasgivenintherangeof2–20gL 1by Whitehead(1995).Themeta-analysisperformedbySelbieetal. (2015)gave meanvaluesof 6.9and 7.2gL 1for dairyand beef

cattle,respectively,grazingapredominantlygrassdiet,somewhat lowerthanourmeanvaluesfromthepresentstudy.MeandailyN excretioninurinefromthepresentstudyof194and255gforbeef anddairy cattle,respectively,is attheupperend of theranges givenbyWhitehead(1995)of80240and80320gd 1fordairy

cowsandsteers,respectively.Dennisetal.(2011)andOudshoorn etal.(2008)reporturinationfrequenciesforgrazingdairycowsof 8.6 and6.2 eventsper day,respectively,while Orretal.(2012) reportsavalueforbeefcattle(meanliveweightof570kg)grazinga moderatelyimprovedswardof7.0eventsperday.Orretal.(2012) reportedalowermeanvolumeperurination eventof0.8L and urineNconcentrationof10.8gL 1.Betteridgeetal.(2013)reported

ameanvolumepereventof2.1L,witharange0.3–7.8Lforgrazing non-lactating dairy cows and mean urine N concentration of 9.5gL 1(range1.224.7gL 1).

Betteridgeetal.(2013)alsoreportedacleardiurnalpatternto theNloadingperurinepatch(mean18.1gNperurinationevent), asfoundinthisstudy(Fig.6),withvaluesduringthenightbeing greaterthanthoseduringthedaytimeanddiscusstheimportance ofthiswithrespecttothespatialdistributionoftheurinepatches. The higher N loading of the night-time patches have greater potentialfornitrateleachingandgaseousNlosses,whichmaybe furtherexacerbatedifregularnight-timecampingareasareused whicharerelativelysmallincomparisonwithday-timeroaming/ grazingresultingingreaterprobabilityofurinepatchoverlap.The reasonforthegreaterNloadingatnightisnotclear,butmaybe related to the diurnal pattern of intake by the cattle (no observationsmade),withurineNconcentrationincreasingfrom the morning to evening (Fig. 6). Additionally, there was some evidenceofurinationfrequencybeinglowerovernight(datanot shown),presumablyasthecattlewerelessactive,andvolumeper urinationwasgreatestduringthe0–4hperiodoftheday(Fig.6). Ammoniaemissionsmeasuredfromindividualurinepatches, e.g.usingdynamic chambers,mayaccountforupto30%ofthe urine N deposited (Lockyer and Whitehead,1990; Misselbrook et al.,2014).However,aproportionof thisemissionwillbe re-depositedtothepastureverylocaltotheurinepatch,soemissions measuredatthefieldlevelusingmicrometeorologicaltechniques will generally give lower emission estimates (Asman, 1998). Misselbrooket al.(2015)derived anemissionfactor fortheUK inventoryofammoniaemissionsfromagricultureof6%ofurine returnsatgrazingbeingvolatilisedasNH3-Nbasedonanumberof

fieldstudiesusingmicrometeorologicalmeasurementtechniques (including Bussink, 1994; Jarvis et al., 1989) with individual emissions reported in the range 0–10% of urine N deposited. Laubachetal.(2013),alsousingmicrometeorologicaltechniques, reportedhigheremissionsfroma grazing trialinNew Zealand, withanemissionfactorof25%ofurineNwhichisapproachingthe uppervaluemeasuredinourstudy(althoughashasbeennoted above,emissionresultsfromthepresentstudyarenotconsidered reliable).

5.Conclusions

Theurinesensorsasusedinthisstudyprovidedanautomated meansofmonitoringurinationeventsfromgrazingcattlealthough improvementstosensorattachmentandlocationmonitoringare needed.Atotalof678urinationeventswererecordedthroughout thestudyacrossthebeefanddairycattle.Frequencyofurination wasgreaterforthedairyheifersthanthebeefcattleat11.6and7.6 eventsperday,respectively.Meanurinevolume,Nconcentration and N loadingperurination eventweresimilar acrossthe two cattletypeswithrangesof0.4–6.4L,0.6–34.4gNL 1and0.3114g,

respectively. There was clear diurnal variation in urine N concentration and hence N loading per urination event. Mean dailyurineNexcretionwas225and194gfordairyandbeefcattle, respectively. Themethodsusedtomeasureammoniaemissions providedunreliabledata.Furtherworkisneededtogathervalid ammoniaemissiondatausingthesemethods.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0-4h 4-8h 8-12h 12-16h 16-20h 20-24h

Vol u m e p e r e v e n t ( L) 0 2 4 6 8 10 12 14 16 18

0-4h 4-8h 8-12h 12-16h 16-20h 20-24h

Ur in e N c o n ce n tr a o n ( g L -1) 0 5 10 15 20 25 30 35 40

0-4h 4-8h 8-12h 12-16h 16-20h 20-24h

N loa d in g ( g N pe r ur in a o n e v e n t)

Fig.6.Diurnalvariationinvolume,NconcentrationandNloadingperurination eventfordairyheifers.Errorbarsindicate1standarderrorofthemeanvalue.

(10)

Acknowledgements

TheauthorsgratefullyacknowledgetheUniversityofEdinburgh farmmanagerforallowingaccesstotheEasterBushstudyfieldand to SRUC technical staff in the management of the livestock throughoutthetrial.Valuableassistancewasalsoprovidedbythe NorthWykefarmstaffand fieldsupportteam.Fundingfor this studywasprovidedbytheUKGovernmentthroughDefraproject AC0116.RothamstedResearchissponsoredbytheBiotechnology andBiologicalSciencesResearchCouncil.

References

Allen,A.G.,Jarvis,S.C.,Headon,D.M., 1996.Nitrousoxideemissionsfromsoilsdueto inputsofnitrogenfromexcretareturnbylivestockongrazedgrasslandinthe UK.SoilBiol.Biochem.28,597–607.

Asman,W.A.H.,1998.Factorsinfluencinglocaldrydepositionofgaswithspecial referencetoammonia.Atmos.Environ.32,415–421.

Auerswald,K.,Mayer,F.,Schnyder,H.,2010.Couplingofspatialandtemporal patternofcattleexcretapatchesonalowintensitypasture.Nutr.Cycl. Agroecosyst.88,275–288.

Augustine,D.J.,Milchunas,D.G.,Derner,J.D.,2013.Spatialredistributionofnitrogen bycattleinsemiaridrangeland.RangelandEcol.Manage.66,56–62. Betteridge,K.,Hoogendoorn,C.,Costall,D.,Carter,M.,Griffiths,W.,2010.Sensorsfor

detectingandloggingspatialdistributionofurinepatchesofgrazingfemale sheepandcattle.Comput.Electron.Agric.73,66–73.

Betteridge,K.,Costall,D.A.,Li,F.Y.,Luo,D.,Ganesh,S.,2013.Whyweneedtoknow whatandwherecowsareurinating—aurinesensortoimprovenitrogen models.Proc.NewZealandGrasslandAssoc.75,119–124.

Bristow,A.W.,Whitehead,D.C.,Cockburn,J.E.,1992.Nitrogenousconstituentsinthe urineofcattle,sheepandgoats.J.Sci.FoodAgric.59,387–394.

Bussink,D.W.,1994.Relationshipbetweenammoniavolatilizationandnitrogen fertilizerapplicationrate,intakeandexcretionofherbagenitrogenbycattleon grazedswards.FertilizerRes.38,111–121.

Dennis,S.J.,Moir,J.L.,Cameron,K.C.,Di,H.J.,Hennessy,D.,Richards,K.G.,2011.Urine patchdistributionunderdairygrazingatthreestockingratesinIreland.IrishJ. Agric.FoodRes.50,149–160.

Di,H.J.,Cameron,K.C.,2007.Nitrateleachinglossesandpastureyieldsasaffectedby differentratesofanimalurinenitrogenreturnsandapplicationofanitrification inhibitor—alysimeterstudy.Nutr.Cycl.Agroecosyst.79,281–290.

Flesch,T.K.,Wilson,J.D.,Harper,L.A.,Todd,R.W.,Cole,N.A.,2007.Determining ammoniaemissionsfromacattlefeedlotwithaninversedispersiontechnique. Agric.ForestMeteorol.144,139–155.

Galloway,J.N.,Aber,J.D.,Erisman,J.W.,Seitzinger,S.P.,Howarth,R.W.,Cowling,E.B., Cosby,B.J.,2003.Thenitrogencascade.Bioscience53,341–356.

Hutchings,N.J.,Olesen,J.E.,Petersen,B.M.,Berntsen,J.,2007.Modellingspatial heterogeneityingrazedgrasslandanditseffectonnitrogencyclingand greenhousegasemissions.Agric.Ecosyst.Environ.121,153–163.

Jarvis,S.C.,Hatch,D.J.,Lockyer,D.R.,1989.Ammoniafluxesfromgrazedgrassland— annuallossesfromcattleproductionsystemsandtheirrelationtonitrogen inputs.J.Agric.Sci.113,99–108.

Laubach,J.,Taghizadeh-Toosi,A.,Gibbs,S.J.,Sherlock,R.R.,Kelliher,F.M.,Grover,S.P. P.,2013.Ammoniaemissionsfromcattleurineanddungexcretedonpasture. Biogeosciences10,327–338.

Ledgard,S.F.,2001.Nitrogencyclinginlowinputlegume-basedagriculture,with emphasisonlegume/grasspastures.PlantSoil222,43–59.

Li,F.Y.,Betteridge,K.,Cichota,R.,Hoogendoorn,C.J.,Jolly,B.H.,2012.Effectsof nitrogenloadvariationinanimalurinationeventsonnitrogenleachingfrom grazingsystems.Agric.Ecosyst.Environ.159,81–89.

Lockyer,D.R.,Whitehead,D.C.,1990.Volatilizationofammoniafromcattleurine appliedtograssland.SoilBiol.Biochem.22,1137–1142.

Misselbrook,T.H.,Cardenas,L.M.,Camp,V.,Thorman,R.E.,Williams,J.R.,Rollett,A.J., Chambers,B.J.,2014.Anassessmentofnitrificationinhibitorstoreducenitrous oxideemissionsfromUKagriculture.Environ.Res.Lett.9doi:http://dx.doi.org/ 10.1088/1748-9326/9/11/115006.

Misselbrook,T.H.,Gilhespy,S.L.,Cardenas,L.M.,Williams,J.,Dragosits,U.,2015. InventoryofammoniaemissionsfromUKagriculture,2014.Inventory submissionreporttoDefraaspartofprojectSCF0102.

Orr,R.J.,Griffith,B.A.,Cook,J.E.,Champion,R.A.,2012.Ingestionandexcretionof nitrogenandphosphorusbybeefcattleundercontrastinggrazingintensities. GrassForageSci.67,111–118.

Oudshoorn,F.W.,Kristensen,T.,Nadimi,E.S.,2008.Dairycowdefecationand urinationfrequencyandspatialdistributioninrelationtotime-limitedgrazing. LivestockSci.113,62–73.

Sanz,A.,Misselbrook,T.,Sanz,M.J.,Vallejo,A.,2010.Useofaninversedispersion techniqueforestimatingammoniaemissionfromsurface-appliedslurry. Atmos.Environ.44,999–1002.

Selbie,D.R.,Buckthought,L.E.,Shepherd,M.A.,2015.Thechallengeoftheurine patchformanagingnitrogeningrazedpsturesystems.Adv.Agron.129,229– 292.

Sommer,S.G.,McGinn,S.M.,Flesch,T.K.,2005.Simpleuseofthebackwards Lagrangianstochasticdispersiontechniqueformeasuringammoniaemission fromsmallfield-plots.Eur.J.Agron.23,1–7.

Tang,Y.S.,Cape,J.N.,Sutton,M.A.,2001.Developmentandtypesofpassivesamplers formonitoringatmosphericNO2andNH3concentrations.Sci.World1,513–529. Walker,J.T.,Robarge,W.P.,Austin,R.,2014.Modelingofammoniadrydepositiontoa pocosinlandscapedownwindofalargepoultryfacility.Agric.Ecosyst.Environ. 185,161–175.

White,S.L.,Sheffield,R.E.,Washburn,S.P.,King,L.D.,Green,J.T.,2001.Spatialand timedistributionofdairycattleexcretainanintensivepasturesystem.J. Environ.Qual.30,2180–2187.

References

Related documents

• Customers rate passenger information under a Bi-annual customer satisfaction surveys • Feedback forms • Online feedback • Customer complaints on Customer Enquiries

Bulk charge (I): Initially the battery is charged at a constant current rate until the cell voltage reaches a preset value - normally a voltage near to that at which gassing

In summary, we can see that most normal students affirm their beliefs in education, and agree that the greatest happiness of teachers comes from hard work, witnessing the growth

Looking at the year ahead, you might see several industry or world events that you want to plan content around – the content calendar is a place to store and manage

We will hence pay careful attention to the educational composition of the employees, noting that even if more adults were randomly assigned across centers, a causal eect on

The Slovenian PIARC National Committee, Technical Committee TC 4.2 “Road/Vehicle Interaction”, and the World Road Association-PIARC are providing the best opportunity to discuss

An important aspect of a Dutch research project into usable (and well scaled) mobile maps for consumers is presented: the development of an appropriate field-based usability

Role of quantification of hepatic steatosis and future remnant volume in predicting hepatic dysfunction and complications after liver resection for colorectal metastases: a pilot