• No results found

CiteSeerX — Influence of Accelerated Weathering on the Corrosion of Low-Alloy Steels

N/A
N/A
Protected

Academic year: 2022

Share "CiteSeerX — Influence of Accelerated Weathering on the Corrosion of Low-Alloy Steels"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

VoL 127, No. I K I N E T I C S O F Z I N C E L E C T R O D E 15 18. W. F. Libby, A b s t r a c t s of papers p r e s e n t e d at the

l l 5 t h M e e t i n g of ACS, Division of Physical a n d I n o r g a n i c Chemistry, S a n Francisco, Calif.

(1949).

19. H. Taube, H. Myers, a n d R. L. Rich, J. Am. Chem.

Soc., 75, 4118 (1953).

20. H. T a u b e a n d J. Myers, ibid., 76, 2103 (1954).

21. H. T a u b e a n d E. L. King, ibid., 76, 4053 (1954).

22. J. N e w m a n , This' Journal, 113, 501 (1966).

23. J. N e w m a n , "Electrochemical Systems," P r e n t i c e - Hall, E n g l e w o o d Cliffs, N.J. (1973).

24. I. N. J u s t i n i j a n o v i c a n d A. R. Despic, Electrochim.

Acta, 18, 709 (1973).

25. U. L a n d a u , Ph.D. Thesis, D e p a r t m e n t of Chemical E n g i n e e r i n g , U n i v e r s i t y of California, Berkeley,

L a w r e n c e B e r k e l e y L a b o r a t o r y , LBL 2702 (1976).

26. D. J o h n s o n a n d D. R. T u r n e r , This Journal, 109, 918 (1962).

27. I. R. K r i c h e v s k i i a n d Yu. V. Cehanskaya, Zh. Fiz.

Khim. SSSR, 33, 2331 (1959).

28. D. P. G r e g o r y a n d A. C. Riddiford, This Journal, 107, 950 (1960).

29. I. V. K a d i j a a n d V. M. Nakic, J. Electroanal. Chem., 35, 177 (1972).

30. G. T. Rogers a n d K. J. Taylor, Nature, London, 200, 1062 (1963).

31. M. M. Jaksic a n d C. W. Tobias, E x t e n d e d Abstracts, pp. 1164-1166, 29th ISE Meeting, Budapest

(1978).

Influence of Accelerated Weathering on the Corrosion of Low-Alloy Steels

H. Schwitter and H. B~hni

Swiss Federal Institute of Technology, Institute o~ Materials Chemistry and Corrosion, 8093 Zifrich, Switzerland

A B S T R A C T

I n l o w - a l l o y steels u n d e r accelerated atmospheric corrosion conditions t h e type of w e a t h e r i n g , p a r t i c u l a r l y the ratio of the time of wetness to the d r y i n g time, has a g r e a t e r influence on the corrosion b e h a v i o r t h a n does the com- position of the alloys. Electrochemical m e a s u r e m e n t s show t h a t the r u s t p r o - tection is n o t o n l y due to the f o r m a t i o n of compact macroscopic protective layers, b u t also to p a s s i v a t i o n effects. P a s s i v a t i o n occurs for a p r o l o n g e d period o n l y at f a v o r a b l e accelerated w e a t h e r i n g conditions. We propose a m o d e l for the i n t e r p r e t a t i o n o~ the corrosion behavior of l o w - a l l o y steels.

W e a t h e r i n g steels exposed to the a t m o s p h e r e form, as is well k n o w n , compact a n d w e l l - a d h e r i n g p r o t e c - tive layers w h i c h i n h i b i t a f u r t h e r attack b y corrosion.

D e p e n d i n g o n t h e composition of the alloy a m o r e or less decreasing corrosion rate c a n be observed. N u m e r - ous papers have b e e n p u b l i s h e d which s u p p o r t this o b - s e r v a t i o n (1-3).

A l t h o u g h these steels h a v e b e e n used t h r o u g h o u t the world for a long period of time, the corrosion p r o - tective properties of t h e f o r m e d r u s t layers a r e not well e n o u g h understood. Most of the a t m o s p h e r i c corrosion tests p e r f o r m e d u n t i l today do n o t allow a n y c o n c l u - sions i n this direction, because the different p a r a m e t e r s , which a r e i m p o r t a n t for the corrosion behavior, h a v e n o t b e e n v a r i e d s y s t e m a t i c a l l y i n these tests.

The practical experiences w i t h this m a t e r i a l as well as the results of l o n g - t i m e tests o b t a i n e d b y L a r r a b e e a n d C o b u r n (4) i n the U S A a n d E d u a r d s (5) i n E n - g l a n d show, however, t h a t c o n s i d e r a b l e differences can occur b e t w e e n the different test sites. I n E n g l a n d com- p a r a b l e steels corroded 5-10 times faster t h a n i n t h e USA, suggesting that the type of w e a t h e r i n g is at least as i m p o r t a n t as the alloy composition.

It was t h e r e f o r e the a i m of this s t u d y to e x a m i n e the influence of w e a t h e r i n g as well as the i m p o r t a n c e of t h e a l l o y i n g e l e m e n t s on the corrosion b e h a v i o r of l o w - a l l o y steels b y m e a n s of a p p r o p r i a t e accelerated w e a t h e r i n g tests. A d d i t i o n a l l y , n a t u r a l exposure tests, light a n d e l e c t r o n - o p t i c a l studies, x - r a y diffraction, a n d electrochemical m e a s u r e m e n t s were carried out.

Experimental

Materials.--Materials e x a m i n e d w e r e p l a i n c a r b o n steel a n d l o w - a l l o y steels with v a r i a b l e composition.

Table I shows the analysis of these steels.

All l o w - a l l o y steels tested have the same basic com- position. I n three different groups, however, the a l l o y - Key words: accelerated weathering tests, weathering steel, at- mospheric corrosion, wet/dry cycles, rust layers.

i n g e l e m e n t s copper, c h r o m i u m , a n d phosphorus w e r e s y s t e m a t i c a l l y varied.

Before exposure the steels were s a n d b l a s t e d a n d de- greased i n benzene.

Weathering.--The samples were exposed to three dif- f e r e n t types of accelerated w e a t h e r i n g tests. F i g u r e 1 gives a schematic s u r v e y of these w e a t h e r i n g condi- tions. I n the first w e a t h e r i n g (3x) the samples were w e t t e d a n d dried three times w i t h i n 12 hr. I n one w e e k the samples were exposed 12 times to these 3x cycles a n d twice i n 12 h~" to a SO~-containing atmosphere. I n the w e a t h e r i n g type 2x the specimens were exposed to two d r y / w e t cycles w i t h i n 12 hr, i n w e a t h e r i n g type l x they were w e t t e d a n d dried o n l y once i n the same time. The average total time of wetness i n c r e a s e d f r o m 46% i n the 3x cycle to 77% i n the l x cycle.

The specimens were w e t t e d b y m e a n s of aerosol s p r a y i n g a n d s p r i n k l i n g , dried at 42~ a n d at a r e l a t i v e h u m i d i t y of 55%. D u r i n g the SO2-exposure the SO2- c o n c e n t r a t i o n was 20 p p m a n d the r e l a t i v e h u m i d i t y 85%. Before each SO2-exposure the samples w e r e also dried. For the n a t u r a l exposure test i n a s u b u r b a n area n e a r Z u r i c h the samples were o r i e n t e d towards the south at a n angle of 45 ~

ElectrochemicM experiments.--The electrochemical e x p e r i m e n t s were carried out i n a n a i r s a t u r a t e d 0.1M Na2SO4 solution. The c u r r e n t - p o t e n t i a l curves were obtained p o t e n t i o s t a t i c a l l y by the u s u a l electronic de- vices (potentiostat, f u n c t i o n generator, p o t e n t i a l - m e t e r ) . The sweep r a t e was 15 m V / m i n . As r e f e r e n c e electrode a s a t u r a t e d calomel electrode was used. The surface of t h e sample e x a m i n e d was 4 cm 2.

Results

Weight losses.--Figure 2 gives a s u r v e y of the results o b t a i n e d b y the accelerated w e a t h e r i n g tests. The cop- p e r as well as the c h r o m i u m series c l e a r l y show the influence of w e a t h e r i n g . The samples w e a t h e r e d w i t h

) unless CC License in place (see abstract).

ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see

130.203.136.75 Downloaded on 2016-02-20 to IP

(2)

16 J. EIectrochem. Soc.: E L E C T R O C H E M I C A L S C I E N C E A N D T E C H N O L O G Y January 1980 Table I. Chemical analysis of the steels used

S t e e l C S Si Mn Cr P CR Ni

Plain carbon steel Low alloy

S 0.02 0.011 0.005 0.29 0.015 0.042 0.018 0.04

E 0,09 0.009 0.36 0.50 0.56 0,061 ~ 0.27

P 0.10 0.008 0.37 0.42 0.50 0.074 ~ 0.28

M 0.11 0.010 0.34 0.49 0.54 0,081 0.30

H 0.10 0.006 0.34 0.42 ~ 0.079 0.34 0.29

F 0.11 0.010 0.34 0.49 l ~ 8 ] 0.067 0.34 0.30

K 0.11 0,007 0.42 0.50 0.075 0.45 0.31

J 0.10 0.007 0.36 0.45 0.54 ~ 0.44 0.31

Q 0,11 0.011 0.39 0.50 0.51 1~01~4 I 0.41 0.30

N 0.11 0.012 0.38 0.50 0.51 0.47 0.30

the 3x cycle h a v e s m a l l e r w e i g h t losses t h a n those w i t h 2x a n d l x cycle. T h e difference i n the 2x a n d l x type weathering, however, is n o t v e r y pronounced. I n the w e a t h e r i n g 3x the influence of the alloying elements is weak. I n addition, the u n a l l o y e d steel S shows only a v e r y small corrosion rate after 9 weeks. The influence of the alloying e l e m e n t s i n the w e a t h e r i n g types 2x a n d l x is slightly greater. I n Fig. 2 the results of the most h i g h l y alloyed steels a r e at the l o w e r limit, the ones of the less alloyed steels at the u p p e r l i m i t of the v a l u e band.

F i g u r e 3 shows a d d i t i o n a l l y t h e w e i g h t loss of the S a n d M - t y p e steels as a f u n c t i o n of total t i m e - o f - w e t - ness t* i n s t e a d of exposure time. The results i n d i c a t e t h a t the lower w e i g h t losses of the 3 x - t y p e w e a t h e r i n g a r e n o t o n l y due to the shorter t i m e - o f - w e t n e s s d u r i n g these w e a t h e r i n g conditions b u t also due to the m o r e protective properties of the r u s t layer.

F r o m these results the following s t a t e m e n t c a n be made: F r e q u e n t d r y i n g / w e t t i n g changes i n the 3x w e a t h e r i n g h a v e a f a v o r a b l e influence on the corrosion behavior. A f t e r a large corrosion r a t e at the b e g i n n i n g of the exposure the samples corrode o n l y slightly. This b e h a v i o r is almost i n d e p e n d e n t of the c o n c e n t r a t i o n of

the a l l o y i n g elements. F o r the u n a l l o y e d steel S the corrosion rate decreases significantly also.

W h e n the samples a r e w e a t h e r e d w i t h l o n g e r w e t t i n g periods (2x, l x ) , the corrosion rate does n o t decrease so much. Moreover, the total m e t a l loss is two to three times as high compared to w e a t h e r i n g 3x. D u r i n g t h e s e

200

O,J

L ~

I00'

I x ( S , E , P , M )

2x (S,E,P,M)

3x ( S , E , P,M)

, i i i i I i i i __ T i m e [ d a y s ]

14 28 4 2 5 6

pl

2"///,> "/A

i I _ I I

Ni~l ~

I ,I L il I

$

IP'///////A F.////89

II ~ 1 ;

Ii C ~ l ~

I I I l l l l I I I

)rJnk~ng 8

-j i Weathering

5 x

I E , Time of wetness

I'-'

I l l I

ng )_h

5

I I '12h

Weathering 2x

= 4 6 %

Time of wetness = 5 8 %

";""'Y"~""""'"'~I Weathering i x

o I

o I . = _

I I I I I I t i l l I

4 8 12h

Wet period [ I Dry period

Fig. |. Schematic survey of the types of accelerated weathering

Time of wetness = 7 7 %

P"I

200

kiI

- | 0 0 ._~

Cr - Series b)

P - S e r i e s

S ix (S,H,F,K)

3x (S,H, F,K) ( S, J,Q,N)

, J ~ ~

, , , , I --Time[days]

14 2 8 4 2 5 6

Fig. 2. Results of the accelerated weathering tests: a) tappet- series; b) chromium and phosphorus series.

160

E

"-- 120 c ~

~

80

o

9

~

4o

/SIx

_ //~M1x

- ~ "

~

MSx

] I I I 1

28 56 =

t" [doys]

Fig. 3. Weight loss, x-axis reduced to time of wetness t*

) unless CC License in place (see abstract).

ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see

130.203.136.75 Downloaded on 2016-02-20 to IP

(3)

VoL 127, No. 2 A C C E L E R A T E D W E A T H E R I N G 17

280 240 200

" 160 12o

~= 8O 40

Plain carbon steel S ~ I f "~=

/ / / ~ E,H,J

/ P,F,Q

/ ..

M,K,N

/ i ! ! . . i:=

~ steels

r i I ~ ~ r i t - Time[days]

200 400 600 800

Fig. 4. Results of the natural weathering in suburban area w e a t h e r i n g conditions a beneficial influence of the al=

l o y i n g e l e m e n t s is observed.

F i g u r e 4 shows the results of the n a t u r a l exposure tests. I n spite of the large scatter a s i m i l a r influence of the a l l o y i n g e l e m e n t s is o b t a i n e d as i n the case of the accelerated w e a t h e r i n g l x a n d 2x. G e n e r a l l y , the most alloyed steels h a v e t h e lowest a n d the u n a l l o y e d car- b o n steels h a v e the highest w e i g h t losses. Moreover, a f t e r two years exposure n o n e of the steels tested f o r m e d the completely protective r u s t layers observed d u r i n g 3 x - t y p e accelerated w e a t h e r i n g .

Metallographic tests.--For t h e description of the f u r t h e r tests o n l y the results of the c a r b o n steel S a n d the copper c o n t a i n i n g steel M are used. Also, the 2x w e a t h e r i n g is n o t m e n t i o n e d a n y m o r e because the r e - sults are s i m i l a r to those i n l x w e a t h e r i n g .

E x a m i n e d macroscopically, the samples of the 3x- type w e a t h e r i n g have a r e l a t i v e l y dark, h o m o g e n e o u s - looking surface. No real r u s t blisters are visible. On the o t h e r hand, the r u s t layers f o r m e d o n the I x - t y p e samples have a l i g h t e r color. Moreover the surface is covered w i t h n u m e r o u s big blisters.

Scanning electron microscopy (SEM).--Figure 5 shows the surface of the samples M3x a n d S3x t a k e n w i t h SEM. Here the rust l a y e r is v e r y homogeneous a n d compact. T h e single blisters are v e r y small a n d of a b o u t the same size. The surface of the M3x sample has no visible cracks a n d o n t h e S3x s a m p l e o n l y f e w t h i n cracks can be seen.

O n t h e other hand, the pictures of the M l x a n d S l x samples show a r a t h e r i n h o m o g e n e o u s r u s t surface, as m a y be seen i n Fig. 6. Beside n u m e r o u s small r u s t blisters there a r e also big ones covered w i t h r e l a t i v e l y large cracks.

Light microscope tests.--Microscopic observations show the s t r u c t u r e o~ the rust layer. Yigure 7 i l l u s t r a t e s the m e t a l l o g r a p h i c m i c r o g r a p h s of samples M3x a n d S3x.

F i g u r e 7a is t a k e n by m e a n s of a light microscope, Fig.

7b u n d e r polarized light a n d crossed nicols. The r u s t l a y e r of the M3x s a m p l e consists of two layers: the d a r k one covering t h e m e t a l surface a n d the light one above it. The optical b e h a v i o r of the d a r k l a y e r is iso- tropic. The other l a y e r shows a n anisotropic b e h a v i o r caused b y double r e f r a c t i o n a n d is b r i g h t o r a n g e - colored i n the microscope. E l e c t r o n probe m i c r o a n a l y s i s showed t h a t i n the d a r k l a y e r the alloying e l e m e n t s a n d s u l f u r are accumulated. X - r a y diffraction analysis i n d i c a t e d that a large a m o u n t of r u s t has a n x - r a y amorphous structure. F r o m these results can be coa-

Fig. 5. Rust surface, weather- ing type 3x, scanning electron microscope.

Fig. 6. Rust surface, weather- ing type lx, scanning electron microscope.

) unless CC License in place (see abstract).

ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see

130.203.136.75 Downloaded on 2016-02-20 to IP

(4)

18 J. E~ectrochem. Soc.: E L E C T R O C H E M I C A L S C I E N C E A N D T E C H N O L O G Y January I980

Fig. 7. Cross sections of the rust layers, weathering type 3x: a) light microscope; b) polarized light and crossed nicols c l u d e d t h a t the d a r k p a r t s in the cross sections consist

of t h e a m o r p h o u s F e O x ( O H ) 3 - 2 x as was a l r e a d y d e - s c r i b e d b y M i s a w a (6).

The s u r f a c e of the M3x s a m p l e is c o v e r e d at 80-90%

w i t h the d a r k , a m o r p h o u s l a y e r . The cross section t h r o u g h the r u s t l a y e r of s a m p l e S3x shows a s l i g h t l y less o r d e r e d structure. T h e l i g h t a n i s o t r o p i c l a y e r is a l i t t l e t h i c k e r c o m p a r e d w i t h t h e d a r k l a y e r . Yet, t h e m e t a l s u r f a c e is l a r g e l y c o v e r e d w i t h the g r a y r u s t phase.

F i g u r e 8 shows cross sections of t h e r u s t l a y e r of t h e s a m p l e s M l x a n d S l x . I n t h e case of l x - t y p e w e a t h e r - ing, the r u s t l a y e r does not h a v e t h e s a m e o r d e r e d s t r u c t u r e as w i t h the 3 x - t y p e w e a t h e r i n g . The l i g h t r u s t phases also a p p e a r d i r e c t l y on t h e m e t a l surface.

T h e d a r k r u s t l a y e r covers h e r e o n l y 50-60% of the w h o l e m e t a l surface. F u r t h e r m o r e , t h e t h i c k n e s s of the r u s t l a y e r is not uniform. The r u s t l a y e r b e s i d e t h e big b l i s t e r s is u s u a l l y v e r y thin a n d consists m a i n l y of the l i g h t - c o l o r e d a n i s o t r o p i c r u s t phase. A d d i t i o n a l l y , s u l -

Fig. 8. Cross sections of the rust layers, weathering type lx: a) light microscope; b) polarized tight and crossed nicols

) unless CC License in place (see abstract).

ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see

130.203.136.75 Downloaded on 2016-02-20 to IP

(5)

Vol. I27, No. 1 A C C E L E R A T E D W E A T H E R I N G 19

f a t e p o c k e t s a r e f o r m e d as can be seen in Fig. 8 ( S l x ) r i g h t u n d e r n e a t h t h e big r u s t blister.

W h e n p r e p a r i n g t h e m e t a l l o g r a p h i c cross sections, t h e l i g h t p h a s e s p r o v e d to be v e r y b r i t t l e and t e n d e d to b r e a k out easily. T h e d a r k l a y e r s on the o t h e r h a n d a r e v e r y c o m p a c t a n d can e a s i l y be h a n d l e d . This d i f - f e r e n c e i n the m e c h a n i c a l p r o p e r t i e s is v e r y e v i d e n t a n d p o i n t s to t h e p r o t e c t i v e effect of t h e g r a y i s o t r o p i c l a y e r .

Electrochemical measurements.--Potential decay during immersion.--The d r y s a m p l e s w e r e i m m e r s e d in the e l e c t r o l y t e a n d the p o t e n t i a l was c o n t i n u o u s l y r e c o r d e d .

F i g u r e 9 shows the p o t e n t i a l - t i m e curves o f the d i f - f e r e n t l y w e a t h e r e d a l l o y e d a n d u n a l l o y e d s a m p l e s a f t e r i m m e r s i o n . T h e p o t e n t i a l s of t h e l x - t y p e w e a t h e r e d s a m p l e s d e c r e a s e in b o t h cases w i t h i n a f e w m i n u t e s b y 300-400 m V a n d q u i c k l y r e a c h a constant value. I n the w e l l - w e a t h e r e d s a m p l e s this v a l u e is r e a c h e d o n l y a f t e r s e v e r a l hours. The constant p o t e n t i a l v a l u e is n e v e r t h e l e s s a p p r o x i m a t e l y the s a m e in all the e x p e r i - ments. A r a p i d p o t e n t i a l d e c a y is also a c h i e v e d b y s c r a t c h i n g the s u r f a c e of the w e l l - w e a t h e r e d s a m p l e

(3x) w i t h a n e e d l e ( d o t t e d l i n e in Fig. 9).

F u r t h e r m o r e , t h e l o w - a l l o y steel M as w e l l as t h e u n a l l o y e d steel S e x p o s e d to n a t u r a l w e a t h e r i n g con- ditions s h o w q u i t e s i m i l a r p o t e n t i a l - t i m e c u r v e s as the l x w e a t h e r e d s a m p l e s ( c u r v e s M A a n d S A in Fig.

9). This confirms t h e r e s u l t s a l r e a d y o b t a i n e d b y w e i g h t loss m e a s u r e m e n t s w h e r e t h e n a t u r a l e x p o s u r e tests w e r e also c o m p a r a b l e w i t h t h e l x a n d 2 x - t y p e a c c e l e r a t e d w e a t h e r i n g .

Anodic polarization.--After h a v i n g b e e n i m m e r s e d i n t h e e l e c t r o l y t e for 20 min, the s a m p l e s w e r e a n o d i c a l l y p o l a r i z e d .

F i g u r e 10 shows such p o l a r i z a t i o n c u r v e s w h i c h a r e s i m i l a r to c u r r e n t - p o t e n t i a l curves of p a s s i v e m e t a l s . It can be d e m o n s t r a t e d t h a t the m o r e the p o t e n t i a l d e - creases d u r i n g i m m e r s i o n , t h e l a r g e r is the v a l u e of the p e a k c u r r e n t in the anodic p o l a r i z a t i o n curve. P o o r l y w e a t h e r e d s a m p l e s a l w a y s s h o w a c c o r d i n g l y h i g h p e a k - c u r r e n t densities, w h e r e a s i n w e l l - w e a t h e r e d s a m p l e s t h e y a r e e x t r e m e l y s m a l l o r do n o t e x i s t a t all.

F i g u r e 11 shows the anodic p o l a r i z a t i o n c u r v e of the s a m p l e M3x w h i c h was s c r a t c h e d d u r i n g i m m e r s i o n . T h e p e a k c u r r e n t d e n s i t y for t h e p a s s i v a t i o n of the s a m p l e s is r e m a r k a b l y h i g h e r t h a n in the s a m p l e w h i c h was o n l y i m m e r s e d . The p a s s i v a t i o n p o t e n t i a l ep h o w e v e r has t h e s a m e value.

T h e r e d u c t i o n curves, s t a r t i n g in t h e p a s s i v e state, also s h o w a n a c t i v a t i o n process in the s a m e p o t e n t i a l range, as is shown in Fig. 12. As is e x p e c t e d f r o m t h e anodic p o l a r i z a t i o n curves, this p h e n o m e n o n a p p e a r s m o r e c l e a r l y in p o o r l y w e a t h e r e d s a m p l e s t h a n i n w e l l - w e a t h e r e d ones.

9

~ 0,2

g ql g,

/ \

/ \

/ / \

/ / - - . , - - . S 3 x

I I /, ,/ ~ / /-M3x

, I I , / .

~--§

-400 0 + 400 + 800 '~ Potenlial

[mVsc E ]

Fig. 10. Anodic current density-potential-curve after 20 rain of immersion in O.]M Na2SO~, sweep rate 15 mV/min.

20C

E 0

~ -200

no

-400

o)

- Mix MSx

I I I = t [ m i n i

60 120 180

t,6

"" 1,2

~ 0,8 g

0,4

-,x v I

f',o: \ ~,"J I

" ~ : ' ~ F-M 5x (scratched)

|

/

F -M 3 X zz

/ i I . ~ - - ~ - - - ~ - - ~- - - - - ~ J I

- 4 0 0 0 ~p+400 + 800 ,. Potential

[ m Vsc E]

Fig. 11. Anodic current density-potential-curve of a scratched and an undamaged sample, 3x type weathering.

0•

b) +6ol

'% 20 +4o

no 400~- ~ ~ S A S3x

- - --40

I ~ i ~ - t [ r n i n ]

60 120 180

Fig. 9. Potential decay during immersion: a) weathering steel M;

b) plain carbon steel S.

I I

/imox. = 8~juA/c

-200

\

I I ( ~ Potential [ mVsc E ]

0 -F200

Fig. 12. Cathodic current density-potentlai-curve of different weathered (lx, 3x) steels immediately after immersion in 0.1M Na2S04, sweep rate 15 mV/min., start at + 4 0 0 inV.

) unless CC License in place (see abstract).

ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see

130.203.136.75 Downloaded on 2016-02-20 to IP

(6)

20 J. Electrochem. Soc.: E L E C T R O C H E M I C A L S C I E N C E A N D T E C H N O L O G Y January 1980

Discussion

F r o m the r e s u l t s of t h e e l e c t r o c h e m i c a l e x p e r i m e n t s one can conclude t h a t t h e w e a t h e r e d s a m p l e s a r e in a t r u e p a s s i v e s t a t e a t t h e b e g i n n i n g of t h e i m m e r s i o n period. But w i t h t i m e the p o t e n t i a l d e c r e a s e s to l o w e r v a l u e s a n d r e a c t i v a t i o n of t h e p a s s i v e s u r f a c e occurs.

In o r d e r to m a i n t a i n p a s s i v i t y , an e a s i l y r e d u c i b l e o x i d i z i n g a g e n t has to be p r e s e n t in t h e r u s t of t h e w e a t h e r e d samples. This o x i d i z i n g a g e n t keeps t h e p o t e n t i a l of the s y s t e m in t h e p a s s i v e r a n g e u n t i l i t is u s e d up. N o t h i n g can be said f r o m this e x p e r i m e n t c o n c e r n i n g the q u a n t i t y a n d t h e t y p e of this o x i d i z i n g agent. As t h e d i f f e r e n t a l l o y i n g e l e m e n t s do not influ- ence the p a s s i v a t i o n w i t h i n the d i f f e r e n t t y p e s of w e a t h e r i n g , i t m a y b e c o n c l u d e d t h a t a n e a s i l y r e d u c i - b l e p a r t of t h e o r d i n a r y r u s t is r e s p o n s i b l e for m a i n - t a i n i n g passivity. I n this e x p e r i m e n t such a r u s t p h a s e could be d e t e r m i n e d n e i t h e r b y c a t h o d i c r e d u c t i o n curves nor b y x - r a y diffraction analysis. This i n d i c a t e s t h a t t h e a m o u n t is e i t h e r v e r y s m a l l a n d / o r t h a t the s t r u c t u r e of t h e o x i d i z i n g a g e n t is not m u c h different f r o m the s t r u c t u r e of the o r d i n a r y rust.

The test w i t h s c r a t c h e d s a m p l e s s h o w e d t h a t b y i n - c r e a s i n g the a c t i v e s u r f a c e the anodic c u r r e n t i n c r e a s e s as well. T h e r e f o r e i t can be s u p p o s e d t h a t t h e a c t i v e s u r f a c e of t h e p o o r l y w e a t h e r e d s a m p l e s l x is m u c h l a r g e r c o m p a r e d to t h e w e l l - w e a t h e r e d ones. This fact e x p l a i n s also w h y the p o t e n t i a l of t h e s a m p l e s l x d e - c a y e d so m u c h f a s t e r to l o w e r values. P a s s i v i t y is m a i n t a i n e d h e r e o n l y u n t i l t h e o x i d i z i n g a g e n t is u s e d up.

M o r e o v e r the m e t a l l o g r a p h i c e x a m i n a t i o n s s h o w t h a t t h e r u s t l a y e r of t h e l x w e a t h e r e d s a m p l e s is c o v e r e d b y n u m e r o u s cracks, in c o n t r a r y to the r u s t o b t a i n e d b y 3 x - t y p e w e a t h e r i n g w h i c h is a l m o s t f r e e f r o m cracks. I n this case the m e t a l s u r f a c e is m o s t l y c o v e r e d w i t h the d a r k c o m p a c t r u s t phase. The c r a c k s in t h e r u s t l a y e r a r e s u p p o s e d to be the sites of a c t i v e c o r r o - sion on t h e m e t a l surface. T h e b e t t e r t h e steel is w e a t h e r e d , t h e m o r e it is c o v e r e d w i t h t h e p r o t e c t i v e l a y e r , i.e., the l o n g e r the oxidizing a g e n t lasts to m a i n - t a i n passivity. Thus t h e p o t e n t i a l decreases slower.

D u r i n g the d r y i n g p e r i o d s r e d u c e d r u s t is r e o x i d i z e d a g a i n b y t h e a t m o s p h e r i c o x y g e n , so t h a t t h e s a m p l e s a r e p a s s i v e again.

W i t h t h e r e s u l t s o b t a i n e d so f a r the f o l l o w i n g m o d e l for t h e f o r m a t i o n of corrosion p r o t e c t i v e l a y e r s on l o w - a l l o y steels can be p r o p o s e d : W h e n the m e t a l s u r f a c e is e x p o s e d to f r e q u e n t d r y / w e t cycles, t h e

w h o l e s u r f a c e c o r r o d e s r a t h e r evenly. I n case of s h o r t w e t p e r i o d s no l a r g e s u l f a t e p o c k e t s are formed. Due to p r e c i p i t a t i o n of i n s o l u b l e c o r r o s i o n p r o d u c t s a n d aging t h e m e t a l s u r f a c e is g r a d u a l l y c o v e r e d b y a r a t h e r c o m p a c t a n d m a i n l y a m o r p h o u s r u s t l a y e r w h i c h p r o t e c t s most os the s u r f a c e f r o m f u r t h e r a t t a c k . i n a l l y the r e d u c t i o n c u r r e n t m a i n t a i n e d b y r e d u c i b l e r u s t c o m p o n e n t s is sufficiently l a r g e to p a s s i v a t e t h e r e s i d u a l a c t i v e a r e a s d u r i n g t h e w e t periods. T h e g r o w t h of l a r g e r u s t b l i s t e r s is t h e r e f o r e i n h i b i t e d and t h e o v e r - a l l c o r r o s i o n r a t e d e c r e a s e s continuously.

This process occurs not o n l y on l o w - a l l o y b u t also on u n a l l o y e d steels.

~vhen the m e t a l s u r f a c e is e x p o s e d to long w e t p e - riods, t h e c o r r o s i o n r a t e i n c r e a s e s a n d l a r g e s u l f a t e p o c k e t s a r e formed. The s u r f a c e is o n l y p a r t i a l l y c o v - e r e d b y the corrosion i n h i b i t i n g a m o r p h o u s r u s t l a y e r . I n this case t h e r e s i d u a l active s u r f a c e a r e a s a r e con- s i d e r a b l y l a r g e r a n d can be p a s s i v a t e d in t h e long w e t p e r i o d o n l y for a s h o r t p e r i o d of time. I n this w a y localized c o r r o s i o n processes a r e s t i m u l a t e d a n d due to the f o r m a t i o n of v o l u m i n o u s corrosion p r o d u c t s l a r g e c r a c k s a r e formed. F i n a l l y the w h o l e r u s t l a y e r is p e e l e d off. T h e c o r r o s i o n i n h i b i t i n g effect of these l a y e r s is t h e r e f o r e small.

M a n u s c r i p t s u b m i t t e d Nov. 15, 1978; r e v i s e d m a n u - s c r i p t r e c e i v e d M a y 18, 1979.

A n y discussion of this p a p e r w i l l a p p e a r i n a D i s - cussion Section to be p u b l i s h e d in t h e D e c e m b e r 1980 JOURNAL. A l l discussions for t h e D e c e m b e r 1980 D i s - cussion S e c t i o n s h o u l d b e s u b m i t t e d b y Aug. 1, 1980.

Publication costs of this article were assisted by the Swiss Federal Institute of Technology.

R E F E R E N C E S

1. F. E i s e n s t e c k e n a n d W. Stinnes, Arch. Ei~enhuetten- wes., 27,469 (1956).

2. W. F r i e h e a n d U. T e n h a v e n , Stahl Eisen., 92, 277 (1972).

3. S. G. V e d e n k i n , Prot. Met., 11, 259 (1975).

4. C. P. L a r r a b e e a n d S. K. Coburn, F i r s t I n t e r n a t i o n a l Congress on M e t a l l i c Corrosion, p. 276, L o n d o n (1962).

5. A. M. E d w a r d s , Proc. S y m p . on D e v e I o p m e n t s in M e t h o d s of P r e v e n t i o n a n d C o n t r o l of C o r r o s i o n in Buildings, B r i t i s h I r o n a n d S t e e l F e d e r a t i o n , L o n d o n (1966).

6. T. Misawa, K. Hashimoto, a n d S. S h i m o d e i r a , Corros. Sci., 14, 181 (1974),

) unless CC License in place (see abstract).

ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see

130.203.136.75 Downloaded on 2016-02-20 to IP

References

Related documents

Classroom observations revealed that all the teachers who claimed to employ this strategy used a combined set of collaborative teaching activities like working in groups (WG),

It created the condition where relating in action became possible, when people setting up the second and the third jump were transforming the first jump into a performative

Creek project of Dole Philippines in Cogan creek, Malagos, Davao City was only participated. mostly by their employees, the local government unit thru the

methods were studied: analysis of the binary phenotype (binary), standard interval mapping using only those individuals with a positive phenotype (QT), the maximum of the binary

While these guidelines have been developed to support MPHs ’ management of existing pregnan- cies, there is little literature on providing support and assistance to service users

free or if their risk is uncorrelated with the market portfolio. We proceed to consider discount rates in the context of the CAPM single-factor pricing model. If government

Pattino guida catena, laterale / Side transfer guide shoe / seitlicher Tranferschuh.

In 1971, the United Nations began a study on how best to protect software, while simultaneously facilitating the dissemination of computer programs to developing nations.3