• No results found

Hermite Hadamard and Simpson Like Type Inequalities for Differentiable (

N/A
N/A
Protected

Academic year: 2020

Share "Hermite Hadamard and Simpson Like Type Inequalities for Differentiable ("

Copied!
13
0
0

Loading.... (view fulltext now)

Full text

(1)

International Journal of Mathematics and Mathematical Sciences Volume 2012, Article ID 809689,12pages

doi:10.1155/2012/809689

Research Article

Hermite-Hadamard and Simpson-Like

Type Inequalities for Differentiable (α, m)-Convex

Mappings

Jaekeun Park

Department of Mathematics, Hanseo University, Chungnam-do, Seosan-si 356-706, Republic of Korea

Correspondence should be addressed to Jaekeun Park,jkpark@hanseo.ac.kr Received 13 July 2011; Revised 13 November 2011; Accepted 28 November 2011 Academic Editor: Jewgeni Dshalalow

Copyrightq2012 Jaekeun Park. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The author establish several Hermite-Hadamard and Simpson-like type inequalities for mappings whose first derivative in absolute value aroused to theqthq≥1power areα, m-convex. Some applications to special means of positive real numbers are also given.

1. Introduction

Recall that, for some fixedα∈0,1andm∈0,1, a mappingf :I⊆0,∞ → Ris said to beα, m-convex on an intervalIif the inequality

ftxm1−tyfx m1tαfy 1.1

holds forx, y∈I, andt∈0,1. Denote by

mIthe set of all α, m-convex mappings on I. For recent results and generalizations concerningm-convex andα, m-convex mappings, see1–4.

For the simplicities of notations, forf

mI, let us denote

ambSba

fα, m, r 1 r

fa r−2f

amb

2

fmb

− 1

mba

mb

a

fxdx.

(2)

In 1, 3, Klariˇci´c Bakula and ¨Ozdemir et al., proved the following Hadamard’s inequalities for mappings whose second derivative in absolute value aroused to the q-th

q≥1power areα, m-convex.

Theorem 1.1. Letf : I ⊆ 0, b∗ → Rbe a twice differentiable mapping on the interiorI0 of an

intervalIsuch thatfL1a, b, wherea, b ∈Iwitha < bandb>0. If|f |qisα, m-convex

ona, bforα, m∈0,12andq1 with 1/p1/q1, then the following inequality holds:

a Sba

fα, m,2 ≤ mba 2

1 6

1/p

μ f a qmν f b q1/q, 1.3

where

μ 1

α2α3, ν

α25α

6α2α3, 1.4

b Sba

fα, m,6 ≤ mba 2

1 2

1/p

μ0 f a qmν0 f b q

1/q

, 1.5

where

μ0

q 2

Γα2Γq

Γ1,

ν0 1

q1q2 −

q 2

Γα2Γq

Γ1,

1.6

where

Γx

0

ettx−1dt, x >0. 1.7

Theorem 1.2. Under the same notations in Theorem 2.2, if |f |q is α, m-convex on a, b for

α, m∈0,12andq >1 with 1/p1/q1, then the following inequality holds:

Sb a

fα, m,2 ≤ mba 8

Γp1

Γp3/2 1/p

f a q 1

α1m f

b q α

α1 1/q

. 1.8

Note that forα, m∈ {0,0,α,0,1,0,1, m,1,1,α,1}one obtains the following classes of functions: increasing,α-starshaped, starshaped,m-convex, convex, andα-convex. For the definitions and elementary properties of these classes, see4–8.

For recent years, many authors present some new results about Simpson’s inequality for α, m-convex mappings and have established error estimations for the Simpson’s inequality: for refinements, counterparts, generalizations, and new Simpson’s type inequali-ties, see1–3,6.

(3)

Theorem 1.3. Letf : I ⊂ 0,∞ → Rbe an absolutely continuous mapping ona, bsuch that

fLpa, b, wherea, b∈Iwitha < b. Then the following inequality holds:

Sb a

f1,1,6 ≤ ba

−1/p

6

2q11

3q1 1/q

f

p. 1.9

The readers can estimate theerror fin the generalized Simpson’s formula without going through its higher derivatives which may not exist, not be bounded, or may be hard to find.

In this paper, the author establishes some generalizations of Hermite-Hadamard and Simpson-like type inequalities based on differentiableα, m-convex mappings by using the following new identity inLemma 2.1and by using these results, obtain some applications to special means of positive real numbers.

2. Generalizations of Simpson-Like Type Inequalities on

K

α

m

I

In order to generalize the classical Simpson-like type inequalities and prove them, we need the following lemma6.

Lemma 2.1. Letf :I⊆0, b∗ → Rbe a differentiable mapping on the interiorI0of an intervalI,

wherea, b ∈Iwith 0a < band b> 0. IffL1a, b, then, forr 2 andh 0,1with

1/rhr−1/r, the following equality holds:

Sba

fα, m, r

1

0

pr, tftam1−tbdt 2.1

forf

ma, band eacht∈0,1, where

pr, t

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

t−1

r t

0,1

2

,

tr−1

r t

1 2,1

.

2.2

By the similar way as Theorems1.1–1.3, we obtain the following theorems.

Theorem 2.2. Letf : I⊂ 0, b∗ → Rbe a differentiable mapping onI0such thatf La, b,

wherea, b ∈Iwith 0a < b <andb> 0. If|f| ∈

ma, b, for someα, m∈0,12and

mb > a, then, for anyr2, the following inequality holds:

Sb a

fα, m, rμ1

1μ21μ31μ41 fa

ν1

1ν21ν31ν41

(4)

where

μ11 1

α1α22,

μ21 1

α1α22

α1r−2α2 2α2α1α2r,

μ31 r−1

α2

α1α22

2α2−3r

2α2α1α2r,

μ41 r−1

α2

α1α22

α2−r

α1α2r,

ν1

1

1 2r2 −μ

1

1,

ν2

1

r−22 8r2 −μ

2

1,

ν3

1

r−22 8r2 −μ

3

1,

ν14 1

2r2 −μ 4

1.

2.4

Proof. FromLemma 2.1and using the properties of the modulus, we have the following:

Sb a

fα, m, r

1/r

0

1

rt ftam1−tb dt

1/2

1/r

t−1

r ftam1−tb dt

r−1/r

1/2

r−1

rt ftam1−tb dt

1

r−1/r

tr−1

r ftam1−tb dt.

2.5

Since|f|isα, m-convex ona, b, we know that for anyt∈0,1

ftam1tb tα fa m1tα fb . 2.6

By2.5and2.6, we get the following:

Sb a

fα, m, r

1/r

0

1

rt

fa m1− fb dt

1/2

1/r

t− 1 r

(5)

r−1/r

1/2

r−1

rt

fa m1− fb dt

1

r−1/r

tr−1 r

fa m1tα fb dt

1/2

0

1rt tαdt

1

1/2

rr1 −t tαdt

fa

1/2

0

1rt 1−tαdt

1

1/2

rr1−t 1−tαdt

m fb

μ11μ21μ13μ41 fa ν11ν21ν31ν41m fb ,

2.7

which completes the proof.

Corollary 2.3. InTheorem 2.2,iif we chooseα1 andr2, then we have the following:

mbaSb a

f1, m,2

fa fmb

2 −

1

mba

mb

a

fxdx

mba

8 fa m fb ,

2.8

andiiif we chooseα1 andr6, then we have the following

mbaSb a

f1, m,6 1 6

fa 4f

amb

2

fmb

− 1

mba

mb

a

fxdx

≤ 5

72mba fa m fb .

2.9

Theorem 2.4. Under the same notations inTheorem 2.2, if|f|q Kα

ma, b, for someα, m

0,12,mb > aandq >1 with 1/p1/q1, then, for anyr2, the following inequality holds:

Sb a

fα, m, r

1 2r2

1/p

μ11 fa 11m fb q1/qμ41 fa 41m fb q1/q

1 8

r−2

r

21/p

μ21 fa 12m fb q1/qμ13 fa 13m fb q1/q

.

(6)

Proof. FromLemma 2.1and using the properties of modulus, we have the following:

Sb a

fα, m, r

1/r

0

1

rt ftam1−tb dt

1/2

1/r

t− 1

r ftam1−tb dt

r−1/r

1/2

r−1

rt ftam1−tb dt

1

r−1/r

tr−1

r ftam1−tb dt.

2.11

Using the power-mean integral inequality and α, m-convexity of |f|q for any t

0,1, we have the following

a

1/r

0

1

rt ftam1−tb

q

dtμ11 fa 11m fb q, 2.12

b

1/2

1/r

t− 1

r ftam1−tb

q

dtμ21 fa 21m fb q, 2.13

c

r−1/r

1/2

r−1

rt ftam1−tb

q

dtμ31 fa 13m fb q, 2.14

d

1

r−1/r

tr−1

r ftam1−tb

q

dtμ41 fa 41m fb q. 2.15

By the similar way as the above inequalitiesa–d, we have the following:

a

1/r

0

1

rt ftam1−tb dt

1 2r2

1/p

μ1

1 fa

q

ν1

1m fb

q1/q

(7)

b

1/2

1/r

t−1

r ftam1−tb dt

1 8

r−2

r

21/p

μ21 fa 21m fb 1/q,

2.17

c

r−1/r

1/2

r−1

rt ftam1−tb dt

1 8

r−2

r

21/p

μ3

1 fa

q

ν3

1m fb

q1/q

,

2.18

d

1

r−1/r

tr−1

r ftam1−tb dt

1 2r2

1/p

μ41 fa 14m fb q1/q.

2.19

By2.11and2.16–2.19the assertion2.10holds.

Corollary 2.5. InTheorem 2.4,iif we chooseα1 andr2, then we have that

fa fmb

2 −

1

mba

mb

a

fxdx

≤ 6−1/q

8 mba fa q

5m fb q1/q5 fa qm fb q1/q,

2.20

andiiif we chooseα1 andr6, then we have that

1

6

fa 4f

amb

2

fmb

− 1

mba

mb

a

fxdx

mba

1

72

1 18

1/q

fa q17m fb q1/q

17 fa qm fb q1/q

25 288

2 5

2/q

×7 fa q11m fb q1/q11 fa q7m fb q1/q.

(8)

Theorem 2.6. Under the same notations inTheorem 2.2, if|f|q Kα

ma, b, for someα, m

0,12,mb > aandq >1 with 1/p1/q1, then, for anyr2, the following inequality holds: Sb

a

fα, m, r

1

rp1

1/p

μ12 fa 21m fb q1/qμ24 fa 24m fb q1/q

r−2p1 2p1rp1

1/p

μ22 fa

q

ν22m fb

q1/q

μ32 fa 32m fb q1/q

,

2.22

where

μ12 1

1α1,

μ22

12α1

2α1rα1α1,

μ32 2

α1r1α1rα1

2α1rα1α1 ,

μ42 r

α1r1α1

1α1 ,

ν12 1 rμ

1

2,

ν22

r−2 2r μ

2

2,

ν32 r−2

2r μ

3

2,

ν42

1

rμ

4

2.

2.23

Proof. Suppose thatq >1. FromLemma 2.1, using the H ¨older integral inequality, we get the

following:

Sb a

fα, m, r

1/r

0

1

rt

p

dt

1/p1/r

0

ftbm1ta q

dt

1/q

1/2

1/r

t−1 r

p

dt

1/p1/2

1/r

ftbm1ta q

dt

1/q

r−1/r

1/2

r−1

rt

p

dt

1/pr−1/r

1/2

ftbm1ta q

dt

1/q

1

r−1/r

tr−1 r

p

dt

1/p1

r−1/r

ftbm1ta q

dt

(9)

1

rp1

1/p1/r

0

ftbm1−ta qdt

1/q

1 2p1

r−2

r

p11/p1/2

1/r

ftbm1ta q

dt

1/q

1 2p1

r−2

r

p11/pr−1/r

1/2

ftbm1ta q

dt

1/q

1

rp1

1/p1

r−1/r

ftbm1ta q

dt

1/q

,

2.24

where we have used the fact that 1/2<1/p11/p<1. Since|f|qKm

αa, bfor some fixedα∈0,1andm∈0,1, we have the followings: 1/r

0

ftb 1ta q

dtμ12 fa

q

ν12m fb

q

,

1/2

1/r

ftb 1−ta qdtμ22 fa 22m fb q,

r−1/r

1/2

ftb 1−ta qdtμ3

2 fa

q

ν3

2m fb

q

,

1

r−1/r

ftb 1ta q

dtμ42 fa

q

ν24m fb

q

.

2.25

Hence, if we combine the inequalities in2.24-2.25, we get the desired result.

Corollary 2.7. InTheorem 2.6,iif we chooseα1 andr2, then we have that

fa fmb

2 −

1

mba

mb

a

fxdx

1 4

11/q

mba fa q3m fb q1/q3 fa qm fb q1/q,

2.26

andiiif we chooseα1 andr6, then we have

1

6

fa 4f

amb

2

fmb

− 1

mba

mb

a

fxdx

mba

1

6 12/q

fa q11m fb q1/q11 fa qm fb q1/q

1 3

21/q

fa q2m fb q1/q2 fa qm fb q1/q,

2.27

(10)

3. Applications to Special Means

Now using the results ofSection 2, we give some applications to the following special means of positive real numbersa, b∈Rwithba.

1The arithmetic mean:Aa, b ab/2.

2The geometric mean:Ga, bab.

3The logarithmic mean:La, b ba/lnb−lnafora /b.

4The harmonic mean:Ha, b 2ab/ab.

5The power mean:Mra, b arbr/21/r,r≥1, a, b∈R.

6The generalized logarithmic mean:

Lna, b

bn1an1

ban1 1/n

, a /b. 3.1

7The identric mean:

Ia, b

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

a ab

1

e

bb

aa

1/ba

a /b. 3.2

Proposition 3.1. Forn ∈ −∞,0∪1,∞\ {−1}anda, b ∈ 0, bwithb> 0, we have the

following inequalities:

a|Aan, mnbnLnna, mb| ≤

mba

8 |n|M n−1

n−1

a, m1/n−1b.

b 1 3Aa

n, mnbn 2 3A

na, mbLn na, mb

5 72

mba|n|Mnn−1−1a, m1/n−1b.

3.3

Proof. The assertions follow fromCorollary 2.3forfx xn.

Proposition 3.2. Fora, b∈0, b, we have the following inequalities:

a H−1a, mbL−1a, mb

mba

8a2b2

M22m1/2a, b,

b 1 3H

−1a, mb 2

3A

−1a, mbL−1a, mb 5mba

72a2b2

M22m1/2a, b.

3.4

(11)

Proposition 3.3. For n ∈ −∞,0∪1,∞\ {−1} and a, b ∈ 0, b, we have the following inequalities:

a|Aan, mnbnLnna, mb|

3−1/q

8

mba|n| ×

A1/qan−1q,5mbn−1q1/qA1/q5an−1q, mbn−1q1/q

,

b 1 3Aa

n, mnbn 2 3A

na, mbLn na, mb

1 72

1 9

1/q

mba|n| ×A1/qan−1q,17mbn−1qA1/q17an−1q, mbn−1q

25 288

2 25

1/q

mba|n|

×A1/q7an−1q,11mbn−1qA1/q11an−1q,7mbn−1q.

3.5

Proof. The assertions follow fromCorollary 2.5forfx xn.

Proposition 3.4. For n ∈ −∞,0∪1,∞\ {−1} and a, b ∈ 0, b, we have the following

inequalities:

a|Aan, mnbnLnna, b| ≤

1 221/q

|n|mba

×A1/qan−1q,3mbn−1qA1/q3an−1q, mbn−1q,

b 1 3Aa

n, mnbn 2 3A

na, mbLn na, mb

1 6

11/q1

3 1/q

|n|mba×A1/qan−1q,11mbn−1qA1/q11an−1q, mbn−1q

1 3

21/q

21/q|n|mba×A1/qan−1q,2mbn−1qA1/q2an−1q, mbn−1q.

3.6

Proof. The assertions follow fromCorollary 2.7forfx xn.

Proposition 3.5. Fora, b∈0, b, we have the following inequalities:

a ln Ia, b

Ga, b

ba

ab

1 411/q

aq3bq1/q 3aqbq1/q,

b ln Ia, b

G1/3a, bA2/3a, b

ba

ab

1 6

12/q

aq11bq1/q 11aqbq1/q

1 3

21/q

aq2bq1/q 2aqbq1/q.

3.7

(12)

Acknowledgment

The author is so indebted to the referee who read carefully through the paper very well and mentioned many scientifically and expressional mistakes.

References

1 M. Klariˇci´c Bakula, M. E. ¨Ozdemir, and J. Peˇcari´c, “Hadamard type inequalities for m andα, m-convex functions,” Journal of Inequalities in Pure and Applied Mathematics, vol. 9, no. 4, article 96, p. 12, 2008.

2 M. E. ¨Ozdemir, E. Set, and M. Z. Sarikaya, “Some new Hadamard’s type inequalities for co-ordinated m-convex andα, m-convex functions,”rgmia.org/papers/v13e/oss5.pdf.

3 M. E. ¨Ozdemir, M. Avci, and H. Kavurmaci, “Hermite-Hadamard-type inequalities viaα, m-convexity,”

Computers & Mathematics with Applications, vol. 61, no. 9, pp. 2614–2620, 2011.

4 E. Set, M. E. ¨Ozdemir, and M. Z. Sarikaya, “Inequalities of Hermite-Hadamard’s type for functions whose derivatives absolute values are m-convex,” in Proceedings of the AIP Conference, vol. 1309, pp. 861–873, 2010,rgmia.org/papers/v13e/sos6.pdf.

5 M. Alomari and M. Darus, “On some inequalities of Simpson-type via quasi-convex functions and applications,” Transylvanian Journal of Mathematics and Mechanics, vol. 2, no. 1, pp. 15–24, 2010.

6 J. Park, “Generalizations of simpson-like type inequalities for differentiable m-convex and α, m -convex mappings,” Far East Journal of Mathematical Sciences, vol. 55, no. 1, pp. 97–109, 2011.

7 M. Z. Sarikaya, E. Set, and M. E. ¨Ozdemir, “On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex,” RGMIA Research Report Collection, vol. 13, no. 1, article 1, 2010.

8 G. Toader, “The hierarchy of convexity and some classic inequalities,” Journal of Mathematical

Inequalities, vol. 3, no. 3, pp. 305–313, 2009.

9 S. S. Dragomir, R. P. Agarwal, and P. Cerone, “On Simpson’s inequality and applications,” Journal of

(13)

Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

in Engineering

Hindawi Publishing Corporation http://www.hindawi.com

Differential Equations

International Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Probability and Statistics

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex Analysis

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Optimization

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Combinatorics

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 International Journal of Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Operations Research

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied Analysis Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporation http://www.hindawi.com Volume 2014

The Scientific

World Journal

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Decision Sciences

Discrete Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Stochastic Analysis

References

Related documents

The materials like Fly Ash and GGBS as binders with alkaline solution which includes Sodium Hydroxide flakes and Sodium Meta Silicate (commercial grade) are

Here, vertical handover (handover between different technologies) solutions are: Mobile IP, IP Multicast, Media Independent Handover (MIH), Fast Mobile IPv6 Handover

Specifically, immunofluorescence for phosphohistone H3 (Fig. 1A) and phosphovimentin (see Fig. 3D,E), markers of mitotic cells, revealed that LIBS-6 treatment in HERO culture for

These tablets were evaluated for quality control tests like organoleptic characteristics, weight variation, hardness, friability, in-vitro disintegration time, in- vitro

To improve the learning efficiency we propose an adaptive method to update the target network. Convergence will occur at different rates for different tasks or even for different

Based on coefficient of correlation and anomalous Fe distribution map it could inferred that biogeochemical exploration for Fe deposits using Coffea arabica as

literature review delves inpluralism in the devolved government structure of the constitution of kenya 2010 County Administration and Political Pluralism,Political

Behavioral finance is new field that combines behavioural and cognitive psychological theory with conventional economics and finance to provide explanation as to why