• No results found

Common fixed point theorems and applications

N/A
N/A
Protected

Academic year: 2020

Share "Common fixed point theorems and applications"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

Internat. J. Math. & Math. Sci.

VOL. 20 NO. (1997) 13-18 13

COMMON

FIXED

POINT

THEOREMS

AND

APPLICATIONS

HEMANTKUMARPATHAK

DepartmentofMathematics,Kalyan Mahavidyalaya

BhilaiNagar (M.P.)490006,INDIA

SHIH SENCHANG

Department

of Mathematics,SichuanUniversity Chengdu, Sichuan610064,PEOPLE’SREPUBLIC OF CHINA

YEOLJECliO

Departmentof Mathematics,

Gyeongsang

NationalUniversity Jinju 660-701, KOREA

JONG SOO JUNG

Department

of Mathematics,

Dong-A

University Pusan 604-714,KOREA

(ReceivedNovember 22, 1994and in revisedform

January

18,

1995)

ABSTRACT. The purposeof thispaperisto discuss the existenceofcommon fixedpoints for mappings in general quasi-metric spaces. As applications, some common fixed point theorems for mappings in probabilistic quasi-metric spacesaregiven. Theresultspresented in thispaper generalize

somerecentresults.

KEY WORDS AND PHRASES. General quasi-metric space, probabilistic quasi-metric space, fixed

point, periodic point, periodic index.

1991AMS SUBJECTCLASSHCICATIONCODES. 54H25, 54A40,54C60.

1. INTRODUCTION

Inthispaper, weshowthe existenceofcommon fixedpoints forcommuting mappingsingeneral quasi-metric spaces. As applications, we givesomefixed pointtheorems for commuting mappings in

probabilistic quasi-metric spaces. Ourmainresults generalize and improvesome recentresultsin 1], [4],

[]

and

[6].

Let

(G, _<,

<

beapartialordersetsatisfyingthe following conditions: (G-l) 0 isthe minimal element inG,i.e.,0

<

ufor allz

G,

(G-2)

for any

,

v

G, sup{u,

v}

existsandbelongsto

G,

(G-3) foranyu/G,

,

(G-4) for any

,

v,w

G,

u

<

wandv

<

w

=

sup{z,

v} <

w, and

<

v,v

_

w

=

u

<

w.

DEFINITION 1.1 Let

X

beanonempty set.

(X,

r)

is calledageneralquasi-metricspace if r-Xx X--,G

(G,

_,

<

satisfiesthe followingconditions:

(QM-1)

r(x, !/)

0if andonlyifx !/,

(QM-2)

r(x,l)

Itfollows from the definition that every general quasi-metric space includes a metricspace asits

(2)

DEFINITION 1.2 LetXbeanonemptysetandletTbeaself-mapping ofX. Apointx EXis called aperiodicpointofT ifthereexists apositive integerksuch that

Tkx

x. Theleastpositive integersatisfyingthis condition iscalledtheperiodicindexofx.

DEFINITION 1.3 A mappingF (-oo,oo) [0, oo) is calleda distribution

function

if it is nondecreasingandleft-continuouswithinfF(t) 0 andsup

F(t)

1.

Inwhat follows we always denote by

F(T)

theset of all fixed points ofT,

P(T)

the set of all periodic points of T and /) the set of all distribution functions, respectively, and let l)+

{F

1):

F(t)

0for all t<

0}.

DEFINITION1.4

(X, .’)

iscalledaprobabilisticquasi-metricspaceifXisanonemptyset,

"

is amapping fromXxXinto 1)+ (we shall denote the distribution function.’(x,y) by

F=,u(t

which representthevalueof

F=,u

att oo,oo))satisfyingthefollowing conditions:

(PQM-I)

F=,u(0)

0,

(PQM-2)

F=,u

(t)

Ifor all t

>

0ifand onlyif x y,

(PQM-3)

F,(t)

Fux(t

for all oo,oo).

DEFINrrION1.5

(X,

’)iscalledaprobabilisticmetricspaceif(X, ’)is aprobabilistic quasi-metricspaceand thefollowingcondition is satisfied:

(PQM-4) if

F=,(tl)

1and

F.z(

1, then

F,z(tl

+

z)

1.

Formoredetails onprobabilistic metricspaces,referto[3]and[7].

2. COMMONFIXED POINT TIOREMS Now,wegiveour maintheorems.

TitEOREM 2.1 Let

(X, r)

bageneral quasi-metricspace and let

andTbetwocommuting self-mappings ofX. If for anyx Xand anytwopositive integersn,q_>2 with

Tix

T:x,

O

<

<j

<_

n-1,

(2.1)

SexSJ’x,

0_<i’<._<q-1,

,(T"

S"

=,

ST

=)

<

max sup

r(TJz,

S =), sup

r(T:=,

x), sup

r(S

=, x)

1 <_j<_n, 1

<_] <_q

1 <_j<_n 1

<_] <_q

(2.2)

for 1,2, n 1andj 1,2, q 1, thenSandThaveacommonfixedpointinXifandonlyif there existintegersm, n,p,q,m

>

n

>

0, p

>

q

>

0, andapointx Xsuch

that

Tx

SP=

Tnx

sqx

(2.3)

and either

F(S)

or

F(T)

7

O.

Ifthis conditionis satisfied, theneitherT"xorSqxisacommon fixedpoint ofSandT.

PROOF. Letx* EXbeacommonfixedpointofT,i.e., x* Sx* Tx*. Then(2.3)is true in casern p land n q O.

Conversely, suppose that there exist a point x X and four integers rn, n, p, q,rn

>

n

>_

0, p

>

q

>

0,suchthat(2.3)issatisfied. Withoutlossof generality,we canassumethat x

_

F(S)

and m is the minimal integer satisfying

Tx

Tx,

k

>

n. Putting y T"x and p rn-n, we have T y y and Plistheminimalintegersatisfying

Tky

y, k

>

1.

By (2.2),itfollowsthat

r(Tx,

Tix)

<

max{

l <_j< n

sup

{r(Tx’x)}’

l

<_j<_nSUp

{r(Tx,x},O},

r(T"x,

Tix)

<

sup

{r(Tix,

x)}.

(2 4)
(3)

COMMONFIXEDPOOREMS ANDAPPLICATIONS 15

Next,weprovethat y isacommonfixedpoint ofSandT. Supposethe contrary. Then V isnot afixed pointof T. Also,p

_>

2 and

T’yeTy,

O<_i<j<_pl-1.

By (2.4),itfollows that, for 1, 2, pl 1,

r(y,

TV)

r(Ty,

T/y)

<

sup

{r(TJy,

y)} _<

1<_j<p

sup

{r(TJY,

V)}.

It follows from(G-4)that

sup

{r(y,T:y)}

<

sup

{r(T:y,y)},

l<j<p-1 l<j<_p-1

which is a contradiction. Therefore, y

Tx

is a fixed point of

T.

Further, since S and T are

commuting,wehave

V

T"x

T"Sx

ST"x

Sy,

i.e., y

Tx

is a common fixed point ofS and T. In this case, when xE

F(T),

we have, by terchangingtheroleofSand

T,

that y Sqx isacommonfixedpoint ofSandT. Thiscompletes the proof

Ontheotherhand, by using Theorem3of[6],wehavethe following:

THEOREM 2.2 Let

(X, r)

beageneral quasi-metric spaceand let SandTbetwo commuting self-mappings ofX. Assumethat for any x, yE

X,

x

-

y, thereexists a positive integerp(x, y) such

that

r((ST)’u)x,

(ST)’U)y)

< sup{r(x,

y),

r(x,

(ST)

’’)x),

r(y,

(ST)’)y),

r(x,

(ST)")y),

r(y,

(ST)

’’u)

x)}

ThenSandThave a common fixedpointinXif andonlyifthere exists aperiodic poimx XofST with periodic index k such that for any u,v

A

{x,

STx,...,(ST)k-x},

u v, there exist

x’, y’

A,

x

y’,

satisfying the following conditions:

(ST)e’z’

u,

(ST)’

v

and either

F(S)

Q

P(ST) #

or

F(T)

Q

P(St) #

@.

Ifthese conditions are satisfied, then the pointx

istheuniquecommon fixedpointof

S

andT. PROOF. The necessitycondition is obvious.

The sufficiencyconditionfollowsfrom Theorem3of[6] asfollows: InTheorem3 of[6], ifwe

replace T by ST, we can conclude that ST has a unique fixed point x in X. Since S and T are

commuting,

Sx

S(STx)

ST(Sx)

and so

Sx

isalso a fixed point of

ST.

Uniqueness gives

Sx

x. Similarly,

Tx

x. Thiscompletesthe proof

The followingis aspecial case of Theorem2.2by setting

p(x,

y)

p(x):

COROLLARY2.3 Let

(X,

r)

be ageneralquasi-metricspaceand letSandTbetwocommuting self-mappings ofX. Assume that for any x

X,

there exists a positive integer p(x) suchthat every

yEX,

xy,

(4)

ThenS andThasacommon fixedpointinXifandonlyifthere existsaperiodic pointx EXofST with periodic index k such that for any u,v EA

{x,

STx,...,(ST)k-lx},

u

:fi

v, there exist

x’, y’

E

A,

x’

=f=

y’,

satisfying the following conditions:

(ST)

()z’

u,

(ST)e)y

v

and either

F(S)

N

P(ST)

0or

F(T)

N

P(ST)

O.

If these conditionsaresatisfied, then thepointx istheuniquecommon fixedpointofS andT.

Thefollowingis obtainedfrom Corollary2.3by settingp(x) p:

COROLLARY2.4 Let

(X, r)

be ageneral quasi-metric space andletSandTbetwocommuting self-mappings ofX. Assumethat there exists apositive integerpsuch that for any x, y

X,

x

-

y,

r((ST)’x,

(ST)y) < sup{r(x,

y),

r(x,

(ST)"x),

r(y,

(ST)y),

r(x,

(ST)y),

r(y,

(ST)x)}

ThenSandThaveacommonfixedpointinXifandonlyif there existsaperiodic pointx XofST andeither

F(S)

f’l

P(ST)

t

or

F(T)

P(ST)

:

.

Ifthisconditionissatisfied, then the pointx is theuniquecommonfixed point ofSandT.

By

settingp 1inCorollary 2.4,wehave the following:

COROLLARY2.5 Let

(X, r)

beageneral quasi-metric spaceandlet

S

andTbetwocommuting self-mappings ofX. Assumethat for any x, y

X,

x

:f-

y,

r(STx,

STy)

<

sup[r(x,

y),

r(x, STx), r(y,

STy),

r(x,

STy),r(y,

STx)}.

ThenSandThave acommon fixed pointin

X

ifandonlyifthere existsaperiodic pointx

X

of

ST

and either

F(S)

q

P(ST)

or

F(T)

P(ST)

:/:

.

Ifthiscondition is satisfied, then thepointxis the unique common fixed point ofSandT.

By

usingTheorem 5of[6],wehave the following:

THEOREM

2.6 Let

(X, r)

beageneral quasi-metric space and letS and

T

betwocommuting self-mappings ofX. Assumethatthere existpositive integersp, q suchthat forany x,y, E

X,

x

t

y,

r((ST)x,

(ST)qy) <

sup(v(x,

y),

r(x,

(ST)"x),

r(y,

(ST)qy), r(x, (ST)qy),

r(y,

Then Sand

T

have a fixedpoint inXifand onlyifthere exists aperiodic pointx6

X

ofST with

periodic indexkwhich satisfiesthefollowing condition:

where p

=/hk

+

P2,q qlk

+

q2,0

_<

P2, q2

<

k and Pl,ql are non-negative integers and either

F(S)

gl

P(ST)

or

F(T)

;

P(ST)

-

f}. If this conditionissatisfied, then the pointx isthe unique common fixed point ofSand

T.

PROOF. The necessity condition is obvious.

To

prove converse,if weuse Theorem 5 of

[6]

byreplacing

T

with

ST,

thenSThasaunique fixed pointxinX. Therefore,employing the same argument asintheproofof Theorem 2.2,itfollows that the pointxisthe unique fixed point ofSandT. Thiscompletestheproof.

REMARK. Theorems 2.1 2.6generalize somemainresults in ], [2]and[4]. 3. APPLICATIONS TO PROBABILISTICQUASI-METRIC SPACES

First ofall, we definepartial orders

<

and

<

"

onT+ asfollows, respectively: For any F1,

F2

EI)+ andt

>

0,

F

<

F

F

() > F(),

F

<

F

F

(t) > F().

(5)

COMMONFIXEDPOOREMSANDAPPLICATIONS 17

(G-1) there exists a minimalelement0d&f: HE

G,

where g(t)

{

,

t>0, 0, t

<

0, (G-2) foranyF,

F

E G,

sup{Fl,

Y2}(t)

%r.

rnin{Y (t),

F(t)}

(G-3) foranyF G, F

F,

(G-4)

for any

F, F,

Fs

G,

F

<

Fs,

F:

<

Vs

sup{F,

F) <

Fs,

FI

<

F2,

F2

<_

F3

=

FI

< F3.

THEOREM3.1 (Embedding

Theorem)

Let

(X,

’)

beaprobabilistic quasi-metric space. Then

(X, .’)

is ageneralquasi-metricspace, whereG

(D

+,

_<, <

isthe partial ordersetinducedby the wayasabove.

PROOF. Let

r(x,

y)

Fx,y

for all x, y

e

X. Itiseasytosee thatrsatisfies the conditions

(QM-2)

and(QM-2)of Definition1.1.

The following resultsare obtainedfrom Theorems2.1 2.6andTheorem 3.1immediately: THEOREM 3.2 Let

(X,.T’)

be a probabilistic quasi-metric space and let S and

T

be two

commuting self-mappings ofX. If for anyx

X

and positive integer n,q

_>

2 with

TixTTx,

O<_i<j<_n-1,

S’x

Sx,

O

<

<

j

<_

q-FT,

s,x.s,z

(T)

>

rffm

(

rain

Fr,:

s,,

(t)

rain

FT,

(t)

nfin

Fs,,.x

(t)

)

1 <_j<_n, 1

<_j’

<_q

’1

<_j<_n 1 <_3

<_q

for 1,2, n 1andj 1, 2, q 1, thenSand

T

haveacommon fixed pointinXifand only if

there existintegersm,p, q,m

>

n

_>

0,p, q

>_

0,and apointxEXsuch that

Tx

Sx

T"x

andeither

F(S)

:

O

or

F(T)

:/:

.

Ifthis condition is satisfied, then either

T"x

orSqx isacommon fixedpoint ofSandT.

THEOREM 3.3 Let

(X,Y’)

be a probabilistic quasi-metric space and let S and T be two

commuting self-mappings of

X.

If there exist positive integers p, q such,thatfor

any.x,

y

e

X,

x

:

y, and for all t

>

0,

F(sr),.(sr),()

>

min{F.(),

F.(ST),(t),

F.(ST),(),

F.ST),(),

F.(ST),()

},

then

S

and

T

haveacommon fixed pointin

X

if andonlyifthereexistsa periodic pointx XofST withperiodic indexk whichsatisfies thecondition

(2.5)

inTheorem2.6andeither

F(S)

P(ST)

7

1

or

F(T)

P(ST)

7k

$. If this condition is satisfied, then thepointxis theuniquecommon fixedpoint ofSandT.

The

followin

is aspecialcaseof Theorem3.3 obtainedby

settin

p q 1

COROLLARY 3.4 Let

(X,.’)

bea probabilistic quasi-metric space and let S andT betwo

commuting self-mappings ofX. If foranyx,y

X,

x y, and t

>

0,

FST,STu(t)

>

min{F,u(t), F,ST(t),

Fu,ST(t),

F,STu(t), Fu,

sr(t) }

thenSand Thaveacommon fixedpointinXifandonlyifthereexists aperiodic pointx GXofST andeither

F(S)

Iq

P(ST) :fi

0 or

F(T)

f3

P(ST)

$. Ifthis condition issatisfied, then the pointz is
(6)

THEOREM 3.5 Let

(X,.T)

be a probabilistic quasi-metric space and let S and T be two commutingself-mappings of X. If foranyx

X,

z

#

y, thereexistsapositiveintegerp(z, V)such that

forallt

>

0,

F(

sT).),(sr)z.% t

>

min{F.v(t), F,(

ST)., t

Fv.(

ST).% t

F.(sr),.%

(t),

F.(ST),,,

(t)

},

thenSand Thaveacommon fixed pointinXifandonlyif there existsaperiodicpointx

X

of

ST

with periodic index k such that for any u,v

A

{x, (ST)x,...,

(ST)k-I},

u v, there exist x

,

y

A,

x’

://:

y,

satisfying thefollowing conditions:

(St)

(e’/)x’

u,

(ST)e’V’)y

v

andeither

F(S)

n

P(ST)

or

F(T)

fq

P(ST)

.

If theseconditions aresatisfied, then thepointx

is theunique common fixed point of

S

and

T.

Bysetting

p(x,

y)

p(x)

inTheorem 3.5,wehave the following:

COROLLARY :}.6 Let

(X,.T’)

bea probabilistic quasi-metric space and let S and Tbetwo

commutingself-mappings ofX. If thereexistsa positive integer

p(x)

such that for every y

X,

x

#:

y, andfor all t

>

0,

F(ST),)z,(ST)Z)v(t

>

min{F,v(t),

Fz,ST),)z(t),

thenSand

T

haveacommonfixed pointinXif andonlyif there existsaperiodic pointx

X

ofST with periodic index k such that for any u,v

A

{x, (ST)x

(ST)-Ix},

u

#

v, there exist:d,

y’ e

A,

Z’ #

y,

satisfying thefollowingconditions:

(:T)ez

u,

(ST)eV’

v

andeither

F(S)

fq

P(ST) -#-

or

F(T)

f

P(ST)

#-

t3. If theseconditions aresatisfied, then the pointx

isthe unique commonfixedpoint ofT.

REMARK.

Theorems3.3 3.6includeTheorems 5 in

[4]

and Theorems3.3 3.6 in[5]as special cases.

ACKNOWLEDGMENT.

The authorswish toexpressthe deepest appreciationtotherefereeforhis helpful comments on this paper. The Present Studies were supported in part by the Basic Silence Research InstituteProgram,Ministry of Educatiort,Korea, 1994, ProjectNo.BSRI-94-1405.

CHANG,

S.S.,

OnRhoades’openquestions and some fixed point theorems for a class of mappings, Proc. Amer.Math.Soc. 97

(1986),

343-346.

[2]

CHANG,

S.S.,

On the generalized 2-metric space and probabilistic 1-metric spaces with

applicationsto fixedpointtheory, Math Japonica34(1989),885-900.

[3]

CHANG, S.S., CHO,

Y.J.and

KANG,

S.M.,

ProbabilisticMetric

Spaces

and Nonlinear

Operator

Theory,Sichuan University

Press,

P.R. China, 1994.

[4]

CHANG, S.S. and

HUANG,

N.J.,Fixedpoint theorems forsomemappingsinprobabilisticmetric

spaces,J.Natural Sci. 12(1959),474-475.

[5]

CHANG,

S.S.,

HUANG, N.J.andCHO,

Y.J.,

Fixedpoint theoremsingeneral quasi-metric spaces and applications,toappearinMath. Japonica.

[6]

CHANG,

S.S. and

CHANG,

Q.C., On Rhoades’ open questions, Prov. Amer. Math. Soc. 109 (990),269-27a.

References

Related documents

Usher's syndrome is a genetically inherited autosomal recessive dis­ order resulting in the double handicap of deafness and progressive blindness, known as

Due to their specificity and pronounced enhancement of the emission intensity upon interaction with protein aggregates, we tested whether they could be used for labelling AD

Control (left) and intervention (right) graphs used to test comprehension after changing a horizontal bar graph to a side-by-side bar graph and including a footnote explaining

A β = amyloid β peptide; ACE = angiotensin-1 converting enzyme; ACE-I = ACE inhibitor; ACh = acetylcholine; AD = Alzheimer’s disease; Ang = angiotensin; APP = amyloid

The participants were simply told that they were asked to perform a Turing Test (this was briefly described to make sure they knew what it was). Each student was in a separate

In order to evaluate the structural effect of the PES filter fabric according to the electrospinning conditions, the density of the polymer mixed solution, the

Analysis of the trawl catches shows two decapod assemblages: one on the upper slope (shallower than 500 m) characterized by Parapenaeus longirostris and

With this aim, temperature, salinity, pH, dissolved oxygen, chlorophyll a and nutrients in the water column and organic carbon variables in the sediment were measured on a