Inverse Scattering Technique

Top PDF Inverse Scattering Technique:

Detection and Localization of an Object Behind Wall Using an Inverse Scattering Technique with Wall Direct Subtraction Method

Detection and Localization of an Object Behind Wall Using an Inverse Scattering Technique with Wall Direct Subtraction Method

The time domain technique has the ability to reconstruct an accurate profile of electrical properties as in the FBTS technique, compared to frequency domain based technique. Thus, the FBTS technique has been used for the detection of breast cancer [6, 7, 35], tumors in the lung [36], and tumors in the brain [37]. Following the advancement of FBTS, filters such as Elliptic filter [38] and Chebyshev filter [39] are incorporated to solve the non-linearity problem. In addition, regularization techniques are also integrated into FBTS as described in [40, 41] to handle the quantitative information with an ill-posed or ill-conditioning problem. Regularization techniques are able to provide higher accuracy of electrical properties profile, object shapes, and location. Other promising techniques introduced in [42] propose the inversion method that efficiently handles the strong non-linearity of inverse scattering problem in the inhomogeneous medium using difference Lippmann-Schwinger integral equation (D-LSIE) and difference new integral equation (D-NIE).

13 Read more

Integration of Image Segmentation Method in Inverse Scattering for Brain Tumour Detection

Integration of Image Segmentation Method in Inverse Scattering for Brain Tumour Detection

A two-dimensional (2D) Forward-Backward Time-Stepping (FBTS) inverse scattering technique has been applied to the breast and demonstrated good results in detecting tumours in the breast [12–15]. Therefore, the focus of this paper is on a brain tumour detection utilizing inverse scattering technique in 2D head model. A homogenous head model of an MRI in 3D (.mnc format) is obtained from [16, 17]. A slice from the head model is selected to get the 2D transverse plane view, and this slice is then used as an object under test (OUT). For numerical analysis purposes, we consider 4 significant tissue types: skin, skull, grey matter (GM) and white matter (WM). The head model contains dielectric properties with high contrast between the skin and skull, and low contrast between GM and WM. This paper demonstrates the ability of the inverse scattering technique to detect an embedded tumour of different sizes in WM region. Safety was taken into account for microwave imaging even though electromagnetic wave is non-ionizing wave and has a certain impact on biological beings as it can increase the temperature at the area of incident wave. However, limiting the frequency to less than 6 GHz for a certain amount of time of exposure on tissues at a distance of 200 mm and below helps to prevent an adverse thermal effect [18, 19]. Therefore, a near-field EMI is used for this research.

12 Read more

Reconstruction of extremely dense breast composition utilizing inverse 
		scattering technique integrated with frequency hopping approach

Reconstruction of extremely dense breast composition utilizing inverse scattering technique integrated with frequency hopping approach

The Forward-Backward Time-Stepping (FBTS) inverse scattering technique is utilized for breast composition reconstruction of an extremely dense breast model at different center frequencies. A numerical extremely dense breast phantom is used and resized to suit the Finite-Difference Time-Domain (FDTD) lattice environment utilizing two- dimensional (2-D) FBTS technique. The average value of fibro glandular region for reconstruction with Frequency- hopping approach applied is much closer to average value of the actual image compared to the reconstruction without Frequency-approach applied. Hence, the composition of the extremely dense breast model can be reconstructed with Frequency-hopping approach is applied and the details of the reconstruction is also enhanced.

6 Read more

Preliminary Results on Estimation of the Dispersive Dielectric Properties of an Object Utilizing Frequency-Dependent Forward-Backward Time-Stepping Technique

Preliminary Results on Estimation of the Dispersive Dielectric Properties of an Object Utilizing Frequency-Dependent Forward-Backward Time-Stepping Technique

Abstract—In this paper, a Frequency-Dependent Forward-Backward Time-Stepping (FD-FBTS) inverse scattering technique is used for reconstruction of homogeneous dispersive object. The aim of the technique is to reconstruct the relative permittivity at infinite frequency, static relative permittivity and static conductivity of the homogeneous dispersive object simultaneously. The technique utilizes iterative finite-difference time-domain (FDTD) method for solving inverse scattering problem in time domain. The minimization of the cost functional is carried out utilizing Dai-Yuan nonlinear conjugate-gradient algorithm. The Fr´ echet derivatives of the augmented cost functional are derived analytically with respect to scatterer properties. Numerical results for reconstruction of two-dimensional homogeneous dispersive illustrate the performance of the proposed technique.

8 Read more

Inverse Scattering of a Conducting Cylinder in Free Space by Modified Fireworks Algorithm

Inverse Scattering of a Conducting Cylinder in Free Space by Modified Fireworks Algorithm

Inverse scattering plays a very important role in radar, remote sensing, non-destructive testing, etc. For a conducting target, the inverse scattering techniques are basically divided into two categories. The first category is based on the physical optics approximation and discrete Fourier transformation, such as [1–5]. The main advantage of this category is that the computation is very efficient. However, the inverse scattering technique of this category is limited to only a convex target with the smooth surface The second category is to solve nonlinear scattering integral equations directly by numerical methods, such as [6–10]. The main advantage of this category is that there is no limitation on the target shape. However, the computation is time-consuming and even difficult due to the nonlinearity and ill-posed problems. In [11], the technique of the second category is modified and further transformed into a nonlinear optimization problem. Thus the inverse scattering becomes a nonlinear optimization problem. This will make the inverse scattering scheme clear and easy since numerical techniques for solving nonlinear integral equations have been replaced by optimization algorithms

12 Read more

An Optimization Technique for Inverse Crack Detection

An Optimization Technique for Inverse Crack Detection

The practical situation when ultrasonic NDE is used is in fact an inverse problem, i.e. based on the signals from transmitting and receiving probes an interpretation is performed (see Figure 1). This interpretation is then often based on earlier experiences or by comparing with experimental work or computer simulations. Analytical solutions to the inverse problem have up today only been found for very simple situations and are often based upon a linearization of the inverse problem performed by the Born approximation (an extensive review discuss- ing this is available by Bates et al. [4]). This linearization limits the applicability since it, at least in principle, restricts the problem to weak penetrable scatterers or low frequencies. Even so this assumption has actually been successfully applied for more complex ultrasonic situations [5]. A slightly different approach, still based on the Born approximation, has been to retrieve a large amount of point source information and address the inversion by various time domain back propagation techniques (Synthetic Aperture Focussing Techniques described in e.g. [6] [7]). Degtyar et al. [8] introduced an inversion procedure based on a nonlinear least-squares method to de- termine elastic constants from group or phase velocity data in orthotropic and transversely isotropic materials. Corresponding approach has also been used in order to retrieve viscoelastic material properties based on ultra- sonic experimental data (Castaings et al. [9] [10]).

22 Read more

A novel nonlinear evolution equation integrable by the inverse scattering method

A novel nonlinear evolution equation integrable by the inverse scattering method

Kaup [16], Caudrey [18, 20] and Deift et al. [21] studied the inverse problem for certain third order spectral equations. We adapt the results obtained by these authors to the present problem and describe a procedure for using the IST to find the N -soliton solution to the transformed VE, and hence to the VE itself.

8 Read more

A Novel Iterative Algorithm for Solving Nonlinear Inverse Scattering Problems

A Novel Iterative Algorithm for Solving Nonlinear Inverse Scattering Problems

We introduce a novel iterative method for solving nonlinear inverse scattering problems. Inspired by the theory of nonlocality, we formulate the inverse scattering problem in terms of reconstructing the nonlocal unknown scattering potential V from scattered field measurements made outside a sample. Utilizing the one- to-one correspondence between V and T, the T-matrix, we iteratively search for a diagonally dominated scattering potential V corresponding to a data compatible T-matrix T. This formulation only explicitly uses the data measurements when initializing the iterations, and the size of the data set is not a limiting factor. After introducing this method, named data-compatible T-matrix completion (DCTMC), we detail numerous improvements the speed up convergence. Numerical simulations are conducted that provide evidence that DCTMC is a viable method for solving strongly nonlinear ill-posed inverse problems

176 Read more

Brain Derived Neurotrophic Factor Modulates Behavioral and Brain Responses to Social Stress

Brain Derived Neurotrophic Factor Modulates Behavioral and Brain Responses to Social Stress

In Chapter 2 of this dissertation, we look at different ways of regularizing Gauss- Newton steps based on a priori information available for particular models. We also study an iterative approach to the selection of a regularization parameter and propose a new a posteriori stopping rule to terminate Gauss-Newton iterations “just in time” before the noise propagation can potentially destroy an approximate solution. Numer- ical experiments for both linear and nonlinear models are conducted to illustrate this technique.

131 Read more

A Priori Modeling for Gradient Based Inverse Scattering Algorithms

A Priori Modeling for Gradient Based Inverse Scattering Algorithms

Recently, there has been an increased interest in Bayesian principles for inverse problems, see e.g., [1, 32, 34, 35]. One possibility is to include the Tikhonov regularization parameter in a Bayesian framework and devise efficient algorithms to determine this parameter from the data, see [1, 32, 34, 35]. These approaches, and the related derivations leading to useful algorithms, usually relies on some form of linearization, such as e.g., with the distorted Born iterative method [4], etc. However, the approach taken here is different. A similar connection is exploited as in e.g., [34], i.e., the connection between the Maximum A Posteriori (MAP) estimate with a Gaussian prior, and the Tikhonov regularization. However, instead of placing a prior on the regularization parameter itself, the MAP criterion is exploited here in a Fisher information analysis setting, which is relating to some known background of interest.

26 Read more

Interplay between the Inverse Scattering Method and Fokas's Unified Transform with an Application

Interplay between the Inverse Scattering Method and Fokas's Unified Transform with an Application

• In practice, it looks like our result is not the most convenient way to approach the ISM on the full line as we introduce extra scattering data (T (k)) only to eliminate it in the end, using the relations (2.52)-(2.53). However, at the conceptual level, our point of view is rather unifying. Firstly, it brings further justification for the use of the terminology “unified” transform. The central idea of a simultaneous spectral analysis of the both half of the Lax pair now also encompasses the historical ISM as a special case, in sharp contrast with the traditional spectral analysis of only one half of the Lax pair. Secondly, as we illustrate in the rest of the paper on the concept of reductions, it allows us to cast “new” (nonlocal) reductions as “old” (local) ones (see below for what we mean by this). This produces a framework to tackle the classification of nonlocal reductions, taking advantage of the huge amount of available results for the local case.

21 Read more

On a systematic approach to defects in classical integrable field theories

On a systematic approach to defects in classical integrable field theories

Rather, it is a first step for future developments among which further study of the classical r matrix approach and quantization of the method are important. Let us mention also the contruction of other integrable defects allowing if possible reflection as well. If applicable, the quantization should then be related to existing quantum algebraic frame- works like the Reflection-Transmission algebras [6]. Finally, the complete setup of the direct and inverse part of the method for the actual construction of the solutions, espe- cially of soliton type, should shed new light on the results already obtained by the more direct approach of [11, 12].

27 Read more

Low coherence interferometric imaging: solution of the one dimensional inverse scattering problem

Low coherence interferometric imaging: solution of the one dimensional inverse scattering problem

As is well known, unfortunately, both the absorption and the refractive index of materials depend very strongly on wavelength; the variation of these quantities for water, for example, is depicted in Figure 3.2. It is easy to see from this figure that, for imaging of biological bodies—in which water is a main component— for example, an inverse problem solver must only rely upon a range of frequencies restricted to the narrow wavelength band around the visible band—for which the absorption is very small, and for which the index of refraction is virtually constant. Indeed, use of light outside this narrow band (for which the combined effects of the orders-of-magnitude larger absorption losses and the uncertainties caused by the fast and large variations of the refractive indexes—which, in view of Figure 3.2 are certain to occur, but which, because of the presence of other materials in combination with water, are actually unknown), cannot provide any useful information about the internal structure of a water-based sample.

103 Read more

Download
			
			
				Download PDF

Download Download PDF

In this paper, we study the inverse nodal problem of the problem (1.1) and (1.2). Nodes are the zeros of eigenfunctions. Inverse nodal problem is to reconstruct potential function by nodal set, in some experiments, nodal set is easier to be observed and measured than the other spectral data. Inverse nodal problem for Sturm-Liouville operators with Dirichlet boundary conditions, see the original paper by McLaughlin [23]. and some generalizations were made in [4, 5, 8, 11, 13, 14, 15, 21, 26, 28, 29, 30, 31] and so on. For the other applications of nodal sets, for example, the paper [17] considered the zeros of Bessel functions and their application to the uniqueness of inverse acoustic scattering problem; the papers [18, 19, 20] showed that nodal sets of the Laplacian eigenfunctions play a critical role in establishing the uniqueness results for the inverse scattering problems.

11 Read more

An Efficient Inverse Scattering Algorithm and its Application to Lossy Electric Transmission Line Synthesis

An Efficient Inverse Scattering Algorithm and its Application to Lossy Electric Transmission Line Synthesis

INRIA-IRISA, Campus de Beaulieu, Rennes Cedex 35042, France Abstract—As studied by Jaulent in 1982, the inverse problem of lossy electric transmission lines is closely related to the inverse scattering of Zakharov-Shabat equations with two potential functions. Focusing on the numerical solution of this inverse scattering problem, we develop a fast one-shot algorithm based on the Gelfand-Levitan- Marchenko equations and on some differential equations derived from the Zakharov-Shabat equations. Compared to existing results, this new algorithm is computationally more efficient. It is then applied to the synthesis of non uniform lossy electric transmission lines.

14 Read more

Inverse Wave Scattering of Rough Surfaces with Emitters and Receivers in the Transition Zone

Inverse Wave Scattering of Rough Surfaces with Emitters and Receivers in the Transition Zone

The inverse problem is solved iteratively with the Newton-Kantorovich method [21, 22]. To constitute the data set, emitters also function as receivers. The profile cannot be estimated directly from that data set. The inverse problem is thus recasted as an optimization problem. The solution is built up iteratively by successively solving the forward problem and a local linear inverse problem. With the locally rough plane approach, the forward problem can be accurately modelized despite the fact that the emitters footprints on the profile are much wider than the sampled part of the profile. The local linear inverse problem relies on the calculus of the Fr´ echet derivative of the non-linear scattering operator. Based on the reciprocity theorem, this calculus was first proposed in far-field configuration [23]. It is here adapted to localized emitters and receivers. The inverse problem is detailed in Section 3.

11 Read more

An inverse scattering problem to reconstruct refractive index distributions

An inverse scattering problem to reconstruct refractive index distributions

We started this thesis by introducing the necessary motivation for studying the problem of recon- structing the refractive index distribution and why we use the BPM model to solve it. We also note that in practice one uses diffraction tomography based on the Born or the Rytov approximation. Then, we discussed the necessary elements of the BPM model which was required for modeling the inverse problem. It was mainly important in calculating the gradient, which was the main tool in all of our reconstruction methods.

51 Read more

On the Inverse Scattering Method for Integrable PDEs on a Star Graph

On the Inverse Scattering Method for Integrable PDEs on a Star Graph

For decades now, integrable partial differential equations (PDEs), and more generally integrable systems, have fuelled research and important discoveries in Mathematics and Physics, and still do. Comparatively more recently, graphs and dynamical systems on (quantum) graphs have emerged as a successful framework to model a large variety of (complex) systems. It is therefore not surprising to see a fast growing interest in developing a theory of integrable systems on graphs, which would combine the power of integrable systems with the flexibility of graphs to model more realistic situations. The review [1] for instance gives a flavour and references for this fast growing area in the context of nonlinear Schr¨ odinger (NLS) equations (not restricted to integrable cases). Originally, integrable PDEs were treated as initial value problems for functions of one space variable x ∈ R and one time variable t ≥ 0. The invention of the inverse scattering method (ISM) [2] and its refinements [3, 4] through the systematic use of a Lax pair [5] represents a cornerstone of modern integrable PDEs. The first departure from this setup to solve an initial-boundary value (IBV) problem for an integrable PDE on the half-line [6, 7] or a finite interval [8] can be viewed in retrospect as the beginning of the study of integrable PDEs on metric graphs. Indeed, a half-line is nothing but a half-infinite edge attached to a vertex and a finite interval is a finite edge connecting two vertices. The next big step in this natural evolution was the study of integrable PDEs on the line with a defect/impurity at a fixed site (or possibly several such defects). The vast literature on this problem 1 [9, 10, 11, 12, 13, 14, 15, 16, 17, 18] shows both its interest and its difficulty. To date however, despite some impressive results on the behaviour of certain solutions [19, 20], the general problem of formulating an ISM for a problem with defects is still open.

20 Read more

A Method Based on Particle Swarm Optimization to Retrieve the Shape of Red Blood Cells: a Preliminary Assessment

A Method Based on Particle Swarm Optimization to Retrieve the Shape of Red Blood Cells: a Preliminary Assessment

To obtain scattering data of a single RBC, different methods have been used in the scientific literature: the finite-difference time- domain (FDTD) approach, the multilevel fast multipole algorithm (MLFMA) and others [4]. In this paper, we consider the discrete dipole approximation (DDA) [8, 9] that has shown good performance [3, 7, 8]. DDA is a method to compute scattering and absorption of electromagnetic wave by particles of arbitrary geometry and composition. In more detail, DDA replaces the solid particle by an array of M oscillating dipoles. Each dipole has an oscillating polarization in response both to an incident plane wave and to the electric fields due to all of the other dipoles in the array; the self- consistent solution for the dipole polarizations can be obtained as the solution to a set of coupled linear equations [7–9]. The optical cell shape model is the same of [7, 10], where a 4-parametric shape model has been proposed. The cell shape is described by as follows:

9 Read more

Design and characterisation of wideband antennas for microwave imaging applications

Design and characterisation of wideband antennas for microwave imaging applications

There are two microwave imaging methods which can be applied for the detection of tumour and abnormalities inside the human body, which are tomography [12] and radar-based technique [13]. In microwave tomography, EM radiation is used and the inverse scattering algorithm is applied to reconstruct shape, location, and the DP of the interest object. Meanwhile, radar-based approach utilizes simpler and faster computational to identify the presence and location of the tumour using significant backscattered signal. Here, this study will focus on the radar-based MI. Detail concept on microwave radar imaging is presented in the following section.

63 Read more

Show all 10000 documents...