# Top PDF Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application ### Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application

Kerre, Intuitionistic fuzzy connectives revisited, in: Proceedings of 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, 200[r] ### A Study on Matrices Using Interval Valued Intuitionistic Fuzzy Soft Set and Its Application in Predicting Election Results in India

Nowadays we dealt with problems which are complex in nature. To tackle those problems which we have experienced in our day to day life becomes complex more and more. And most of them deals with uncertainties i.e. in Mathematics the term ‘vague’ is usually used for such cases. Introduction of fuzzy set theory in 1965 by L. A. Zadeh  handled those problems based on uncertainties quite successfully at some extent. So we need some effective measures or tools which are capable to solve such problems. Some tools such as fuzzy set , L-fuzzy set , intuitionistic fuzzy set , interval valued fuzzy set , interval valued intuitionistic fuzzy set , rough set  etc are introduced earlier. ### A Comparative Analysis on Euclidean Measure In Intuitionistic Fuzzy Set And Interval-Valued Intuitionistic Fuzzy Set

Intuitionistic Fuzzy set (IFS) was proposed in early 80™s. It is a well known theory. As a developer in Fuzzy Mathematics, intervalvalued Intuitionistic Fuzzy sets (IVFS) were developed afterwards by Gargo and Atanssov. It has a wide range of applications in the field of Optimization and algebra. There are many distance measure in Fuzzy such as Hamming, Normalized Hamming, Euclidean, Normalized Euclidean, Geometric, Normalized Geometric etc¦ to calculate the distance between two fuzzy numbers. In this paper, the comparison between Euclidean distance measure in Intuitionistic Fuzzy set and intervalvalued Intuitionistic Fuzzy sets is explored. The step-wise conservation of Intuitionistic Fuzzy set and intervalvalued Intuitionistic Fuzzy sets is also proposed. A real life application for this comparison is explained briefly. This type of comparative analysis shows that the distance between Intuitionistic Fuzzy set and intervalvalued Intuitionistic Fuzzy sets varies slightly due to boundaries of intervalvalued Intuitionistic Fuzzy sets. ### Scientific Ontology Construction Based on Interval Valued Fuzzy Theory under Web 2.0

knowledge management tool serving the ICAR-CNR, a research institute of the Italian National Council of Research. It applied in the formalized groups (such as project groups) where collaborative work takes place and informal groups (communities of practice) that may arise around common problems, interests and objectives. The tool provides a web-based environment for knowledge creation, sharing and access. It helps researchers quickly set up their own portals, create and organize knowledge items (such as news, papers, links, announcements, projects, etc.), share them within workgroups, search for a specific document or browse through a set of related documents (ontology-driven browsing). This should be done by basing on the built of the Research Ontology and the Knowledge Item Ontology, which contain the formal specification of application domain concepts, relations and constraints. ### New operations for interval-valued Pythagorean fuzzy set

45. Wang, J., Wang, J.Q., and Zhang, H.Y. \A likelihood- based TODIM approach based on multi-hesitant fuzzy linguistic information for evaluation in logistics out- sourcing", Comput. Ind. Eng., 99, pp. 287-299 (2016). 46. Shariati, S., Abedi, M., Saedi, A., Yazdani-Chamzini, A., Tamosaitien_e, J., Saparauskas, J., and Stupak, S. \Critical factors of the application of nanotechnology in construction industry by using ANP technique under fuzzy intuitionistic environment", J. Civ. Eng. Manag., 23(7), pp. 914-925 (2017). ### A Generalized Interval Valued Intuitionistic Fuzzy Sets theory

First, we present the concept of GIVIFS, which is proved to be the generalization of IFS and IVIFS. And then we introduce the construction method of the generalized interval valued intuitionistic fuzzy sets with parameters (GIVIFSP), and define complement operation, intersection operation and union operation on GIVIFS. Finally, we prove that GIVIFS is a closed algebraic system for all these operations as fuzzy sets, IFS, and IVIFS. Therefore, this paper generalizes the IVIFS theory, and provides some valuable conclusions for the field of application research of IVIFS, and it is also useful to the generalization of interval-valued intuitionistic fuzzy reasoning. ### INTERVAL - VALUED INTUITIONISTIC FUZZY ASSIGNMENT PROBLEM WITH REPLACEMENT BASED ON FUZZY AGGREGATION

Atanassov and Gargov (1989) generalized the concept of instuitionistic fuzzy set (IFS) to interval - valued intuitionistic fuzzy set (IVIFS) and define some basic operational laws of IVIFS. In the corporate sector the assignment problem plays a vital role. Among researchers it has received a significant amount of attention. The costs are not known exactly in real world application. Employing fuzzy theory to model uncertainity in real problem it is assumed that the membership function of parameters are known. However in reality it is not always easy. In order to solve this problem, the best thing is to determine the uncertain as intervals. In some situations if an individual is not familiar with the problem, it is difficult to determine the exact values of the preference degrees. His views may be positive, negative and hesitative points. In this realistic situation intuitionistic fuzzy set is the useful tool to express. ### Quasi-arithmetic means and OWA functions in interval-valued and Atanassov's intuitionistic fuzzy set theory

the corresponding aggregation functions on the unit interval. Yager  introduced a componentwise ex- tension of the OWA function to AIFS theory, but he gave no motivation why this is the best construc- tion of an OWA function in AIFS theory. Beliakov et al.  generalized the construction of Xu and Wei using additive generators and characterized the functions obtained by the generalized construction which are consistent with the operations on the unit interval. Since the definition of the OWA function on the unit interval involves arithmetic operators on the set of reals, we start in this paper from arithmetic operators on the underlying lattice L I of IVFS and AIFS theory and we investigate which kind of OWA functions on L I that we can construct using them. We first recall in Section 2 and 3 some definitions that will be needed later. We recall the axiomatic definition of the arithmetic operators on L I and we give a characterization of these operators in Section 4 and 5. In the next section we extend the arithmetic mean and the quasi-arithmetic mean to L I and in the subsequent section we extend the OWA functions to L I . For the latter to be suc- cessful we search for a way to extend the ordering procedure of input values in [0, 1] to input values in L I . ### Study on the Development of Decision Making Using Intuitionistic Fuzzy Set (IFS) and Interval Valued Intuitionistic Fuzzy Set (IVIFS)

The classical decision making methods generally assume that all criteria and their respective weights are expressed in crisp values and, thus, that the rating and the ranking of the alternatives can be carried out without any problem. In a real-world decision situation, the application of the classical decision making method may face serious practical constraints from the criteria perhaps containing imprecision in the information. In many cases, performance of the criteria can only be expressed qualitatively or by using linguistic terms, which certainly demands a more appropriate method. The most preferable situation for a decision making problem is when all ratings of the criteria and their degree of importance are known precisely, which makes it possible to arrange them in a crisp ranking. However, many of the decision making problems in the real world take place in an environment in which the goals, the constraints, and the consequences of possible actions are not known precisely (Bellman and Zadeh, 1970). As a result, the best condition for a classic decision making problem may not be satisfied, when the decision situation involves both fuzzy and crisp data. The classical decision making methods cannot handle such problems effectively, because they are only suitable for dealing with problems in which all performances of the criteria are represented by crisp numbers. The application of the fuzzy set theory in the field of decision making is justified when the intended goals or their attainment cannot be defined or judged crisply but only as fuzzy sets (Zimmermann, 1987). ### Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology

1. Applications of interval-valued and intuitionistic FMM in image processing: As we have pointed out before [57– 59], interval-valued and intuitionistic fuzzy set theory enable us to model numerical and spatial uncertainty in grayscale images that is due to image capture, leading to specific morphological operators and related applica- tions that have yet to be explored in detail. In previous papers, we provided some preliminary results concern- ing interval-valued edge detection [57–59]. In this paper, we went one step further by outlining an application of interval-valued FMM that aims at combining different methods for medical image reconstruction in terms of the watershed transform. Clearly, the approach presented in this paper only represents our first attempt to tackle this problem using the emerging techniques of interval- valued FMM. Nevertheless, we believe that every exist- ing application of gray-scale or fuzzy MM in image pro- cessing potentially lends itself to interval-valued FMM if some uncertainty regarding the pixel values exists. In contrast to conventional morphological techniques, in- terval-valued FMM techniques are able to keep track of this uncertainty information. ### An Integrated Fuzzy Dephi and Interval-Valued Intuitionistic Fuzzy M-Topsis Model for Design Concept Selection

In this paper, the Modified Technique for Order Preference by Similarity to the Ideal Solution (M-TOPSIS) model has been extended into the intuitionistic fuzzy environment. By applying the improved score function first, to represent the aggregated effect of positive and negative evaluations in the performance ratings of the alternatives based on interval-valued intuitionistic fuzzy set (IVIFS) data and in combination with the weighted normalized Euclidean distance for the computation of the separation measures of alternative(s) for the intuitionistic positive and negative ideal solutions. The two methods which have been used for the computation of the separation measure have been integrated using a new reflection defuzzification integration formula which has been introduced in this study. To prove the efficacy of the proposed model, the model have been applied for the evaluation and selection design concept for a new printed circuit board (PCB), and for a modified hypothetical example which is based on the selection of a preferred Naval vessel as a reference for a new design. ### Fuzzy Colouring of Interval-Valued Fuzzy Graph

In graph theory, an intersection graph is a graph which represent the intersection of sets. An interval graph is the intersection of multiset of intervals on real line. Interval graphs are useful in resource allocation problem in operations research. Besides, interval graphs are used extensively in mathematical modeling, archaeology, developmental psychology, ecological modeling, mathematical sociology and organization theory. ### New Concepts of Interval-Valued Fuzzy Graphs with Application

Abstract. Concepts of graph theory are applied in many areas of computer science including image segmentation, data mining, clustering, image capturing and networking. Fuzzy graph theory is successfully used in many problems, to handle the uncertainty that occurs in graph theory. An interval-valued fuzzy graph is a generalized structure of a fuzzy graph that gives more precision, flexibility, and compatibility to a system when compared with systems that are designed using fuzzy graphs. In this paper, new concepts of irregular intervalvalued fuzzy graphs such as neighbourly totally irregular interval- valued fuzzy graph, highly irregular interval-valued fuzzy graphs and highly totally irregular intervalvalued fuzzy graphs are introduced and investigated. A necessary and sufficient condition under which neighbourly irregular and highly irregular intervalvalued fuzzy graphs are equivalent is discussed. ### Neutrosophic Set is a Generalization of Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set, q-Rung Orthopair Fuzzy Set, Spherical Fuzzy Set, and n-HyperSpherical Fuzzy Set, while Neutrosophication is a Generalization of Regret Theory, Grey System Theory, and Three-Ways Decision (revisited)

Since in single-valued neutrosophic set the neutrosophic components are independent (their sum can be up to 3, and if a component increases or decreases, it does not change the others), while in intuitionistic fuzzy set the components are dependent (in general if one changes, one or both the other components change in order to keep their sum equal to 1). Also, applying the neutrosophic operators is a better aggregation since the indeterminacy (I) is involved into all neutrosophic (complement/negation, intersection, union, inclusion/inequality/implication, equality/equivalence) operators while all intuitionistic fuzzy operators ignore (do not take into calculation) the ### Interval Valued Intuitionistic Fuzzy Bi-ideals in Gamma Near-rings

Zadeh  introduced the concept of fuzzy set in 1965 and after that he also introduced the notion of interval valued fuzzy subset  (in short i-v fuzzy subset) in 1975, where the values of membership functions are intervals of numbers instead of a single number as in fuzzy set. The fuzzy set theory has been developed in many directions by the research scholars. Rosenfeld  first introduced the fuzzification of the algebraic sturctures and defined fuzzy subgroups. Jun and Kim  discussed interval-valued R- subgroups in terms of near-rings. Davvaz  introduced fuzzy ideals of near-rings with interval-valued membership functions. Thillaigovindan et al.  have studied interval valued fuzzy ideals and anti fuzzy ideals of near-rings. Abou-Zaid  proposed the concept of fuzzy sub near-rings and ideals. ### Characterization of rough set approximations in Atanassov intuitionistic fuzzy set theory

The theory of rough sets was originally proposed by Pawlak [ 1 ] as a formal tool for modeling and processing intelligent systems characterized by insufficient and incomplete information. The basic structure of rough set theory is an approximation space consisting of a universe of discourse and a binary relation imposed on it. By introducing the concepts of lower and upper approximations of all decision classes with respect to an approximation space induced from the conditional attribute set, knowledge hidden in information tables may be unraveled and expressed in the form of decision rules. We have witnessed a rapid development of and a fast growing interest in rough set theory recently and many models and methods have been proposed and studied (see e.g. the literature cited in [ 2 , 3 ]). ### Interval-valued Trapezoidal Intuitionistic Fuzzy Generalized Aggregation Operators and Application to Multi-attribute Group Decision Making

As the three characteristic functions of an IVTrIFN are equal in characterizing the IVTrIFN, the total mass of the sheet focuses on the barycenter. If the three characteristic functions of the IVTrIFN are regarded as the three states of a discrete random variable in probabilistic theory, then, the horizontal and vertical coordinates of each barycenter represent, respectively, the value (or state value) and its membership (or cor- responding state probability) of the IVTrIFN. Eq. (1) denes the expectation of the IVTrIFN by summing the products of horizontal and vertical coordinates of each barycenter, which is similar to the mathematical expectation of a discrete random variable. So, the expectation dened by Eq. (1) reects accurately the value distribution of the IVTrIFN and its geometrical meaning is very clear. ### From fuzzy sets to interval-valued and Atanassov intuitionistic fuzzy sets: a unified view of different axiomatic measures

Notwithstanding, with respect to the second case (real- valued extensions of the FS concept) we should notice that some well known definitions from the literature escape from the general formulation provided in Definition 11. To give an example, the notion of entropy of IF sets introduced by Szmidt and Kacprzyk in  and adapted to IVF sets by Zeng and Li , extends the well-known notion of entropy of a fuzzy set originally introduced by De Luca and Termini  cannot be formulated in terms of Definition 11. The authors base the interpretation of their extension on a geometric representation of IF sets. According to their interpretation, the entropy measures the whole missing information which may be necessary to classify the points as elements either with full membership or full non-membership degree. It is not only related to the degrees of fuzziness of both extremes A and A but also to the hesitation degree of the IVF set. In fact, if A is less fuzzy than B and A is less fuzzy than  