Top PDF Optimal Control of DC Motors Using PSO Algorithm for Tuning PID Controller

Optimal Control of DC Motors Using PSO Algorithm for Tuning PID Controller

Optimal Control of DC Motors Using PSO Algorithm for Tuning PID Controller

Abstract. The DC motors are widely used in the mechanisms that require control of speed. Different speed can be obtained by changing the field voltage and the armature voltage. The classic PID controllers are widely used in industrial process for speed control. But they aren’t suitable for high performance cases, because of the low robustness of PID controller. So many researchers have been studying various new control techniques in order to improve the system performance and tuning PID controllers. This paper presents particle swarm optimization (PSO) method for determining the optimal PID controller parameters to find the optimal parameters of DC M otor speed control system. The DC M otor system drive is modeled in M ATLAB/SIM ULINK and PSO algorithm is implemented using M ATLAB toolbox. The results obtained through simulation show that the proposed controller can perform an efficient search for the optimal PID controller. Simulation results show performance improvement in time domain specifications for a step response (no overshoot, minimal rise time, steady state error = 0).
Show more

9 Read more

Compare the results of Tuning of PID controller by using PSO and GA Technique for AVR system

Compare the results of Tuning of PID controller by using PSO and GA Technique for AVR system

In this paper, a simple performance criterion in time domain is proposed for evaluating the performance of a PSO-PID controller that was applied to the complex control system. GA is an iterative search algorithm based on natural selection and genetic mechanism. However, GA is very fussy; it contains selection, copy, crossover and mutation scenarios and so on. Furthermore, the process of coding and decoding not only impacts precision, but also increases the complexity of the genetic algorithm. This project attempts to develop a PID tuning method using GA algorithm. For example, ants foraging, birds flocking, fish schooling, bacterial chemo taxis are some of the well-known examples.
Show more

9 Read more

Speed Control of DC Motor using PID Controller   A Review

Speed Control of DC Motor using PID Controller A Review

Based on present literature review authors concluded that PID controller is very effective and powerful controller and has better control approach in order to sustain speed of the motor. The parameter values of PID controller are set up by tuning methods. ANFIS has faster response than response of other traditional methods. [1] It is better in rise time, settling time and less steady state error. All tuning methods are compared to optimize the values of parameters like Mp, Tr, Ess and Ts. Some new methods like JOA, PSO, LQR and MPC also give better and smoother response than traditional methods.[5]Still there is much scope in improving the PID controller design to make it more simple REFERENCES
Show more

5 Read more

Optimal Cruise Control Using Genetic Algorithm And Simulated Annealing Tuned PID Controller.

Optimal Cruise Control Using Genetic Algorithm And Simulated Annealing Tuned PID Controller.

Since there is an enormous improvement in the force electron- ic frameworks, yet the direct current machines are the prime hotspot for the era of the electric footing. Presently a days, discovering more helpful applications in auto industry if there should arise an occurrence of electric vehicles. Since, in cruise system, by conforming the terminal voltage we can work it over an extensive variety of paces, consequently making them good with most mechanical loads by excellence of their torque/speed qualities, along these lines conveying superior and simple controllability [1]. Yet, progressively applications, there are sure variables like outer clamor, variable and ques- tionable inputs, obscure parameters, changes in the motion of the heap, and so on.; prompting the flimsiness in their control. PID controllers reason for their straightforwardness and vigor discovers applications in 90% of the control frameworks being used today. In this way, the streamlining of the PID controller parameters is a standout amongst the most essential fields in execution and outlining of PID controllers [2]. The traditional and broadly acknowledged technique for tuning the PID para- meters is calculation by Ziegler-Nichols system. Then again, registering the additions doesn't generally gives the best pa- rameters in light of the fact that tuning measure presumes one-fourth diminishment in the initial two crests. Be that as it may continuously applications, due to the commotion, the tuned parameters does not generally give the best results, so need is there to try and tweak them, so they can undoubtedly adjust with these changing framework elements. For better versatile reaction of the framework, in vicinity of outer glitches, the utilization of different delicate registering procedures like Fuzzy-Logic, Artificial Neural Networks, Genetic Algorithms, Particle Swarm Intelligence, Neuro Fuzzy, Neuro-Genetic, and so on have ceded better results. In this paper, the optimization of the PID controller additions has been completed utilizing by Genetic Algorithms (GA), Multi- Objective Genetic Algorithms (Mobj-GA) and Stimulated Annealing, while utilizing the Zieg- ler-Nichols parameters for the determination of the lower and upper headed points of confinement for the introduction of PID parameter. At that point, the improvement of the PID control- lers for the estimation of the best PID parameters has been finished concerning the goal capacity, expressed as, "Aggre- gate of the fundamental of the squared slip and the squared controller yield veered off from its enduring state" As per the outcomes got in this paper, impressively better results have been acquired on account of the genetic algorithm, when con-
Show more

5 Read more

GENETIC ALGORITHM BASED PARAMETER TUNING OF PID CONTROLLER FOR COMPOSITION CONTROL SYSTEM

GENETIC ALGORITHM BASED PARAMETER TUNING OF PID CONTROLLER FOR COMPOSITION CONTROL SYSTEM

Many PID tuning methods are introduced. The Ziegler-Nichols method is widely used for Controller Tuning. One of the disadvantage of this method is prior knowledge regarding plant model. Once tuned the controller by Ziegler Nichols method, a good but not optimum system response will be reached. The Transient response can be even worse if the plant dynamics change. To assure an environmentally independent good performance, the controller must be able to adapt the changes of the plant dynamic characteristics. For these reasons, it is highly desirable to increase the capabilities of PID controllers by adding new features. Many random search methods, such as Genetic Algorithm (GA) have received much interest for achieving high efficiency and searching global optimal solution in the problem space.
Show more

7 Read more

PID-Type FLC Controller Design and Tuning for Sensorless Speed Control of DC Motor

PID-Type FLC Controller Design and Tuning for Sensorless Speed Control of DC Motor

This paper is continuation for our work presented in [1]. DC motors are applied in one way or the other in factories, home appliances, computers to robots, airplanes, and cars. They are more widely used than the related machines, the AC motors, owing to their diverse favorable characteristics. These characteristics some of which are, linear speed control properties and high starting torque. There are more than one types DC motors and all these types have numerous benefits over AC motors which include: less heat production, simpler controllers used, have higher efficiency, can offer precise position control, can produce very close to constant torque and they are easily controllable [2-11]. For that reason, the adoption of DC motors will reduce the amount of energy consumed and improve the efficiency of the machines they are installed. The improvement of DC motorscontrol arrangement to enhance their response characteristics is one way of achieving these. Is so doing, they will be able to accomplish their work efficiently without the necessarily increasing the capacities of motors alongside their control circuits [12-16].
Show more

8 Read more

Optimal Design of PID Controller for a CSTR System Using BF PSO

Optimal Design of PID Controller for a CSTR System Using BF PSO

The process control techniques in the industry have made great advances during the past decades. A no of control methods such as adaptive control, neural control, and fuzzy control have been studied. Among them, the best known is the proportional-integral- derivative (PID) controller, which has been widely used in the industry because of its simple structure and robust performance in a wide range of operating conditions. Unfortunately, it has been quite difficult to tune properly the gains of PID controllers because many industrial plants are often burdened with problems such as high order, time delays, and nonlinearities. It is hard to determine optimal or near optimal PID parameters with the classic tuning method (Ziegler-Nichol’s method for instance). For these reasons, it is highly desirable to increase the capabilities of PID controllers by adding new features.
Show more

8 Read more

Position Control of DC Motor Using Genetic Algorithm Based PID Controller

Position Control of DC Motor Using Genetic Algorithm Based PID Controller

A. Conventional Approach - Ziegler Nichols Method The control system performs poor in characteristics and even it becomes unstable, if improper values of the controller tuning constants are used. So it becomes necessary to tune the controller parameters to achieve good control performance with the proper choice of tuning constants. Controller tuning involves the selection of the

5 Read more

A Comparison Between Fuzzy-PSO Controller and PID-PSO Controller for Controlling a DC Motor

A Comparison Between Fuzzy-PSO Controller and PID-PSO Controller for Controlling a DC Motor

A proportional–integral–derivative controller (PID controller) widely used in industrial plants. Because it is simple and robust that is commonly used feedback controller. PID control with its three term functionality covering treatment to both transient and steady-states response, offers the simplest and yet most efficient solution for many real world control problems [3]. In this paper, a scheduling PID tuning parameters using particle swarm optimization (PSO) strategy for a DC motor speed control is proposed
Show more

6 Read more

Improved Algorithm for Auto-Tuning of PID Controller using Successive Approximation Method

Improved Algorithm for Auto-Tuning of PID Controller using Successive Approximation Method

Noise corrected improved algorithm settle down in very short duration of time and overshoot approximately equal to less than 1% (Except 3-phase Induction Motor). In the noisy environment improved algorithm with a noise, the correction method is suggested. Thus, the new tuning algorithm tuned PID controller for faster response and better noise rejection property so that this algorithm is robust in the noisy environment. The roots of r1 and r2 should be real only and left the side of root locus for better stability and performance of the algorithm. The three-phase induction motor control by using SAM-PID controller is more stable and efficient. The auto tune algorithm is robust and demonstrates the performance in noisy environment. Thus, it can be used in various ways. To improve the system performance SAM-PID controller also has the feature of adaptive and optimal controlling.
Show more

8 Read more

Comparison of Fractional Order PID Controller and Sliding Mode Controller with Computational Tuning Algorithm

Comparison of Fractional Order PID Controller and Sliding Mode Controller with Computational Tuning Algorithm

Abstract The industry processes involving punching, lifting, and digging usually require high precision, high force and long operating hours that increase the prestige in the usage of the electrohydraulic actuator (EHA) system. These processes with the companion of the EHA system usually possess high dynamic complexities that are hard to be controlled and require well-designed and powerful control system. Therefore, this paper will involve the examination of the designed controllers which is applied to the EHA system. Firstly, the conventional proportional-integral-derivative (PID) controller which is the famous controller in the industry is designed. Then, the improved PID controller, which is known as the fractional order PID (FO-PID) controller is designed. After that, the design of the gradually famous robust controller in the education field, which is the sliding mode controller (SMC) is performed. Since the controller’s parameters are essentially influencing the performance of the controller, the meta-heuristic optimization method, which is the particle swarm optimization (PSO) tuning method is applied. The variation in the system’s parameter is applied to evaluate the performance of the designed controllers. Referring to the outcome analysis, the increment of 59.3% is obtained in the comparison between PID and FOPID, while the increment of 67.13% is obtained in the comparison of the PID with the SMC controller. As a conclusion, all of the controllers perform differently associated with their own advantages and disadvantages.
Show more

10 Read more

Optimal frequency control in microgrid system using fractional order PID controller using Krill Herd algorithm

Optimal frequency control in microgrid system using fractional order PID controller using Krill Herd algorithm

Overview of Particle Swarm Optimization. Many problems have not an exact solution that gives the results in a reasonable time. For overcoming these problems some metaheuristics methods offer an approached solution after much iteration are recently proposed. Among these methods, the PSO algorithm has a general principle to be applied in many fields of optimization problems. PSO is a stochastic optimization algorithm developed by Eberhart and Kennedy, inspired by the social behaviour and fish schooling of bird flocking. Each particle in the swarm is a different possible set of the unknown parameters of the objective function to be optimized. The swarm consists of N particles moving around in a D-dimensional search space. Each particle is initialized with a random position and a random velocity [17, 18]. The new velocity can be calculated by the fellow formula.
Show more

7 Read more

GA/PSO based PID controller for process control system

GA/PSO based PID controller for process control system

The main objective of this work is to improve the performance of PID controller for process variables. The PID controller is used to control the process variables. The parameters of PID controller has been tuned by using PSO/GA algorithm because manual tuning of the PID controller is a tedious process and it takes very long time because it is based on hit and trial method. So to make the PID controller speed faster, PSO/GA algorithm is used. PSO/GA algorithms tune the PID controller parameters by reducing the fitness function which is error function. In each iteration of PSO algorithm and in each generation of GA algorithm, the value of error function is reduced and gets the steady state value. The performance parameters (rise time, settling time, steady state error and overshoot) are improved by using PSO/GA algorithm. The codes for PSO algorithm and GA algorithm were written in Matlab. The SIMULINK models for different process variables was developed and simulated through MATLAB m files containing PSO/GA code.
Show more

7 Read more

Algorithm for a PSO Tuned Fuzzy Controller of a DC Motor

Algorithm for a PSO Tuned Fuzzy Controller of a DC Motor

For the tuning of the parameters of the membership functions of a fuzzy controller a novel PSO algorithm has been developed. The algorithm for the fuzzy controller has been encoded in MATLAB but a block diagram strategy is enabled to explain the algorithm. A SIMULINK model has been used.The Plant used is an armature controlled DC Motor. Conventional controllers like PI and PID controllers fail in case of non linearities and may generate steady state error[1]. In such a case a fuzzy controller is used which is basically a non-linear element whose parameters are tuned using Particle Swarm Optimization Technique (PSO) subject to the condition that steady state error is to be minimized. The quantity to be controlled is the speed of the DC Motor. Therefore error in speed is to be minimized. PSO technique is a very uncertain algorithm that may or may not converge to the optimized values. Nevertheless we got optimistic simulation results. As such it could overcome the limitations of conventional controllers[1].
Show more

5 Read more

Evolutionary Computation Techniques Based Optimal PID Controller Tuning

Evolutionary Computation Techniques Based Optimal PID Controller Tuning

Particle swarm optimization (PSO) is a metaheuristic algorithm based on swarm behaviour observed in nature such as in bird flocking or fish schooling. It attempts to mimic the natural process of group communication of individual knowledge, to achieve some optimum property. PSO searches the space of an objective function by adjusting the trajectories of individual agents, called particles. Each particle traces a piecewise path which can be modelled as a time-dependent position vector.

6 Read more

Continuous firefly algorithm for optimal tuning of PID controller in AVR system

Continuous firefly algorithm for optimal tuning of PID controller in AVR system

This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.
Show more

6 Read more

An anti-windup self-tuning fuzzy PID controller for speed control of brushless DC motor

An anti-windup self-tuning fuzzy PID controller for speed control of brushless DC motor

Generally, the speed closed-loop is used to control the BLDC motors and the speed controller based on proportional-integral-derivative (PID) is widely adopted in practical application. PID control is one of the most popular control strategies and has been com- monly used in industrial control systems because of its simplicity, clear functionality, robustness and effective- ness [7,8]. However, BLDC motor is a multivariable nonlinear system, the conventional PID controller using in this system always exist some de fi ciencies. It is so sensitivity to the system uncertainties that the control performance can be seriously degraded under parameter variations. Moreover, the conventional PID controller is also difficult to tune the control parameters to adjust the high precision and rapid speed of system dynamic performance and static
Show more

16 Read more

Design of Tuning Methods for Fractional order PIλDμ Controller using PSO Algorithm

Design of Tuning Methods for Fractional order PIλDμ Controller using PSO Algorithm

A proportional–integral–derivative controller (PID controller) is a generic control loop feedback mechanism (controller) commonly used in industrial control systems– a PID is the most frequently used feedback controller. A PID controller calculates an "error" value as the difference between a measured plant variable and a preferred set point. The controller attempts to reduce the error by tuning the plant control inputs. The proportional, integral, and derivative terms are adding to calculate the output of the PID controller. Defining u(t) as the controller output, the PID algorithm final form is:
Show more

9 Read more

Comparison between Speed Control DC Motor Using Fuzzy PID and PSO-PID Technique

Comparison between Speed Control DC Motor Using Fuzzy PID and PSO-PID Technique

The DC motors are in general much more adaptable speed drives than AC motors which are associated with a constant speed rotating field. It is observed that most of the industry is operating under stress condition further load parameter and control variable exhibit uncertainness in real practice and in fact these are random variables. Calculated values of load variable normally contain various inaccuracies. It has been observed that error may vary in the range of 5-10%. A few percentage error may be required tolerable in the area of the load speed controlling where these inaccuracies in the entire controller. In such situation minor inaccuracy in speed control are of little concern. Further the speed controller can always be designed to have sufficiently low effect on the non linearity of DC motor; so as to worst effect of parameter uncertainty can be accounted. In real time operation, the situation is different; design controller may encounter situation never imagined by designer before it took its present shape. Hence, in real time operation condition, risk of affecting nonlinearity of motor is always present. Here it is designed a controller which not affects the nonlinearity in DC motor.
Show more

6 Read more

Tuning of PID Controller for DC Servo Motor using Genetic Algorithm

Tuning of PID Controller for DC Servo Motor using Genetic Algorithm

Abstract—The position control study of DC servo motors is very important since they are extensively deployed in various servomechanisms. Normally PID controllers are used to improve the transient response of DC servo motors. At present, most tuning methods are designed to provide workable initial values, which are then further manually optimized for a specific requirement. This paper presents a flexible and fast tuning method based on genetic algorithm (GA) to determine the optimal parameters of the PID controller for the desired system specifications. Simulation results show that a wide range of requirements are satisfied with the proposed tuning method.
Show more

5 Read more

Show all 10000 documents...