• No results found

Properties of multivalent functions associated with the integral operator defined by the hypergeometric function

N/A
N/A
Protected

Academic year: 2020

Share "Properties of multivalent functions associated with the integral operator defined by the hypergeometric function"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Properties of multivalent functions

associated with the integral operator defined

by the hypergeometric function

Mohsan Raza

1*

and Sarfraz Nawaz Malik

2

*Correspondence:

mohsan976@yahoo.com

1Department of Mathematics, GC

University, Faisalabad, Pakistan Full list of author information is available at the end of the article

Abstract

In this paper, we introduce a new class of multivalent functions by using a generalized integral operator defined by the hypergeometric function. Some properties such as inclusion, radius problem and integral preserving are considered.

MSC: 30C45; 30C50

Keywords: Bazilevic functions; multivalent functions; integral operator; hypergeometric functions

1 Introduction and preliminaries

LetApdenote the class of functionsf(z) of the form

f(z) =zp+

n=p+

anzn p∈N={, , , . . .}, (.)

which are analytic in the open unit discE. AlsoA=A, the usual class of analytic

func-tions defined in the open unit discE={z:|z|< }. A functionfApis ap-valent starlike function of orderρif and only if

Rezf (z)

f(z) >ρ, ≤ρ<p,zE.

This class of functions is denoted bySp(ρ). It is noted thatSp∗() =Sp. Letf(z) andg(z) be analytic inE, we sayf(z) is subordinate tog(z), writtenfgorf(z)≺g(z) if there exists a Schwarz functionw(z),w() =  and|w(z)|<  inE, thenf(z) =g(w(z)). In particular, ifg is univalent inE, then we have the following equivalence

f(z)≺g(z) ⇐⇒ f() =g() and f(E)⊂g(E).

For any two analytic functionsf(z) andg(z) with

f(z) =

n=

bnzn+ and g(z) =

n=

cnzn+, zE,

(2)

the convolution (the Hadamard product) is given by

(f ∗g)(z) =

n=

bncnzn+, zE.

A functionfAis said to be in the class, denoted bySD(k,δ) (≤δ< ), if and only if

Re

zf(z) f(z)

>kzf

(z)

f(z) – 

+δ, k≥,zE. (.)

Similarly, a functionfAis said to be in the class, denoted byCD(k,δ) ofk-uniformly convex of orderδ(≤δ< ), if

Re

 +zf

(z)

f(z)

>kzf

(z)

f(z)

+δ, k≥,zE. (.)

Geometric interpretation The functionsfSD(k,δ) andfCD(k,δ) if and only if zff(z(z)) andzff(z(z))+ , respectively, take all the values in the conic domaink,δdefined by

k,δ=

u+iv:u>k (u– )+v+δ

withp(z) =zff((zz)) orp(z) =zff((zz))+  and considering the functions which mapEonto the

conic domaink,δ such that ∈k,δ. One may rewrite the conditions (.) or (.) in the form

p(z)qk,δ(z).

The functionqk,δ(z) plays the role of extremal for these classes and is given by

qk,δ(z) =

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

+(–δ)z

–z , k= ,

 +πδγ(log +√z

–√z)

, k= ,

 + δ

–ksinh[(πarccosk)arctanh

z],  <k< ,  +kδ–sin(

π

R(t)

u(z)

t

 √–x√–(tx)dx) +

δ

k–, k> .

(.)

Forf(z) inAp, the operator+p–:Ap−→Apis defined by

+p–f(z) = z p

( –z)μ+pf(z) (μ> –p), or equivalently

+p–f(z) = zp(zμ–f(z))μ+p–

(μ+p– )! , (.)

whereμis any integer greater than –p. Iff(z) is given by (.), then it follows that

+p–f(z) =zp+

n=p+

(μ+n– )! (n–p)!(μ+p– )!anz

(3)

The symbol+p–whenp= , was introduced by Ruscheweyh [] andDμ+p–is called the

(μ+p– )th order Ruscheweyh derivative. We now introduce a function (zpF(a,b,c;z))–

given by

zpF(a,b,c;z)

zpF(a,b,c;z)

–

= z

p

( –z)μ+p (μ> –p),

and the following linear operator

,p(a,b,c)f(z) =

zpF(a,b,c;z)

–

f(z), (.)

where a, b, care real or complex numbers other than , –, –, . . . , μ> –p, zE and f(z)∈Ap. This operator was recently introduced in []. In particular, forp= , this op-erator is studied by Noor []. Forb= , this operator reduces to the well-known Cho-Kwon-Srivastava operator ,p(a,c), which was studied by Choet al.[], and forμ= ,

b=c,a=n+p, see []. Fora=n+p,b=c= , this operator was investigated by Liu [] and Liu and Noor [].

Simple computations yield

,p(a,b,c)f(z) =zp+

n=p+

(c)n(μ+p)n (a)n(b)n

anzn.

From (.), we note that

,(a,b,c)f(z) =Iμ(a,b,c)f(z) (see []),

I,p(a,p,a)f(z) =f(z),I,p(a,p,a)f(z) =

zf(z) p .

Also, it can be easily seen that

zIμ,p(a,b,c)f(z)

= (μ+p)Iμ+,p(a,b,c)f(z) –μIμ,p(a,b,c)f(z), (.)

and

zIμ,p(a+ ,b,c)f(z)

=aIμ,p(a,b,c)f(z) – (a–p)Iμ,p(a,b,c)f(z).

We define the following class of multivalent analytic functions by using the operator ,p(a,b,c)f(z) above.

Definition . Let fAp for p∈N. ThenfUBα

μ,p(a,b,c;γ,k,δ) for a,b,c∈R\Z–, μ> –p,α> ,k≥, ≤δ<  andγ>  if and only if

( –γ)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α

+γIμ+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

,p(a,b,c)f(z) ,p(a,b,c)g(z)

α–

(4)

wheregApis such that

q(z) =Iμ+,p(a,b,c)g(z) ,p(a,b,c)g(z)

P(ρ), ρ=k+δ

k+ ,zE. (.)

Furthermore, for different choices of parameters being involved, we obtain many other well-known subclasses of the classApandAas special cases.

(i) a=c,b= ,k= ,μ=m∈N, we haveBαm,p(γ,δ)studied in [].

(ii) a=c=b=p=γ = ,k=μ= ,g(z) =z, the classUBα

μ,p(a,b,c;γ,k,δ)reduces to the

class

(δ) =

fA() :zf

(z)

f(z)

f(z) z

αP(δ)

studied in [].

(iii) a=c=b=p=γ = ,k=μ= ,g(z) =z, theUBα

μ,p(a,b,c;γ,k,δ)reduces toB(α)is

the class of Bazilevich functions investigated by Singh []. (iv) a=c=b=p=α= ,γ = ,k=μ= ,g(z) =z, the classUBα

μ,p(a,b,c;γ,k,δ)reduces

to the class

=

fA() :f(z) zP(δ)

,

the class studied by Chen [].

LetfAp·and,p:Ap·→Ap·be defined by

,p(z) =

(η+p)

z

–f(t)dt, η> –p. (.)

We need the following lemmas which will be used in our main results.

Lemma .[] Let u=u+iuand v=v+iv,and letψ:D⊂C→Cbe a

complex-valued function satisfying the conditions:

(i) ψ(u,v)is continuous in a domainD⊂C,

(ii) (, )∈Dandψ(, ) > ,

(iii) Reψ(iu,v)≤,whenever(iu,v)∈Dandv≤–( +u).

If h(z) =  +cz+cz+· · ·is analytic in E such that(h,zh)∈D andReψ(h(z),zh(z)) > 

for zE,thenReh(z) > .

Lemma .[] Let h be convex in the unit disc E,and let A≥.Suppose that B(z)is analytic in E withReB(z)A.If g is analytic in E and g() =h().Then

Azg(z) +B(z)zg(z) +g(z)h(z) implies that g(z)h(z).

Lemma .[] Let F be analytic and convex in E.If f,gApand f,gF.Then

(5)

Lemma .[] Let h be convex in E with h() =a andβ∈Csuch thatReβ≥.If pH[a,n]and

p(z) +zp

(z)

βh(z),

then p(z)q(z)h(z),where

q(z) = β nzβ/n

z

h(t)tβ/n–dt

and q(z)is the best dominant.

2 Main results

Theorem . Let fUBα

μ,p(a,b,c;γ,k,δ)for a,b,c∈R\Z–,μ> –p,p∈N,α> ,k≥,

≤δ< andγ> .Then fUBα

μ,p(a,b,c; ,k,δ). Proof Consider

h(z) =

,p(a,b,c)f(z) ,p(a,b,c)g(z)

α

, (.)

wherehis analytic inEwithh() = , andgAp satisfies condition (.). Differentiating (.) logarithmically and using (.), we have

zh(z)

h(z) =α(μ+p)

+,p(a,b,c)f(z)

,p(a,b,c)f(z)

+,p(a,b,c)g(z) ,p(a,b,c)g(z)

.

Using (.) and simplifying, we obtain

h(z) + γzh

(z)

α(μ+p)q(z) = ( –γ)

,p(a,b,c)f(z) ,p(a,b,c)g(z)

α

+γIμ+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

,p(a,b,c)f(z) ,p(a,b,c)g(z)

α–

.

SincefUBα

μ,p(a,b,c;γ,k,δ), therefore, we can write

h(z) + γzh

(z)

α(μ+p)q(z)qk,δ(z), zE.

Now using Lemma . forA=  andB(z) = α(μ+γp)q(z)withReq(z) > , we haveReB(z)≥, therefore,h(z)qk,δ(z). HencefUBαμ,p(a,b,c; ,k,δ).

Theorem . Let fUBα

μ,p(a,b,c;γ, ,δ)for a,b,c∈R\Z–, μ> –p, p∈N. Then f

UBα

μ,p(a,b,c; , ,δ),where

δ=

αδ(p+μ)|q(z)|+γρ

(6)

Proof Consider

h(z) =  ( –δ)

,p(a,b,c)f(z) ,p(a,b,c)g(z)

αδ

, (.)

wherehis analytic inEwithh() = , andgAp satisfies condition (.). Differentiating (.), we have

( –δ)

α h

(z) =,p(a,b,c)f(z)

,p(a,b,c)g(z)

α–

×

(Iμ,p(a,b,c)f(z)) ,p(a,b,c)g(z)

,p(a,b,c)f(z) ,p(a,b,c)g(z)

(Iμ,p(a,b,c)g(z)) ,p(a,b,c)g(z)

.

Using (.) and simplifying, we obtain

( –γ)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α

+γIμ+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

,p(a,b,c)f(z) ,p(a,b,c)g(z)

α–

= ( –δ)h(z) +δ+

γ( –δ)zh(z) α(p+μ)q(z) .

SincefUBα

μ,p(a,b,c;γ, ,δ), therefore we have

( –δ)h(z) +δ+

γ( –δ)zh(z) α(p+μ)q(z) ≺

 + ( – δ)z

 –z , ≤δ< ,z∈E.

This implies that

  –δ

( –δ)h(z) +δ–δ+

γ( –δ)zh(z) α(p+μ)q(z)

q,(E) =P.

To obtain our desired result, we show thathP, forzE. Letu=u+iu,v=v+iv,

and let:D⊂CCbe a complex-valued function such thatu=h(z),v=zh(z). Then

(u,v) = ( –δ)u+δ–δ+

γ( –δ)v α(p+μ)q(z).

The first two conditions of Lemma . are easily verified. To verify the third condition, we consider

Re(iu,v)

=Re

( –δ)iu+δ–δ+

γ( –δ)v α(p+μ)q(z)

=δ–δ+Re

γ( –δ)v α(p+μ)q(z)

δ–δ–Re

γ( –δ)( +u)q(z)

α(p+μ)|q(z)|

δ–δ

γ( –δ)( +u)ρ

α(p+μ)|q(z)| =

A+Bu

(7)

where A= α(p+μ)(δ–δ)|q(z)|–γρ( –δ), B= –γρ( –δ)≤ if ≤δ <  and

C= α(p+μ)|q(z)|> . From the relationδ

=αδ(p+μ)|q(z)| +γρ

α(p+μ)|q(z)|+γρ, we haveA≤. This

im-plies thatRe(iu,v)≤. Using Lemma ., we havehPforzE. This completes the

proof.

Theorem . Let a,b,c∈R\Z–

,μ> –p,p∈N,α> ,k≥and≤δ< .Then

UBαμ,p(a,b,c;γ,k,δ)⊂UBαμ,p(a,b,c;γ,k,δ), ≤γ<γ,zE.

Proof SincefUBα

μ,p(a,b,c;γ,k,δ), therefore, we have

( –γ)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α +γ

+,p(a,b,c)f(z) +,p(a,b,c)g(z)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α–

=h(z)≺qk,δ(z), (.)

wheregApsatisfies condition (.). From Theorem ., we write

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α

=h(z)≺qk,δ(z), zE. (.)

Now, forγ≥, we obtain

( –γ)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α +γ

+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α–

=

 –γ

γ

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α

+γ

γ

( –γ)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α +γ

+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α–

=γ

γ

h(z) +

 –γ

γ

h(z).

Using the convexity of the class of the functionqk,δ(z) and Lemma ., we write

γγ

h(z) +

 –γ

γ

h(z)≺qk,δ(z), zE,

wherehandhare given by (.) and (.), respectively. This implies thatfUBαμ,p(a,b,c;

γ,k,δ). Hence the proof of the theorem is completed.

Theorem . Let fUB

μ,p(a,b,c;γ,k,δ),a,b,c∈R\Z–,μ> –p,p∈N,α> ,k≥,γ≥

and≤δ< .Then fUBμ+,p(a,b,c; ,k,δ).

Proof SincefUBμ,p(a,b,c;γ,k,δ), therefore, we have

( –γ)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

+γIμ+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

(8)

Now, consider

γIμ+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

= ( –γ)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

+γIμ+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

+ (γ– )

,p(a,b,c)f(z) ,p(a,b,c)g(z)

.

This implies that

+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

= 

γ

( –γ)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

+γIμ+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

+

 – 

γ

,p(a,b,c)f(z) ,p(a,b,c)g(z)

.

Using Theorem ., Lemma . and the convexity ofqk,δ(z), we have the required result.

Now, using the operators,p(a,b,c) andFη,pdefined by (.) and (.), respectively, we have

zIpμ(a,b,c)Fη,p(f)(z)

= (p+η)Ipμ(a,b,c)f(z) –ηIpμ(a,b,c)Fη,p(f)(z), η> –p. (.)

Theorem . Let fApand Fη,pbe given by(.).If

( –γ),p(a,b,c)Fη,p(f)(z) zp +γ

,p(a,b,c)(f(z))

zpqk,δ(z), zE, (.) with a,b,c∈R\Z–,μ,η> –p,p∈N,γ> ,then

,p(a,b,c)Fη,p(f(z))

zph(z)qk,δ(z), zE, where

h(z) = p+η

γz(p+η)/γ

z

qk,δ(z)t

(p+η)/γ–

dt.

Proof Let

,p(a,b,c)Fη,p(f(z))

zp =h(z), zE, wherehis analytic inEwithh() = . Then

zIμ,p(a,b,c)Fη,p

f(z)=pzph(z) +zp+h(z).

Using (.), we have

γ(p+η),p(a,b,c)f(z) zpγ η

,p(a,b,c)Fη,p(f)(z)

zp =pγh(z) +γzh

(9)

Thus,

( –γ),p(a,b,c)Fη,p(f(z)) zp +γ

,p(a,b,c)(f(z))

zp =h(z) +γ zh(z)

p+η. (.)

From (.), it follows that

h(z) +γ

zh(z)

p+ηqk,δ(z), zE.

Using Lemma ., forβ=pγ+η,n=  anda= , we obtainh(z)≺h(z)qk,δ(z). That is,

,p(a,b,c),p(f(z))

zpqk,δ(z).

Theorem . Let fUBα

μ,p(a,b,c; , ,δ) for a,b,c∈R\Z–, μ> –p, p∈N, α,γ > ,

≤δ< .Then fUBα

μ,p(a,b,c;γ, ,δ),for|z|<r,where

r= α(p

+ μ) +γγ

+ αγ(p+μ)α(p+μ). (.)

Proof LetfUBα

μ,p(a,b,c; , ,δ). Then we have

,p(a,b,c)f(z) ,p(a,b,c)g(z)

α

= ( –δ)h(z) +δ, (.)

wheregApsatisfies the condition

q(z) =Iμ+,p(a,b,c)g(z) ,p(a,b,c)g(z)

P, zE

andhP. Differentiating (.) and then using (.), we obtain

γIμ+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α–

γ

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α

=γ(p–δ)zh

(z)

α(p+μ)q(z).

This implies that

  –δ

( –γ)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α

+γIμ+,p(a,b,c)f(z)

+,p(a,b,c)g(z)

,p(a,b,c)f(z)

,p(a,b,c)g(z)

α–

δ

=h(z) + γzh

(z)

α(p+μ)q(z), zE. (.)

Now, using the well-known distortion result for classP, we have

zh(z)≤rReh(z)

 –r and Reh(z)

 –r

(10)

Thus, due to the applications of these inequalities, we have

Re

h(z) + γzh

(z)

α(p+μ)q(z)

≥Reh(z) – γ|zh

(z)|

α(p+μ)|q(z)| ≥Reh(z)

 – γr

α(p+μ)( –r)

=Reh(z)

α(p+μ)( –r)– γr α(p+μ)( –r)

.

For|z|<r, whereris given in (.), the inequality above is positive. Sharpness of the

result follows by takingh(z) =+z

–z. Hence from (.), we have the required result.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MR and SNM jointly discussed and presented the ideas of this article. MR made the text file and corresponded it to the journal. Both authors read and approved the final manuscript.

Author details

1Department of Mathematics, GC University, Faisalabad, Pakistan.2Department of Mathematics, COMSATS Institute of

Information Technology, Defence Road, Lahore, Pakistan.

Received: 15 February 2013 Accepted: 6 September 2013 Published:07 Nov 2013

References

1. Ruscheweyh, S: New criteria for univalent functions. Proc. Am. Math. Soc.49, 109-115 (1975)

2. Ul-Haq, W: Some Classes of Generalized Convex and Related Functions. Ph.D. thesis, COMSATS Institute of Information Technology, Islamabad, Pakistan (2011)

3. Noor, KI: Integral operators defined by convolution with hypergometric functions. Appl. Math. Comput.182, 1872-1881 (2006)

4. Cho, NE, Kwon, OS, Srivastava, HM: Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators. J. Math. Anal. Appl.292, 470-483 (2004)

5. Patel, J, Cho, NE: Some classes of analytic functions involving Noor integral operator. J. Math. Anal. Appl.312, 564-575 (2005)

6. Liu, J-L: The Noor integral and strongly starlike functions. J. Math. Anal. Appl.261, 441-447 (2001) 7. Liu, J-L, Noor, KI: Some properties of Noor integral operator. J. Nat. Geom.21, 81-90 (2002)

8. Patel, J, Rout, S: Properties of certain analytic functions involving Ruscheweyh’s derivatives. Math. Jpn.39, 509-518 (1994)

9. Ponnusamy, S, Karanukaran, V: Differential subordination and conformal mappings. Complex Var. Theory Appl.11, 70-86 (1988)

10. Singh, R: On Bazileviˇc functions. Proc. Am. Math. Soc.38, 261-271 (1973)

11. Chen, MP: On the regular functions satisfying Ref(z)/z. Bull. Inst. Math. Acad. Sin.3, 65-70 (1975)

12. Miller, SS, Mocanu, PT: Differential subordination and inequalities in the complex plane. J. Differ. Equ.67, 199-211 (1987)

13. Miller, SS, Mocanu, PT: Second order differential inequalities in the complex plane. J. Math. Anal. Appl.65, 289-305 (1978)

14. Liu, M-S: On certain subclass of analytic functions. J. South China Normal Univ. Natur. Sci. Ed.4, 15-20 (2002) (in Chinese)

15. Hallenbeck, DJ, Ruscheweyh, S: Subordination by convex functions. Proc. Am. Math. Soc.52, 191-195 (1975)

10.1186/1029-242X-2013-458

References

Related documents

In this dissertation the writer analyses the emergency response system focusing on the contingency planning for dangerous goods incidents as an integral part of whole environmental

T-Node is basically a SU, and the other SUs, N-Node 1, N-Node 2, N-Node 3, and N-Node 4, will scan any selfish attack of the target node (T-Node).The target SU and all of

In point estimation view, provided Ceteris paribus condition, every one per cent increase in the capital input will lead to 0.81 per cent increase in production of the

Azithromycin as an add- on treatment for persistent uncontrolled asthma in adults: protocol of a systematic review and meta- analysis.. To view these files, please visit

L'objectif de ce travail est de rapporter des donn6es de la litterature concernant les m~thodes les plus utilisees pour I'6valuation de la qualit~ de

: Oral and written language abilities of XXY boys: Implications for anticipatory guidance.. Abstract: Pediatric

However, the odor release from wastewater treat- ment plant can cause significant public concern and control of odor has become a standard consid- eration in design and operation

this end on the matters of rehabilitation, general amnesty and other related is- sues and activities. 1) An agreement as signed between the government and the tribal refugee