• No results found

Application of analytic functions to the global solvabilty of the Cauchy problem for equations of Navier Stokes

N/A
N/A
Protected

Academic year: 2020

Share "Application of analytic functions to the global solvabilty of the Cauchy problem for equations of Navier Stokes"

Copied!
19
0
0

Loading.... (view fulltext now)

Full text

(1)

Vol.2, No.4, 338-356 (2010) Natural Science

http://dx.doi.org/10.4236/ns.2010.24042

Application of analytic functions to the global solvabilty

of the Cauchy problem for equations of Navier-Stokes

Asset Durmagambetov

Ministry of Education and Science of the Republic of Kazakhstan, Buketov Karaganda State University, Institute of Applied Mathemat-ics, Buketov Karaganda, Kazakhstan; aset.durmagambetov@gmail.com

Received 14 December 2009; revised 29 January 2010; accepted 3 February 2010.

ABSTRACT

The interrelation between analytic functions and real-valued functions is formulated in the work. It is shown such an interrelation realizes nonli-near representations for real-valued functions that allow to develop new methods of estimation for them. These methods of estimation are ap-proved by solving the Cauchy problem for equ-ations of viscous incompressible liquid.

Keywords: Shrπ‘œπ‘œΜˆdinger; Cauchy Problem; Navier-Stokes’; Inverse; Analytic Functions; Scattering Theory

1. INTRODUCTION

The work of L. Fadeyev dedicated to the many- dimen-sional inverse problem of scattering theory inspired the author of this article to conduct this research. The first results obtained by the author are described in the works [1-3]. This problem includes a number of subproblems which appear to be very interesting and complicated. These subproblems are thoroughly considered in the works of the following scientists: R. Newton [4], R. Faddeyev [5], R. Novikov and G. Khenkin [6], A. Ramm [3] and others. The latest advances in the theory of SIPM (Scattering Inverse Problem Method) were a great sti-mulus for the author as well as other researchers. Anoth-er important stimulus was the work of M. Lavrentyev on the application of analytic functions to Hydrodynamics. Only one-dimensional equations were integrated by SIPM. The application of analytic functions to Hydro-dynamics is restricted only by bidimensional problems. The further progress in applying SIPM to the solution of nonlinear equations in R3 was hampered by the poor development of the three-dimensional inverse problem of scattering in comparison with the progress achieved in the work on the one-dimensional inverse problem of scattering and also by the difficulties the researchers encountered building up the corresponding Lax’ pairs. It

is easy to come to a conclusion that all the success in developing the theory of SIPM is connected with ana-lytic functions, i.e., solutions to Schrodinger’s equation. Therefore we consider Schrodinger’s equation as an in-terrelation between real-valued functions and analytic functions, where real-valued functions are potentials in Schrodinger’s equation and analytic functions are the corresponding eigenfunctions of the continuous spec-trum of Schrodinger’s operator. The basic aim of the paper is to study this interrelation and its application for obtaining new estimates to the solutions of the problem for Navier-Stokes’ equations. We concentrated on for-mulating the conditions of momentum and energy con-servation laws in terms of potential instead of formulat-ing them in terms of wave functions. As a result of our study, we obtained non-trivial nonlinear relationships of potential. The effectiveness and novelty of the obtained results are displayed when solving the notoriously diffi-cult Chauchy problem for Navier-Stokes’ equations of viscous incompressible fluid.

2. BASIC NOTIONS AND SUBSIDIARY

STATEMENT

Let us consider Shrödingerse equation

βˆ’Ξ”π‘₯π‘₯πœ‘πœ‘ + π‘žπ‘žπœ‘πœ‘ = |π‘˜π‘˜|2πœ‘πœ‘ (1) where π‘žπ‘ž is a bounded fast-decreasing function,

π‘˜π‘˜ ∈ 𝑅𝑅3, |π‘˜π‘˜|2= �‍ 3

𝑗𝑗 =1 π‘˜π‘˜π‘—π‘—2.

Definition 1.Rolnik’s Class 𝑹𝑹 is a set of measurable functions π‘žπ‘ž,

||π‘žπ‘ž||𝐑𝐑= �‍ 𝑅𝑅6

π‘žπ‘ž(π‘₯π‘₯)π‘žπ‘ž(𝑦𝑦)

|π‘₯π‘₯ βˆ’ 𝑦𝑦|2 𝑑𝑑π‘₯π‘₯𝑑𝑑𝑦𝑦 <∞. It is considered to be a general definition ([7]).

(2)

πœ‘πœ‘Β±(π‘˜π‘˜, π‘₯π‘₯) = 𝑒𝑒𝑖𝑖(π‘˜π‘˜,π‘₯π‘₯)+ +𝑒𝑒±𝑖𝑖|π‘˜π‘˜||π‘₯π‘₯||π‘₯π‘₯| 𝐴𝐴±(π‘˜π‘˜, π‘˜π‘˜β€²) + 0 οΏ½1

|π‘₯π‘₯|οΏ½ (2) where

π‘₯π‘₯ ∈ 𝑅𝑅3, π‘˜π‘˜β€² = |π‘˜π‘˜| π‘₯π‘₯

|π‘₯π‘₯| , (π‘˜π‘˜, π‘₯π‘₯) = �‍ 3

𝑗𝑗 =1 π‘˜π‘˜π‘—π‘—π‘₯π‘₯𝑗𝑗,

𝐴𝐴±(π‘˜π‘˜, πœ†πœ†) =(2πœ‹πœ‹)1 3 �‍ 𝑅𝑅3

π‘žπ‘ž(π‘₯π‘₯)πœ‘πœ‘Β±(π‘˜π‘˜, π‘₯π‘₯)π‘’π‘’βˆ’π‘–π‘–(πœ†πœ†,π‘₯π‘₯)𝑑𝑑π‘₯π‘₯.

The proof of this theorem is in [7].

Consider the operators 𝐻𝐻 = βˆ’ Ξ”π‘₯π‘₯+ π‘žπ‘ž(π‘₯π‘₯), 𝐻𝐻0= βˆ’ Ξ”π‘₯π‘₯ defined in the dense set π‘Šπ‘Š22(𝑅𝑅3) in the space 𝐿𝐿2(𝑅𝑅3). The operator 𝐻𝐻 is called Schrodinger’s operator. Povz-ner [8] proved that the functions πœ‘πœ‘ Β± (π‘˜π‘˜, π‘₯π‘₯) form a complete orthonormal system of eigenfunctions of the continuous spectrum of the operator 𝐻𝐻, and the operator fills up the whole positive semi-axis. Besides the conti-nuous spectrum the operator 𝐻𝐻 can have a finite num-ber 𝑁𝑁 of negative eigenvalues Denote these eigenvalues by βˆ’πΈπΈπ‘—π‘—2 and conforming normalized egenfunctions by

πœ“πœ“π‘—π‘—(π‘₯π‘₯, βˆ’πΈπΈπ‘—π‘—2)(𝑗𝑗 = 1, 𝑁𝑁), where πœ“πœ“π‘—π‘—(π‘₯π‘₯, βˆ’πΈπΈπ‘—π‘—2) ∈ 𝐿𝐿2(𝑅𝑅3).

Theorem 2 (About Completeness). For any vec-tor-function 𝑓𝑓 ∈ 𝐿𝐿2(𝑅𝑅3) and eigenfunctions of the op-erator 𝐻𝐻, we have Parseval’s identity

|𝑓𝑓|𝐿𝐿22 = βˆ‘π‘π‘ ‍

𝑗𝑗 =1|𝑓𝑓𝑗𝑗|2+ βˆ«π‘…π‘…3‍|𝑓𝑓̅(𝑠𝑠)|2𝑑𝑑𝑠𝑠,

where 𝑓𝑓𝑗𝑗 and 𝑓𝑓̅ are Fourier coefficients in case of dis-crete of and continuous spectrum respectively.

The proof of this theorem is in [8].

Theorem 3 (Birman - Schwinger’s Estimate). Sup-pose π‘žπ‘ž ∈ 𝑅𝑅. Then the number of discrete eigenvalues of Shrπ‘œπ‘œΜˆdinger operator satisfies the estimate

𝑁𝑁(π‘žπ‘ž) ≀(4πœ‹πœ‹)1 2 �‍ 𝑅𝑅3

�‍ 𝑅𝑅3

π‘žπ‘ž(π‘₯π‘₯)π‘žπ‘ž(𝑦𝑦) |π‘₯π‘₯ βˆ’ 𝑦𝑦|2 𝑑𝑑π‘₯π‘₯𝑑𝑑𝑦𝑦. The proof of this theorem is in [9].

Definition 2. [7]

𝑇𝑇±(π‘˜π‘˜, π‘˜π‘˜β€²) = 1 (2πœ‹πœ‹)3 �‍

𝑅𝑅3

πœ‘πœ‘Β±(π‘₯π‘₯, π‘˜π‘˜β€²)π‘’π‘’βˆ“π‘–π‘–(π‘˜π‘˜,π‘₯π‘₯)π‘žπ‘ž(π‘₯π‘₯)𝑑𝑑π‘₯π‘₯.

𝑇𝑇 Β±(. , . ) is called T-matrix. Let us take into consider-ation a series for 𝑇𝑇±:

𝑇𝑇±(π‘˜π‘˜, π‘˜π‘˜β€²) = �‍ ∞

𝑛𝑛=0

𝑇𝑇𝑛𝑛±(π‘˜π‘˜, π‘˜π‘˜β€²),

where

𝑇𝑇0Β±(π‘˜π‘˜, π‘˜π‘˜β€²) =

1 (2πœ‹πœ‹)3 �‍

𝑅𝑅3

𝑒𝑒𝑖𝑖(π‘˜π‘˜β€²βˆ“π‘˜π‘˜,π‘₯π‘₯)

π‘žπ‘ž(π‘₯π‘₯)𝑑𝑑π‘₯π‘₯,

𝑇𝑇𝑛𝑛±(π‘˜π‘˜, π‘˜π‘˜β€²) =

1 (2πœ‹πœ‹)3

(βˆ’1)𝑛𝑛 (4πœ‹πœ‹)𝑛𝑛 οΏ½ ‍

𝑅𝑅3(𝑛𝑛 +1)

π‘’π‘’βˆ“π‘–π‘–(π‘˜π‘˜,π‘₯π‘₯0)

Γ— π‘žπ‘ž(π‘₯π‘₯0)𝑒𝑒±𝑖𝑖|π‘˜π‘˜

β€²||π‘₯π‘₯0βˆ’π‘₯π‘₯1|

|π‘₯π‘₯0βˆ’ π‘₯π‘₯1| π‘žπ‘ž(π‘₯π‘₯1). . . π‘žπ‘ž(π‘₯π‘₯π‘›π‘›βˆ’1)

×𝑒𝑒±𝑖𝑖|π‘˜π‘˜

β€²||π‘₯π‘₯𝑛𝑛 βˆ’1βˆ’π‘₯π‘₯𝑛𝑛|

|π‘₯π‘₯π‘›π‘›βˆ’1βˆ’ π‘₯π‘₯𝑛𝑛| π‘žπ‘ž(π‘₯π‘₯𝑛𝑛)𝑒𝑒𝑖𝑖(π‘˜π‘˜

β€²,π‘₯π‘₯𝑛𝑛)

𝑑𝑑π‘₯π‘₯0. . . 𝑑𝑑π‘₯π‘₯𝑛𝑛. As well as in [7] we formulate.

Definition 3.Series (4) is called Born’s series.

Theorem 4. Let π‘žπ‘ž ∈ 𝐿𝐿1(𝑅𝑅3) ∩ 𝑹𝑹 . If π‘ƒπ‘ƒπ‘žπ‘žπ‘ƒπ‘ƒπ‘Ήπ‘Ή2≀ 4πœ‹πœ‹, then Born’s series for 𝑇𝑇(π‘˜π‘˜, π‘˜π‘˜β€²) converges as π‘˜π‘˜, π‘˜π‘˜β€² ∈ 𝑅𝑅3.

The proof of the theorem is in [7].

Definition 4. Suppose π‘žπ‘ž ∈ 𝑅𝑅; then the function 𝐴𝐴(π‘˜π‘˜, πœ†πœ†), denoted by the following equality

𝐴𝐴(π‘˜π‘˜, 𝑙𝑙) =(2πœ‹πœ‹)1 3 �‍ 𝑅𝑅3

π‘žπ‘ž(π‘₯π‘₯)

πœ‘πœ‘+(π‘˜π‘˜, π‘₯π‘₯)π‘’π‘’βˆ’π‘–π‘–(πœ†πœ†,π‘₯π‘₯)𝑑𝑑π‘₯π‘₯, is called scattering amplitude

Corollary 1.Scattering amplitude 𝐴𝐴(π‘˜π‘˜, πœ†πœ†) is equal to 𝑇𝑇-matrix

𝐴𝐴(π‘˜π‘˜, 𝑙𝑙) = 𝑇𝑇+(𝑙𝑙, π‘˜π‘˜) =(2πœ‹πœ‹)1 3 �‍

𝑅𝑅3

π‘žπ‘ž(π‘₯π‘₯)πœ‘πœ‘+(π‘˜π‘˜, π‘₯π‘₯)π‘’π‘’βˆ’π‘–π‘–(πœ†πœ†,π‘₯π‘₯)𝑑𝑑π‘₯π‘₯.

The proof follows from definition 4.

It is a well-known fact [5] that the solutions πœ‘πœ‘ + (π‘˜π‘˜, π‘₯π‘₯) and πœ‘πœ‘ βˆ’ (π‘˜π‘˜, π‘₯π‘₯) of Eq.1 are linearly dependent

πœ‘πœ‘ += π‘†π‘†πœ‘πœ‘ βˆ’ (3) where 𝑆𝑆 is a scattering operator with the nucleus 𝑆𝑆(π‘˜π‘˜, πœ†πœ†) of the form

𝑆𝑆(π‘˜π‘˜, πœ†πœ†) = �‍ 𝑅𝑅3

πœ‘πœ‘+(π‘˜π‘˜, π‘₯π‘₯)πœ‘πœ‘+βˆ—(πœ†πœ†, π‘₯π‘₯)𝑑𝑑π‘₯π‘₯.

Theorem 5. (Conservation Law of Impulse and Energy). Assume that π‘žπ‘ž ∈ 𝑹𝑹, then

π‘†π‘†π‘†π‘†βˆ—= 𝐼𝐼, π‘†π‘†βˆ—π‘†π‘† = 𝐼𝐼, where 𝐼𝐼 is anunit operator.

The proof is in [5].

Let us use the following definitions π‘žπ‘žοΏ½(π‘˜π‘˜) = �‍

𝑅𝑅3

π‘žπ‘ž(π‘₯π‘₯)𝑒𝑒𝑖𝑖(π‘˜π‘˜,π‘₯π‘₯)𝑑𝑑π‘₯π‘₯,

π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ πœ†πœ†) = �‍ 𝑅𝑅3

π‘žπ‘ž(π‘₯π‘₯)𝑒𝑒𝑖𝑖(π‘˜π‘˜βˆ’πœ†πœ†,π‘₯π‘₯)𝑑𝑑π‘₯π‘₯,

π‘žπ‘žοΏ½mv(π‘˜π‘˜) = �‍ 𝑅𝑅3

(3)

𝐴𝐴mv(π‘˜π‘˜) = �‍ 𝑅𝑅3

𝐴𝐴(π‘˜π‘˜, 𝑙𝑙))𝛿𝛿(|π‘˜π‘˜|2βˆ’ |𝑙𝑙|2)𝑑𝑑𝑙𝑙,

�‍𝑓𝑓(π‘˜π‘˜, 𝑙𝑙)π‘‘π‘‘π‘’π‘’π‘˜π‘˜= �‍ 𝑅𝑅3

𝑓𝑓(π‘˜π‘˜, 𝑙𝑙)𝛿𝛿(|π‘˜π‘˜|2βˆ’ |𝑙𝑙|2)π‘‘π‘‘π‘˜π‘˜,

�‍𝑓𝑓(π‘˜π‘˜, 𝑙𝑙)π‘‘π‘‘π‘’π‘’πœ†πœ† = �‍ 𝑅𝑅3

𝑓𝑓(π‘˜π‘˜, 𝑙𝑙)𝛿𝛿(π‘˜π‘˜2βˆ’ |𝑙𝑙|2)𝑑𝑑𝑙𝑙,

where π‘˜π‘˜, πœ†πœ† ∈ 𝑅𝑅3 and 𝑒𝑒

π‘˜π‘˜=|π‘˜π‘˜|π‘˜π‘˜, π‘’π‘’πœ†πœ† =|πœ†πœ†|πœ†πœ†.

3. ESTIMATE OF AMPLITUDE MAXIMUM

Let us consider the problem of estimating the maximum of amplitude, i.e., maxπ‘˜π‘˜βˆˆπ‘…π‘…3|𝐴𝐴(π‘˜π‘˜, π‘˜π‘˜)|. Let us estimate the 𝑛𝑛 term of Born’s series |𝑇𝑇𝑛𝑛(π‘˜π‘˜, π‘˜π‘˜)|.

Lemma 1. |𝑇𝑇𝑛𝑛(π‘˜π‘˜, π‘˜π‘˜)| satisfies the inequality

|𝑇𝑇𝑛𝑛+1(π‘˜π‘˜, π‘˜π‘˜)| ≀(2πœ‹πœ‹)1 3 1 (4πœ‹πœ‹)𝑛𝑛+1 Γ—(2πœ‹πœ‹)𝛾𝛾2(𝑛𝑛+1)𝑛𝑛 �‍

𝑅𝑅3

|π‘žπ‘žοΏ½(π‘˜π‘˜)|2 |π‘˜π‘˜|2 π‘‘π‘‘π‘˜π‘˜,

𝛾𝛾 = 𝐢𝐢𝛿𝛿||π‘žπ‘ž|| + 4πœ‹πœ‹πœ‹πœ‹π‘žπ‘žοΏ½π›Ώπ›Ώ, 𝐢𝐢𝛿𝛿 = 2βˆšπœ‹πœ‹ βˆšπ›Ώπ›Ώ,

where 𝛿𝛿-is a small value, 𝐢𝐢 is a positive number, πœ‹πœ‹π‘žπ‘žοΏ½ = π‘šπ‘šπ‘šπ‘šπ‘₯π‘₯

π‘˜π‘˜βˆˆπ‘…π‘…3|π‘žπ‘žοΏ½|.

Theorem 6. Suppose that 𝛾𝛾 < 16πœ‹πœ‹3 , then π‘šπ‘šπ‘šπ‘šπ‘₯π‘₯

π‘˜π‘˜βˆˆπ‘…π‘…3|𝐴𝐴(π‘˜π‘˜, π‘˜π‘˜)| satisfies the following estimate

maxπ‘˜π‘˜βˆˆπ‘…π‘…3|𝐴𝐴(π‘˜π‘˜, π‘˜π‘˜)| ≀(2πœ‹πœ‹)1 316πœ‹πœ‹13βˆ’ 𝛾𝛾 �‍ 𝑅𝑅3

|π‘žπ‘žοΏ½(π‘˜π‘˜)|2 |π‘˜π‘˜|2 π‘‘π‘‘π‘˜π‘˜, where 𝛾𝛾 = 𝐢𝐢𝛿𝛿||π‘žπ‘ž|| + 4πœ‹πœ‹πœ‹πœ‹π‘žπ‘žοΏ½π›Ώπ›Ώ, 𝛿𝛿 is a small value,

𝐢𝐢𝛿𝛿 = 2οΏ½πœ‹πœ‹π›Ώπ›Ώ, πœ‹πœ‹π›Ώπ›Ώ = π‘šπ‘šπ‘šπ‘šπ‘₯π‘₯ π‘˜π‘˜βˆˆπ‘…π‘…3|π‘žπ‘žοΏ½|.

4. REPRESENTATION OF FUNCTIONS

BY ITS SPHERICAL AVERAGES

Let us consider the problem of defining a function by its spherical average. This problem emerged in the course of our calculation and we shall consider it hereinafter.

Let us consider the following integral equation �‍

𝑅𝑅3

π‘žπ‘žοΏ½(𝑑𝑑)𝛿𝛿(|𝑑𝑑 βˆ’ π‘˜π‘˜|2βˆ’ |π‘˜π‘˜|2)𝑑𝑑𝑑𝑑 = 𝑓𝑓(2π‘˜π‘˜),

where π‘˜π‘˜, 𝑑𝑑 ∈ 𝑅𝑅3, 𝛿𝛿 is Dirac’s delta function,

𝑓𝑓 ∈ π‘Šπ‘Š22(𝑅𝑅3), |π‘˜π‘˜|2= βˆ‘π‘–π‘–=13 β€π‘˜π‘˜π‘–π‘–2, (π‘˜π‘˜, 𝑑𝑑) = βˆ‘3𝑖𝑖=1β€π‘˜π‘˜π‘–π‘–π‘‘π‘‘π‘–π‘–. Let us formulate the basic result.

Theorem 7.Suppose that 𝑓𝑓 ∈ π‘Šπ‘Š22(𝑅𝑅3), then (2πœ‹πœ‹)2π‘žπ‘žοΏ½(π‘Ÿπ‘Ÿ, πœ‰πœ‰, πœ‚πœ‚)

= βˆ’1π‘Ÿπ‘Ÿβˆ‚π‘Ÿπ‘Ÿβˆ‚22�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

�𝑓𝑓((𝑒𝑒2π‘Ÿπ‘Ÿ π‘˜π‘˜, 𝑒𝑒𝑠𝑠) , π‘’π‘’π‘˜π‘˜)

+ 𝑓𝑓((π‘’π‘’π‘˜π‘˜2π‘Ÿπ‘Ÿ, 𝑒𝑒𝑠𝑠) , βˆ’π‘’π‘’π‘˜π‘˜)οΏ½(π‘’π‘’π‘˜π‘˜π‘Ÿπ‘Ÿ, 𝑒𝑒𝑠𝑠)2 2 sinπœƒπœƒ π‘‘π‘‘πœƒπœƒ π‘‘π‘‘πœ‘πœ‘, where

𝑓𝑓((π‘’π‘’π‘˜π‘˜, 𝑒𝑒𝑠𝑠) , 𝑒𝑒2π‘Ÿπ‘Ÿ π‘˜π‘˜) = π‘žπ‘žοΏ½((π‘’π‘’π‘˜π‘˜, 𝑒𝑒𝑠𝑠) , 𝑒𝑒2π‘Ÿπ‘Ÿ π‘˜π‘˜), sinπœƒπœƒ π‘‘π‘‘πœƒπœƒ π‘‘π‘‘πœ‘πœ‘ = π‘‘π‘‘π‘’π‘’π‘˜π‘˜, sinπœ‰πœ‰ π‘‘π‘‘πœ‰πœ‰π‘‘π‘‘πœ‚πœ‚ = 𝑑𝑑𝑒𝑒𝑠𝑠, π‘Ÿπ‘Ÿ = |𝑑𝑑|.

Theorem 8.Fourier transformation of the function q satisfies the following estimate

|π‘žπ‘žοΏ½|𝐿𝐿1≀14 οΏ½π‘§π‘§βˆ‚π‘žπ‘žοΏ½π‘šπ‘šπ‘šπ‘šβˆ‚π‘§π‘§2 οΏ½ 𝐿𝐿1

+ 2 οΏ½βˆ‚π‘žπ‘žοΏ½π‘šπ‘šπ‘šπ‘šβˆ‚π‘§π‘§2 οΏ½ 𝐿𝐿1

+ οΏ½π‘žπ‘žοΏ½π‘šπ‘šπ‘šπ‘šπ‘§π‘§ �𝐿𝐿

1

,

5. CORRELATION OF AMPLITUDE AND

WAVE FUNCTIONS

We take the relationship for πœ‘πœ‘+, πœ‘πœ‘βˆ’ from (3) πœ‘πœ‘+(π‘˜π‘˜, π‘₯π‘₯) = πœ‘πœ‘βˆ’(π‘˜π‘˜, π‘₯π‘₯)

βˆ’2πœ‹πœ‹π‘–π‘– βˆ«π‘…π‘…3‍𝛿𝛿(|π‘˜π‘˜|2βˆ’ |𝑙𝑙|2) (4) Γ— 𝐴𝐴(π‘˜π‘˜, πœ†πœ†)πœ‘πœ‘βˆ’(πœ†πœ†, π‘₯π‘₯)π‘‘π‘‘πœ†πœ†.

Let us denote new functions and operators we will use further

πœ‘πœ‘0(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯) = 𝑒𝑒𝑖𝑖(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜,π‘₯π‘₯),

Ξ¦0(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯) = πœ‘πœ‘0(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯) + πœ‘πœ‘0(βˆ’βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯), Ξ¦+(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯) = πœ‘πœ‘+(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯) βˆ’ 𝑒𝑒𝑖𝑖(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜,π‘₯π‘₯)

+πœ‘πœ‘+(βˆ’βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯) βˆ’ π‘’π‘’βˆ’π‘–π‘–(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜,π‘₯π‘₯),

Ξ¦βˆ’(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯) = πœ‘πœ‘βˆ’(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯) βˆ’ 𝑒𝑒𝑖𝑖(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜,π‘₯π‘₯)

+πœ‘πœ‘βˆ’(βˆ’βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯) βˆ’ π‘’π‘’βˆ’π‘–π‘–(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜,π‘₯π‘₯),

𝐷𝐷1𝑓𝑓 = βˆ’2πœ‹πœ‹π‘–π‘– �‍ 𝑅𝑅3

𝐴𝐴(π‘˜π‘˜, πœ†πœ†)𝛿𝛿(𝑧𝑧 βˆ’ 𝑙𝑙)𝑓𝑓(πœ†πœ†, π‘₯π‘₯)π‘‘π‘‘πœ†πœ†,

𝐷𝐷2𝑓𝑓 = βˆ’2πœ‹πœ‹π‘–π‘– �‍ 𝑅𝑅3

𝐴𝐴(βˆ’π‘˜π‘˜, πœ†πœ†)𝛿𝛿(𝑧𝑧 βˆ’ 𝑙𝑙)𝑓𝑓(πœ†πœ†, π‘₯π‘₯)π‘‘π‘‘πœ†πœ†,

𝐷𝐷3𝑓𝑓 = 𝐷𝐷1𝑓𝑓 + 𝐷𝐷2𝑓𝑓,

where 𝑧𝑧 = |π‘˜π‘˜|2, 𝑙𝑙 = |πœ†πœ†|2, Β±π‘˜π‘˜ = Β±βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜. Let us intro-duce the operators 𝑇𝑇±, 𝑇𝑇 for the function 𝑓𝑓 ∈ π‘Šπ‘Š21(𝑅𝑅) by the formulas

𝑇𝑇+𝑓𝑓 =πœ‹πœ‹π‘–π‘– lim1 πΌπΌπ‘šπ‘šπ‘§π‘§ β†’0 �‍ ∞

βˆ’βˆž 𝑓𝑓(βˆšπ‘ π‘ )

𝑠𝑠 βˆ’ 𝑧𝑧 𝑑𝑑𝑠𝑠, where πΌπΌπ‘šπ‘šπ‘§π‘§ > 0,

π‘‡π‘‡βˆ’π‘“π‘“ =πœ‹πœ‹π‘–π‘– lim1 πΌπΌπ‘šπ‘šπ‘§π‘§ β†’0 �‍ ∞

βˆ’βˆž 𝑓𝑓(βˆšπ‘ π‘ )

(4)

𝑇𝑇𝑓𝑓 =12 (𝑇𝑇++ π‘‡π‘‡βˆ’)𝑓𝑓

Use (4) and the symbols π‘’π‘’π‘Ÿπ‘Ÿ=|π‘˜π‘˜|π‘˜π‘˜ to come to Rie-mann’ problem of finding a function 𝛷𝛷+, which is ana-lytic by the variable z in the top half plane, and the func-tion π›·π›·βˆ’, which is analytical on the variable z in the bot-tom half plane by the specified jump of discontinuity 𝑓𝑓 onto the positive semi axis.

For the jump the discontinuity of an analytical func-tion, we have the following equations

𝑓𝑓 = 𝛷𝛷+βˆ’ π›·π›·βˆ’ (5) 𝑓𝑓 = 𝐷𝐷3[Ξ¦βˆ’] βˆ’ 𝐷𝐷3[πœ‘πœ‘βˆ’] (6) where πœ‘πœ‘βˆ’= πœ‘πœ‘βˆ’(βˆ’πœ†πœ†, π‘₯π‘₯).

Theorem 9. Suppose that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0;

then the functions

𝛹𝛹1= 𝛷𝛷±(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯)|π‘₯π‘₯=0βˆ’ 𝛷𝛷0(βˆšπ‘§π‘§π‘’π‘’π‘˜π‘˜, π‘₯π‘₯)|π‘₯π‘₯=0, 𝛹𝛹2= 𝑇𝑇±𝑓𝑓|π‘₯π‘₯=0

are coincided according to the class of analytical func-tions, coincide with bounded derivatives all over the complex plane with a slit along the positive semi axis.

Lemma 2.There exists 0 < |πœ€πœ€| < ∞ such that it sa-tisfies the following condition πœ‘πœ‘+|π‘₯π‘₯=0,𝑧𝑧=0= 0 holds for the potential of the form π‘šπ‘š = πœ€πœ€π‘žπ‘ž, where π‘žπ‘ž ∈ 𝑹𝑹.

Now, we can formulate Riemann’s problem. Find the analytic function 𝛷𝛷± that satisfies (5), (6) and its solu-tion is set by the following theorem.

Theorem 10. Assume that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0,

then

𝛷𝛷±= 𝑇𝑇±𝑓𝑓 + 𝛷𝛷0, 𝑓𝑓 = 𝐷𝐷3[𝑓𝑓[π‘‡π‘‡βˆ’π‘“π‘“ + 𝛷𝛷0]] βˆ’ 𝐷𝐷3πœ‘πœ‘βˆ’, where πœ‘πœ‘βˆ’= πœ‘πœ‘βˆ’(βˆ’πœ†πœ†, π‘₯π‘₯).

Lemma 3. Suppose that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0; then

Ξ”π‘₯π‘₯𝑇𝑇±[𝑓𝑓]|π‘₯π‘₯=0= 𝑇𝑇±Δπ‘₯π‘₯[𝑓𝑓]|π‘₯π‘₯=0. Theorem 11.Suppose that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0, π‘žπ‘ž(0) β‰  0, then

π‘žπ‘ž(0)𝑓𝑓|π‘₯π‘₯=0= 𝐷𝐷3π‘‡π‘‡βˆ’[π‘žπ‘žπ‘“π‘“|π‘₯π‘₯=0

βˆ’π·π·3[π‘žπ‘žπœ‘πœ‘βˆ’]|π‘₯π‘₯=0+ 𝐷𝐷3�‍ ∞

0

𝑓𝑓𝑑𝑑𝑠𝑠|π‘₯π‘₯=0.

6. AUXILIARY PROPOSITIONS

For wave functions let us use integral representations following from Lippman-Schwinger’s theorem

πœ‘πœ‘Β±(π‘˜π‘˜, π‘₯π‘₯) = 𝑒𝑒𝑖𝑖(π‘˜π‘˜,π‘₯π‘₯)

+4πœ‹πœ‹ οΏ½1 ‍ 𝑅𝑅3

π‘’π‘’Β±π‘–π‘–βˆšπ‘§π‘§|π‘₯π‘₯βˆ’π‘¦π‘¦|

|π‘₯π‘₯ βˆ’ 𝑦𝑦| π‘žπ‘ž(𝑦𝑦)πœ‘πœ‘Β±(π‘˜π‘˜, 𝑦𝑦)𝑑𝑑𝑦𝑦, πœ‘πœ‘Β±(βˆ’π‘˜π‘˜, π‘₯π‘₯) = π‘’π‘’βˆ’π‘–π‘–(π‘˜π‘˜,π‘₯π‘₯)

+4πœ‹πœ‹ οΏ½1 ‍ 𝑅𝑅3

π‘’π‘’βˆ“π‘–π‘–βˆšπ‘§π‘§|π‘₯π‘₯βˆ’π‘¦π‘¦|

|π‘₯π‘₯ βˆ’ 𝑦𝑦| π‘žπ‘ž(𝑦𝑦)πœ‘πœ‘Β±(βˆ’π‘˜π‘˜, 𝑦𝑦)𝑑𝑑𝑦𝑦.

Lemma 4. Suppose that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0;

then

𝐴𝐴(π‘˜π‘˜, π‘˜π‘˜β€²) = 𝑐𝑐0π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ π‘˜π‘˜β€²)

+4πœ‹πœ‹ �𝑐𝑐0 ‍ 𝑅𝑅3

�‍ 𝑅𝑅3

π‘’π‘’βˆ’π‘–π‘–(π‘˜π‘˜β€²,π‘₯π‘₯)π‘žπ‘ž(π‘₯π‘₯)π‘’π‘’π‘–π‘–βˆšπ‘§π‘§|π‘₯π‘₯βˆ’π‘¦π‘¦| |π‘₯π‘₯ βˆ’ 𝑦𝑦| Γ— π‘žπ‘ž(𝑦𝑦)𝑒𝑒𝑖𝑖(π‘˜π‘˜,𝑦𝑦)𝑑𝑑𝑦𝑦𝑑𝑑π‘₯π‘₯ + 𝐴𝐴

3(π‘˜π‘˜, π‘˜π‘˜β€²), 𝐴𝐴(βˆ’π‘˜π‘˜, π‘˜π‘˜β€²) = 𝑐𝑐0π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ π‘˜π‘˜β€²)

+4πœ‹πœ‹ �𝑐𝑐0 ‍ 𝑅𝑅3

�‍ 𝑅𝑅3

π‘’π‘’βˆ’π‘–π‘–(π‘˜π‘˜β€²,π‘₯π‘₯)

π‘žπ‘ž(π‘₯π‘₯)π‘’π‘’βˆ’π‘–π‘–βˆšπ‘§π‘§|π‘₯π‘₯βˆ’π‘¦π‘¦||π‘₯π‘₯ βˆ’ 𝑦𝑦|

Γ— π‘žπ‘ž(𝑦𝑦)π‘’π‘’βˆ’π‘–π‘–(π‘˜π‘˜,𝑦𝑦)𝑑𝑑𝑦𝑦𝑑𝑑π‘₯π‘₯ + 𝐴𝐴

3(βˆ’π‘˜π‘˜, π‘˜π‘˜β€²),

where 𝑐𝑐0=(2πœ‹πœ‹)12, and 𝐴𝐴3(π‘˜π‘˜, π‘˜π‘˜β€²), 𝐴𝐴3(βˆ’π‘˜π‘˜, π‘˜π‘˜β€²) are terms of order higher than 2 with regards to π‘žπ‘ž.

Theorem 12(Parseval). The functions 𝑓𝑓, 𝑔𝑔 ∈ 𝐿𝐿2(𝑅𝑅3) satisfy the equation

(𝑓𝑓, 𝑔𝑔) = 𝑐𝑐0(𝑓𝑓̃, π‘”π‘”οΏ½βˆ—),

where (β‹…,β‹…) is a scalar product and 𝑐𝑐0=(2πœ‹πœ‹)1 3.

Lemma 5.Suppose that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0, then 𝐴𝐴(π‘˜π‘˜, π‘˜π‘˜β€²) = 𝑐𝑐

0π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ π‘˜π‘˜β€²)

βˆ’π‘π‘02 �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(π‘˜π‘˜ + 𝑝𝑝)π‘žπ‘žοΏ½(𝑝𝑝 βˆ’ π‘˜π‘˜β€²) |𝑝𝑝|2βˆ’ 𝑧𝑧 βˆ’ 𝑖𝑖0 𝑑𝑑𝑝𝑝 +𝐴𝐴3(π‘˜π‘˜, π‘˜π‘˜β€²),

𝐴𝐴(βˆ’π‘˜π‘˜, π‘˜π‘˜β€²) = 𝑐𝑐0π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ π‘˜π‘˜β€²)

βˆ’π‘π‘02 �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ + 𝑝𝑝)π‘žπ‘žοΏ½(𝑝𝑝 βˆ’ π‘˜π‘˜β€²) |𝑝𝑝|2βˆ’ 𝑧𝑧 βˆ’ 𝑖𝑖0 𝑑𝑑𝑝𝑝 +𝐴𝐴3(βˆ’π‘˜π‘˜, π‘˜π‘˜β€²).

Corollary 2.Suppose that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0,

then

𝐴𝐴mv(π‘˜π‘˜) = 𝑐𝑐0π‘žπ‘žοΏ½mv(π‘˜π‘˜)

βˆ’π‘π‘02βˆšπ‘§π‘§2 �‍ πœ‹πœ‹

0 οΏ½ ‍ 2βˆ—πœ‹πœ‹

0 �‍ 𝑅𝑅3

π‘žπ‘žΜƒ(π‘˜π‘˜ + 𝑝𝑝)π‘žπ‘žΜƒ(𝑝𝑝 βˆ’ π‘˜π‘˜β€²)

(5)

where

𝐴𝐴3mv(π‘˜π‘˜) = �‍ 𝑅𝑅3

𝐴𝐴3(π‘˜π‘˜, π‘˜π‘˜β€²)𝛿𝛿(𝑧𝑧 βˆ’ |π‘˜π‘˜β€²|2)π‘‘π‘‘π‘˜π‘˜β€²

and

𝐴𝐴mv(βˆ’π‘˜π‘˜) = 𝑐𝑐0π‘žπ‘žοΏ½mv(βˆ’π‘˜π‘˜)

βˆ’π‘π‘02βˆšπ‘§π‘§2 �‍ πœ‹πœ‹

0 οΏ½ ‍ 2βˆ—πœ‹πœ‹

0 �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ + 𝑝𝑝)π‘žπ‘žοΏ½(𝑝𝑝 βˆ’ π‘˜π‘˜β€²) |𝑝𝑝|2βˆ’ 𝑧𝑧 βˆ’ 𝑖𝑖0 π‘‘π‘‘π‘π‘π‘‘π‘‘π‘’π‘’π‘˜π‘˜β€²

+𝐴𝐴3mv(βˆ’π‘˜π‘˜), where

𝐴𝐴3mv(βˆ’π‘˜π‘˜) = �‍ 𝑅𝑅3

𝐴𝐴3(βˆ’π‘˜π‘˜, π‘˜π‘˜β€²)𝛿𝛿(𝑧𝑧 βˆ’ |π‘˜π‘˜β€²|2)π‘‘π‘‘π‘˜π‘˜β€².

Lemma 6.Suppose that π‘žπ‘ž ∈ 𝑅𝑅 and π‘₯π‘₯ = 0, then

πœ‘πœ‘Β±(π‘˜π‘˜, 0) = 1 +4πœ‹πœ‹ οΏ½1 ‍ 𝑅𝑅3

π‘’π‘’Β±π‘–π‘–βˆšπ‘§π‘§|𝑦𝑦|

|𝑦𝑦| π‘žπ‘ž(𝑦𝑦)𝑒𝑒𝑖𝑖(π‘˜π‘˜,𝑦𝑦)𝑑𝑑𝑦𝑦

+(4πœ‹πœ‹)1 2 �‍ 𝑅𝑅3

�‍ 𝑅𝑅3

π‘’π‘’Β±π‘–π‘–βˆšπ‘§π‘§|𝑦𝑦| |𝑦𝑦| π‘žπ‘ž(𝑦𝑦)

π‘’π‘’Β±π‘–π‘–βˆšπ‘§π‘§|π‘¦π‘¦βˆ’π‘‘π‘‘| |𝑦𝑦 βˆ’ 𝑑𝑑|

Γ— π‘žπ‘ž(𝑑𝑑)𝑒𝑒𝑖𝑖(π‘˜π‘˜,𝑑𝑑)𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦 + πœ‘πœ‘

Β±(3)(π‘˜π‘˜, 0),

where πœ‘πœ‘Β±(3)(π‘˜π‘˜, 0) are terms of order higher than 2 with regards to π‘žπ‘ž., i.e.,

πœ‘πœ‘Β±(3)(π‘˜π‘˜, π‘₯π‘₯) =(4πœ‹πœ‹)1 3 �‍ 𝑅𝑅3

�‍ 𝑅𝑅3

�‍ 𝑅𝑅3

π‘’π‘’Β±π‘–π‘–βˆšπ‘§π‘§|π‘₯π‘₯βˆ’π‘¦π‘¦| |π‘₯π‘₯ βˆ’ 𝑦𝑦| π‘žπ‘ž(𝑦𝑦)

Γ—π‘’π‘’Β±π‘–π‘–βˆšπ‘§π‘§|π‘¦π‘¦βˆ’π‘‘π‘‘||𝑦𝑦 βˆ’ 𝑑𝑑| π‘žπ‘ž(𝑑𝑑)π‘’π‘’Β±π‘–π‘–βˆšπ‘§π‘§|π‘‘π‘‘βˆ’π‘ π‘ ||𝑑𝑑 βˆ’ 𝑠𝑠| π‘žπ‘ž(𝑠𝑠)πœ‘πœ‘Β±(π‘˜π‘˜, 𝑠𝑠)𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦. and

πœ‘πœ‘Β±(βˆ’π‘˜π‘˜, 0) = 1 +4πœ‹πœ‹ οΏ½1 ‍ 𝑅𝑅3

π‘’π‘’βˆ“π‘–π‘–βˆšπ‘§π‘§|𝑦𝑦|

|𝑦𝑦| π‘žπ‘ž(𝑦𝑦)π‘’π‘’βˆ’π‘–π‘–(π‘˜π‘˜,𝑦𝑦)𝑑𝑑𝑦𝑦

+ 1

(4πœ‹πœ‹)2 �‍ 𝑅𝑅3

�‍ 𝑅𝑅3

π‘’π‘’βˆ“π‘–π‘–βˆšπ‘§π‘§|𝑦𝑦| |𝑦𝑦| π‘žπ‘ž(𝑦𝑦)

π‘’π‘’βˆ“π‘–π‘–βˆšπ‘§π‘§|π‘¦π‘¦βˆ’π‘‘π‘‘| |𝑦𝑦 βˆ’ 𝑑𝑑| π‘žπ‘ž(𝑑𝑑)

Γ— π‘’π‘’βˆ’π‘–π‘–(π‘˜π‘˜,𝑑𝑑)𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦 + πœ‘πœ‘

Β±(3)(βˆ’π‘˜π‘˜, 0),

where πœ‘πœ‘Β±(3)(βˆ’π‘˜π‘˜, 0) are terms of order higher than 2

with regards to π‘žπ‘ž., i.e.,

πœ‘πœ‘Β±(3)(βˆ’π‘˜π‘˜, π‘₯π‘₯) = 1 (4πœ‹πœ‹)3 �‍

𝑅𝑅3

�‍ 𝑅𝑅3

�‍ 𝑅𝑅3

π‘’π‘’βˆ“π‘–π‘–βˆšπ‘§π‘§|π‘₯π‘₯βˆ’π‘¦π‘¦| |π‘₯π‘₯ βˆ’ 𝑦𝑦| π‘žπ‘ž(𝑦𝑦)

Γ—π‘’π‘’βˆ“π‘–π‘–βˆšπ‘§π‘§|π‘¦π‘¦βˆ’π‘‘π‘‘||𝑦𝑦 βˆ’ 𝑑𝑑| π‘žπ‘ž(𝑑𝑑)π‘’π‘’βˆ“π‘–π‘–βˆšπ‘§π‘§|π‘‘π‘‘βˆ’π‘ π‘ ||𝑑𝑑 βˆ’ 𝑠𝑠| π‘žπ‘ž(𝑠𝑠)πœ‘πœ‘Β±(βˆ’π‘˜π‘˜, 𝑠𝑠)𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦.

Lemma 7.Suppose that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0, then

πœ‘πœ‘Β±(π‘˜π‘˜, 0) = 1 βˆ’ 𝑐𝑐0 �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(π‘˜π‘˜ + 𝑝𝑝) |𝑝𝑝|2βˆ’ 𝑧𝑧 βˆ“ 𝑖𝑖0 𝑑𝑑𝑝𝑝

+𝑐𝑐02βˆ«π‘…π‘…3‍(|𝑝𝑝|π‘žπ‘žοΏ½(π‘˜π‘˜+𝑝𝑝)2βˆ’π‘§π‘§βˆ“π‘–π‘–0) (7)

Γ— �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(𝑝𝑝 + 𝑝𝑝1)

(|𝑝𝑝1|2βˆ’ 𝑧𝑧 βˆ“ 𝑖𝑖0) 𝑑𝑑𝑝𝑝1𝑑𝑑𝑝𝑝 + πœ‘πœ‘Β± (3)(π‘˜π‘˜, 0)

πœ‘πœ‘Β±(βˆ’π‘˜π‘˜, 0) = 1 βˆ’ 𝑐𝑐0 �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ + 𝑝𝑝) |𝑝𝑝|2βˆ’ 𝑧𝑧 βˆ“ 𝑖𝑖0 𝑑𝑑𝑝𝑝

+𝑐𝑐02βˆ«π‘…π‘…3‍(|𝑝𝑝|π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜+𝑝𝑝)2βˆ’π‘§π‘§βˆ“π‘–π‘–0) (8)

Γ— �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(𝑝𝑝 + 𝑝𝑝1)

(|𝑝𝑝1|2βˆ’ 𝑧𝑧 βˆ“ 𝑖𝑖0) 𝑑𝑑𝑝𝑝1𝑑𝑑𝑝𝑝 + πœ‘πœ‘Β±(3)(βˆ’π‘˜π‘˜, 0)

Lemma 8.Suppose that π‘žπ‘ž ∈ 𝑅𝑅, π‘₯π‘₯ = 0; then

𝐹𝐹(π‘˜π‘˜, 0) = βˆ’πœ‹πœ‹π‘–π‘–π‘π‘0βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’π‘π‘)𝑑𝑑𝑒𝑒𝑝𝑝

+πœ‹πœ‹π‘–π‘–π‘π‘02βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

𝑉𝑉. 𝑝𝑝. �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’π‘π‘) |𝑝𝑝1|2βˆ’ 𝑧𝑧 Γ— π‘žπ‘žοΏ½(βˆ’βˆšπ‘§π‘§π‘’π‘’π‘π‘βˆ’ 𝑝𝑝1)𝑑𝑑𝑝𝑝1𝑑𝑑𝑒𝑒𝑝𝑝

+πœ‹πœ‹π‘–π‘–π‘π‘02βˆšπ‘§π‘§π‘‰π‘‰. 𝑝𝑝. �‍ 𝑅𝑅3

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ 𝑝𝑝) |𝑝𝑝|2βˆ’ 𝑧𝑧

Γ— π‘žπ‘žοΏ½(βˆ’π‘π‘ βˆ’ βˆšπ‘§π‘§π‘’π‘’π‘π‘1)𝑑𝑑𝑒𝑒𝑝𝑝1𝑑𝑑𝑝𝑝

+πœ‘πœ‘+(3)(π‘˜π‘˜, 0) βˆ’ πœ‘πœ‘βˆ’(3)(π‘˜π‘˜, 0). and

𝐹𝐹(βˆ’π‘˜π‘˜, 0) = βˆ’πœ‹πœ‹π‘–π‘–π‘π‘0βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’π‘π‘)𝑑𝑑𝑒𝑒𝑝𝑝

+πœ‹πœ‹π‘–π‘–π‘π‘02βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

𝑉𝑉. 𝑝𝑝. �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’π‘π‘) |𝑝𝑝1|2βˆ’ 𝑧𝑧 Γ— π‘žπ‘žοΏ½(βˆ’βˆšπ‘§π‘§π‘’π‘’π‘π‘βˆ’ 𝑝𝑝1)𝑑𝑑𝑝𝑝1𝑑𝑑𝑒𝑒𝑝𝑝

+πœ‹πœ‹π‘–π‘–π‘π‘02βˆšπ‘§π‘§ 𝑉𝑉. 𝑝𝑝. �‍ 𝑅𝑅3

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ 𝑝𝑝) |𝑝𝑝|2βˆ’ 𝑧𝑧 Γ— π‘žπ‘žοΏ½(βˆ’π‘π‘ βˆ’ βˆšπ‘§π‘§π‘’π‘’π‘π‘1)𝑑𝑑𝑒𝑒𝑝𝑝1𝑑𝑑𝑝𝑝

+πœ‘πœ‘+(3)(βˆ’π‘˜π‘˜, 0) βˆ’ πœ‘πœ‘βˆ’(3)(βˆ’π‘˜π‘˜, 0).

7. TWO REPRESENTATIONS OF

SCATTERING AMPLITUDE

Lemma 9.Suppose that 𝑓𝑓 ∈ π‘Šπ‘Š21(𝑅𝑅), then

𝑇𝑇±𝑓𝑓 = βˆ“π‘“π‘“ + 𝑇𝑇𝑓𝑓.

Lemma 10. Suppose that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0, then

(6)

Lemma 11. Suppose that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0, then

𝐴𝐴mv(π‘˜π‘˜) + 𝐴𝐴mv(βˆ’π‘˜π‘˜) = 𝑐𝑐0(π‘žπ‘žοΏ½mv(π‘˜π‘˜) + π‘žπ‘žοΏ½mv(βˆ’π‘˜π‘˜))

+πœ‹πœ‹π‘–π‘–π‘π‘02βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— π‘žπ‘žοΏ½mv(βˆšπ‘§π‘§π‘’π‘’πœ†πœ†)π‘‘π‘‘π‘’π‘’πœ†πœ†

+πœ‹πœ‹π‘–π‘–π‘π‘02βˆšπ‘§π‘§ 2 �‍

πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— π‘žπ‘žοΏ½mv(βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ†)π‘‘π‘‘π‘’π‘’πœ†πœ†

βˆ’πœ‹πœ‹π‘–π‘–π‘π‘02βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— (𝑇𝑇[π‘žπ‘žοΏ½mv](βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + 𝑇𝑇[π‘žπ‘žοΏ½mv](βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))π‘‘π‘‘π‘’π‘’πœ†πœ†

βˆ’π‘π‘02βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— 𝑉𝑉. 𝑝𝑝. �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ†βˆ’ 𝑝𝑝) |𝑝𝑝|2βˆ’ 𝑧𝑧 π‘‘π‘‘π‘π‘π‘‘π‘‘π‘’π‘’πœ†πœ†

+𝑐𝑐02βˆšπ‘§π‘§ 2 𝑉𝑉. 𝑝𝑝. �‍

𝑅𝑅3

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ πœ†πœ†) 𝑙𝑙 βˆ’ 𝑧𝑧

Γ— π‘žπ‘žοΏ½(βˆ’π‘™π‘™ βˆ’ βˆšπ‘§π‘§π‘’π‘’π‘π‘)π‘‘π‘‘π‘’π‘’π‘π‘π‘‘π‘‘πœ†πœ† βˆ’ 2πœ‹πœ‹π‘–π‘–(𝐹𝐹(3)(π‘˜π‘˜, 0) +𝐹𝐹(3)(βˆ’π‘˜π‘˜, 0) + 𝑄𝑄3(π‘˜π‘˜, 0) + 𝑄𝑄(3)(π‘˜π‘˜, 0)), where 𝑄𝑄3(π‘˜π‘˜, 0), 𝑄𝑄(3)(π‘˜π‘˜, 0) are defined by formulas

𝑄𝑄3(π‘˜π‘˜, 0) = βˆ’4πœ‹πœ‹2𝑐𝑐02 �‍ 𝑅𝑅3

(𝐴𝐴2(π‘˜π‘˜, πœ†πœ†) + 𝐴𝐴2(βˆ’π‘˜π‘˜, πœ†πœ†))

Γ— 𝛿𝛿(𝑧𝑧 βˆ’ 𝑙𝑙)(π‘žπ‘žοΏ½mv(πœ†πœ†) + π‘žπ‘žοΏ½mv(βˆ’πœ†πœ†))π‘‘π‘‘πœ†πœ† +2πœ‹πœ‹π‘–π‘–π‘π‘0 �‍

𝑅𝑅3

(𝐴𝐴2(π‘˜π‘˜, πœ†πœ†) + 𝐴𝐴2(βˆ’π‘˜π‘˜, πœ†πœ†))𝛿𝛿(𝑧𝑧 βˆ’ 𝑙𝑙)

Γ— 𝑓𝑓2(𝑙𝑙, 0)𝑑𝑑𝑙𝑙 + 4πœ‹πœ‹2𝑐𝑐 02 �‍

𝑅𝑅3

(𝐴𝐴2(π‘˜π‘˜, πœ†πœ†) + 𝐴𝐴2(βˆ’π‘˜π‘˜, πœ†πœ†))

Γ— 𝛿𝛿(𝑧𝑧 βˆ’ 𝑙𝑙)(𝑇𝑇[π‘žπ‘žοΏ½mv](πœ†πœ†) + 𝑇𝑇[π‘žπ‘žοΏ½mv](βˆ’πœ†πœ†))π‘‘π‘‘πœ†πœ† βˆ’2πœ‹πœ‹π‘–π‘–π‘π‘0 �‍

𝑅𝑅3

(𝐴𝐴2(π‘˜π‘˜, 𝑙𝑙) + 𝐴𝐴2(βˆ’π‘˜π‘˜, 𝑙𝑙))

Γ— 𝛿𝛿(𝑧𝑧 βˆ’ 𝑙𝑙)𝑇𝑇[𝑓𝑓2](πœ†πœ†, 0)π‘‘π‘‘πœ†πœ†. (9) 𝑄𝑄(3)(π‘˜π‘˜, 0) = 2πœ‹πœ‹π‘–π‘–π‘π‘

02 �‍ 𝑅𝑅3

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ πœ†πœ†))

Γ— 𝛿𝛿(𝑧𝑧 βˆ’ 𝑙𝑙)πœ‘πœ‘βˆ’(2)(βˆ’πœ†πœ†, 0)π‘‘π‘‘πœ†πœ† +2πœ‹πœ‹π‘–π‘–π‘π‘02 �‍

𝑅𝑅3

(𝐴𝐴2(π‘˜π‘˜, πœ†πœ†) + 𝐴𝐴2(βˆ’π‘˜π‘˜, πœ†πœ†))

Γ— 𝛿𝛿(𝑧𝑧 βˆ’ 𝑙𝑙)( �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(βˆ’πœ†πœ† βˆ’ 𝑝𝑝) |𝑝𝑝|2βˆ’ 𝑙𝑙 + 𝑖𝑖0 𝑑𝑑𝑝𝑝

+πœ‘πœ‘βˆ’(2)(βˆ’π‘™π‘™, 0))π‘‘π‘‘πœ†πœ†. (10) correspondingly,

𝐹𝐹(3)(π‘˜π‘˜, 0) = πœ‘πœ‘

+(3)(π‘˜π‘˜, 0) βˆ’ πœ‘πœ‘βˆ’(3)(π‘˜π‘˜, 0), 𝐹𝐹(3)(βˆ’π‘˜π‘˜, 0) = πœ‘πœ‘

+(3)(βˆ’π‘˜π‘˜, 0) βˆ’ πœ‘πœ‘βˆ’(3)(βˆ’π‘˜π‘˜, 0), and πœ‘πœ‘Β±(3)(Β±π‘˜π‘˜, 0) are terms of order 3 and higher w.r.t. π‘žπ‘žοΏ½ in the representations (7), (8).

Lemma 12. Suppose that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0, then

𝐴𝐴mv(π‘˜π‘˜) + 𝐴𝐴mv(βˆ’π‘˜π‘˜)

= βˆ’4πœ‹πœ‹π‘žπ‘ž(0) οΏ½π‘–π‘–βˆšπ‘§π‘§ ‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(𝐴𝐴(π‘˜π‘˜, βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + 𝐴𝐴(βˆ’π‘˜π‘˜, βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— �‍ ∞

0

𝑓𝑓(π‘ π‘ π‘’π‘’πœ†πœ†, 0)π‘‘π‘‘π‘ π‘ π‘‘π‘‘π‘’π‘’πœ†πœ†.

8. NONLINEAR REPRESENTATION OF

POTENTIAL

Let us proceed to the construction of potential nonlinear representation.

Lemma 13. Assume that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0;

then

π‘žπ‘žοΏ½mv(π‘˜π‘˜) + π‘žπ‘žοΏ½mv(βˆ’π‘˜π‘˜)

= βˆ’πœ‹πœ‹π‘–π‘–π‘π‘0βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0

οΏ½ (π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) 2πœ‹πœ‹

0

+π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))π‘žπ‘žοΏ½mv(βˆšπ‘§π‘§π‘’π‘’πœ†πœ†)π‘‘π‘‘π‘’π‘’πœ†πœ†

βˆ’πœ‹πœ‹π‘–π‘–π‘π‘0βˆšπ‘§π‘§2 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— π‘žπ‘žοΏ½mv(βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ†)π‘‘π‘‘π‘’π‘’πœ†πœ†

+πœ‹πœ‹π‘–π‘–π‘π‘0βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— (𝑇𝑇[π‘žπ‘žοΏ½mv](βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + 𝑇𝑇[π‘žπ‘žοΏ½mv](βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))π‘‘π‘‘π‘’π‘’πœ†πœ†

βˆ’π‘π‘0βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— 𝑉𝑉. 𝑝𝑝. �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ† βˆ’ 𝑝𝑝) |𝑝𝑝|2βˆ’ 𝑧𝑧 π‘‘π‘‘π‘π‘π‘‘π‘‘π‘’π‘’πœ†πœ†

βˆ’π‘π‘0βˆšπ‘§π‘§2 𝑉𝑉. 𝑝𝑝. �‍ 𝑅𝑅3

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(7)

Γ— π‘žπ‘žοΏ½(βˆ’π‘™π‘™ βˆ’ βˆšπ‘§π‘§π‘’π‘’π‘π‘)π‘‘π‘‘π‘’π‘’π‘π‘π‘‘π‘‘πœ†πœ†

βˆ’4πœ‹πœ‹π‘π‘0π‘žπ‘ž(0) οΏ½π‘–π‘–βˆšπ‘§π‘§ ‍ πœ‹πœ‹

0 �‍

2πœ‹πœ‹

0

(𝐴𝐴(π‘˜π‘˜, βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + 𝐴𝐴(βˆ’π‘˜π‘˜, βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— �‍ ∞

0

𝑓𝑓(π‘ π‘ π‘’π‘’πœ†πœ†, 0)π‘‘π‘‘π‘ π‘ π‘‘π‘‘π‘’π‘’πœ†πœ† +2πœ‹πœ‹π‘–π‘–π‘π‘0 (𝐹𝐹(3)(π‘˜π‘˜, 0)

+𝐹𝐹(3)(βˆ’π‘˜π‘˜, 0) + 𝑄𝑄3(π‘˜π‘˜, 0) + 𝑄𝑄(3)(π‘˜π‘˜, 0)),

where 𝑄𝑄3(π‘˜π‘˜, 0), 𝑄𝑄(3)(π‘˜π‘˜, 0) are defined by Eqs.9 and 10 accordingly,

𝐹𝐹(3)(π‘˜π‘˜, 0) = πœ‘πœ‘

+(3)(π‘˜π‘˜, 0) βˆ’ πœ‘πœ‘βˆ’(3)(π‘˜π‘˜, 0), 𝐹𝐹(3)(βˆ’π‘˜π‘˜, 0) = πœ‘πœ‘

+(3)(βˆ’π‘˜π‘˜, 0) βˆ’ πœ‘πœ‘βˆ’(3)(βˆ’π‘˜π‘˜, 0), and πœ‘πœ‘Β±(3)(Β±π‘˜π‘˜, 0) are term of order 3 and higher w.r.t. π‘žπ‘žοΏ½ in representations (7), (8).

Lemma 14. Suppose that π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0, then

𝑉𝑉. 𝑝𝑝. �‍ 𝑅𝑅3

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ πœ†πœ†)) 𝑙𝑙 βˆ’ 𝑧𝑧

Γ— π‘žπ‘žοΏ½(βˆ’π‘™π‘™ βˆ’ βˆšπ‘§π‘§π‘’π‘’π‘π‘)𝑑𝑑𝑒𝑒𝑝𝑝𝑑𝑑𝑙𝑙

= πœ‹πœ‹π‘–π‘– �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— π‘žπ‘žοΏ½mv(βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ†)π‘‘π‘‘π‘’π‘’πœ†πœ†.

Lemma 15. Let π‘žπ‘žοΏ½ ∈ π‘Šπ‘Š21(𝑅𝑅) and π‘žπ‘ž ∈ 𝑅𝑅, then

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— (𝑇𝑇[π‘žπ‘žοΏ½mv](βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + 𝑇𝑇[π‘žπ‘žοΏ½mv](βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))π‘‘π‘‘π‘’π‘’πœ†πœ†

= �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— (π‘žπ‘žοΏ½mv(βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½mv(βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))π‘‘π‘‘π‘’π‘’πœ†πœ†,

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— 𝑉𝑉. 𝑝𝑝. �‍ 𝑅𝑅3

π‘žπ‘žοΏ½(βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ†βˆ’ 𝑝𝑝) |𝑝𝑝|2βˆ’ 𝑧𝑧 π‘‘π‘‘π‘π‘π‘‘π‘‘π‘’π‘’πœ†πœ†

= πœ‹πœ‹π‘–π‘– �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— π‘žπ‘žοΏ½mv(βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ†)π‘‘π‘‘π‘’π‘’πœ†πœ†.

Theorem 14. Let π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0, then π‘žπ‘žοΏ½mv(π‘˜π‘˜) + π‘žπ‘žοΏ½mv(βˆ’π‘˜π‘˜)

= βˆ’πœ‹πœ‹π‘–π‘–π‘π‘0βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†) + π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))

Γ— π‘žπ‘žοΏ½mv(βˆ’βˆšπ‘§π‘§π‘’π‘’πœ†πœ†)π‘‘π‘‘π‘’π‘’πœ†πœ†+ πœ‡πœ‡(π‘˜π‘˜), πœ‡πœ‡(π‘˜π‘˜) =2πœ‹πœ‹π‘–π‘–

𝑐𝑐0 (𝐹𝐹(3)(π‘˜π‘˜, 0) + 𝐹𝐹(3)(βˆ’π‘˜π‘˜, 0) +𝑄𝑄3(π‘˜π‘˜, 0) + 𝑄𝑄(3)(π‘˜π‘˜, 0)),

where 𝑐𝑐0= 4πœ‹πœ‹.

Theorem 15. Suppose π‘žπ‘ž ∈ 𝑹𝑹, πœ‘πœ‘Β±|π‘₯π‘₯=0,𝑧𝑧=0= 0; then

πœ‡πœ‡(π‘˜π‘˜) = βˆšπ‘§π‘§ �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0 �‍

πœ‹πœ‹

0 �‍

2πœ‹πœ‹

0

(π‘žπ‘žοΏ½(βˆ’π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†)

+π‘žπ‘žοΏ½(π‘˜π‘˜ βˆ’ βˆšπ‘§π‘§π‘’π‘’πœ†πœ†))π‘žπ‘žοΏ½(βˆšπ‘§π‘§π‘’π‘’πœ†πœ†βˆ’ βˆšπ‘§π‘§π‘’π‘’π‘ π‘ ) Γ— πœ‡πœ‡0(βˆšπ‘§π‘§π‘’π‘’π‘ π‘ )π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘’π‘’π‘ π‘ , where |πœ‡πœ‡0| < 𝐢𝐢|π‘žπ‘žmv|

9. THE CAUCHY PROBLEM FOR

NAVIER-STOKES’ EQUATIONS

Let us apply the obtained results to estimate the solu-tions of Cauchy problem for Navier-Stokes’ set of equa-tions

π‘žπ‘žπ‘‘π‘‘βˆ’ πœˆπœˆΞ”π‘žπ‘ž + �‍ 3

π‘˜π‘˜=1 π‘žπ‘žπ‘˜π‘˜π‘žπ‘žπ‘₯π‘₯π‘˜π‘˜

= βˆ’βˆ‡π‘π‘ + 𝐹𝐹0(π‘₯π‘₯, 𝑑𝑑), π‘‘π‘‘π‘–π‘–π‘šπ‘šπ‘žπ‘ž = 0, (11) π‘žπ‘ž|𝑑𝑑=0 = π‘žπ‘ž0(π‘₯π‘₯) (12) in the domain of 𝑄𝑄𝑇𝑇 = 𝑅𝑅3Γ— (0, 𝑇𝑇). With respect to π‘žπ‘ž0, assume

π‘‘π‘‘π‘–π‘–π‘šπ‘š π‘žπ‘ž0= 0. (13) Problem (11), (12), (13) has at least one weak solution (q,p) in the so-called Leray-Hopf class, see [3].

Let us mention the known statements proved in [10].

Theorem 16.Suppose that

π‘žπ‘ž0∈ π‘Šπ‘Š21(𝑅𝑅3), 𝑓𝑓 ∈ 𝐿𝐿2(𝑄𝑄𝑇𝑇)

then there exists a unique weak solution of problem (11), (12), (13), in 𝑄𝑄𝑇𝑇1, 𝑇𝑇1∈ [0, 𝑇𝑇], that satisfies

π‘žπ‘žπ‘‘π‘‘, π‘žπ‘žπ‘₯π‘₯π‘₯π‘₯, βˆ‡π‘π‘ ∈ 𝐿𝐿2(𝑄𝑄𝑇𝑇) Note that 𝑇𝑇1 depends on π‘žπ‘ž0, 𝑓𝑓.

Lemma 16.If π‘žπ‘ž0∈ π‘Šπ‘Š21(𝑅𝑅3), 𝑓𝑓 ∈ 𝐿𝐿2(𝑄𝑄𝑇𝑇), then

sup

0≀𝑑𝑑≀𝑇𝑇||π‘žπ‘ž||𝐿𝐿2(𝑅𝑅3) 2 + �‍

𝑑𝑑

0

||π‘žπ‘žπ‘₯π‘₯||𝐿𝐿22(𝑅𝑅3)𝑑𝑑𝑑𝑑

≀ ||π‘žπ‘ž0||𝐿𝐿22(𝑅𝑅3)+ ||𝐹𝐹0||𝐿𝐿2(𝑄𝑄𝑇𝑇)

(8)

power smallness conditions.

Therefore let us obtain uniform estimates.

Statement 1. Weak solution of problem (11), (12), (13), from Theorem 16 satisfies the following equation

π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑) = π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))

+ �‍ 𝑑𝑑

0

π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|(π‘‘π‘‘βˆ’π‘‘π‘‘)

([(π‘žπ‘ž, βˆ‡)π‘žπ‘ž]οΏ½ + 𝐹𝐹�)

Γ— (𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)𝑑𝑑𝑑𝑑, (14) where 𝐹𝐹 = βˆ’βˆ‡π‘π‘ + 𝐹𝐹0.

Proof. The proof follows from the definition of Fourier transformation and the formulas for linear diffe-rential equations.

Lemma 17. The solution of the problem (11), (12), (13) from Theorem 16, satisfies the following equation

𝑝𝑝� = �‍ 𝑖𝑖,𝑗𝑗

π‘˜π‘˜π‘–π‘–π‘˜π‘˜π‘—π‘—

|π‘˜π‘˜|2π‘žπ‘žοΏ½ + 𝑖𝑖 οΏ½π‘–π‘–π‘žπ‘žπ‘—π‘— ‍ 𝑖𝑖

π‘˜π‘˜π‘–π‘– |π‘˜π‘˜|2𝐹𝐹�𝑖𝑖 and the following estimates

||𝑝𝑝||𝐿𝐿2(𝑅𝑅3)≀ 3||π‘žπ‘žπ‘₯π‘₯||𝐿𝐿2(𝑅𝑅3)

3

2 ||π‘žπ‘ž|| 𝐿𝐿2(𝑅𝑅3)

1

2 ,

οΏ½βˆ‚π‘π‘οΏ½ βˆ‚π‘˜π‘˜οΏ½ ≀

|π‘žπ‘žοΏ½2| |π‘˜π‘˜| +

|𝐹𝐹�| |π‘˜π‘˜|2+

1 |π‘˜π‘˜| οΏ½

βˆ‚πΉπΉοΏ½ βˆ‚π‘˜π‘˜οΏ½ + 3 οΏ½

βˆ‚π‘žπ‘žοΏ½2 βˆ‚|π‘˜π‘˜|οΏ½ ; Proof. We obtain the equation for 𝑝𝑝 using π‘‘π‘‘π‘–π‘–π‘šπ‘š and Fourier transformation. The estimates follow from the obtained equation.

This completes the proof of Lemma 17.

Lemma 18. Weak solution of problem (11), (12), (13), from Theorem 16 satisfies the following inequalities

sup 0≀𝑑𝑑≀𝑇𝑇[ �‍

𝑅𝑅3

|π‘₯π‘₯|2|π‘žπ‘ž(π‘₯π‘₯, 𝑑𝑑)|2𝑑𝑑π‘₯π‘₯

+ �‍ 𝑑𝑑

0 �‍ 𝑅𝑅3

|π‘₯π‘₯|2|π‘žπ‘žπ‘₯π‘₯(π‘₯π‘₯, 𝑑𝑑)|2𝑑𝑑π‘₯π‘₯𝑑𝑑𝑑𝑑] ≀ π‘π‘π‘œπ‘œπ‘›π‘›π‘ π‘ π‘‘π‘‘,

sup 0≀𝑑𝑑≀𝑇𝑇[ �‍

𝑅𝑅3

|π‘₯π‘₯|4|π‘žπ‘ž(π‘₯π‘₯, 𝑑𝑑)|2𝑑𝑑π‘₯π‘₯

+ �‍ 𝑑𝑑

0 �‍ 𝑅𝑅3

|π‘₯π‘₯|4|π‘žπ‘žπ‘₯π‘₯(π‘₯π‘₯, 𝑑𝑑)|2𝑑𝑑π‘₯π‘₯𝑑𝑑𝑑𝑑] ≀ π‘π‘π‘œπ‘œπ‘›π‘›π‘ π‘ π‘‘π‘‘,

or

sup 0≀𝑑𝑑≀𝑇𝑇[οΏ½οΏ½

βˆ‚π‘žπ‘žοΏ½ βˆ‚π‘§π‘§οΏ½οΏ½

𝐿𝐿2(𝑅𝑅3)

+ �‍ 𝑑𝑑

0 �‍ 𝑅𝑅3

𝑧𝑧2|π‘žπ‘žπ‘˜π‘˜οΏ½(π‘˜π‘˜, 𝑑𝑑)|2π‘‘π‘‘π‘˜π‘˜π‘‘π‘‘π‘‘π‘‘] ≀ π‘π‘π‘œπ‘œπ‘›π‘›π‘ π‘ π‘‘π‘‘,

sup 0≀𝑑𝑑≀𝑇𝑇[οΏ½οΏ½

βˆ‚2π‘žπ‘žοΏ½ βˆ‚π‘§π‘§2οΏ½οΏ½

𝐿𝐿2(𝑅𝑅3)

+ �‍ 𝑑𝑑

0 �‍ 𝑅𝑅3

𝑧𝑧2|π‘žπ‘žπ‘˜π‘˜π‘˜π‘˜οΏ½ (π‘˜π‘˜, 𝑑𝑑)|2π‘‘π‘‘π‘˜π‘˜π‘‘π‘‘π‘‘π‘‘] ≀ π‘π‘π‘œπ‘œπ‘›π‘›π‘ π‘ π‘‘π‘‘.

Proof. The proof follows from Navier-Stokes’ equa-tion, the first priori estimate formulated in Lemma 16 and obtained from Lemma 17.

This completes the proof of Lemma 18.

Lemma 19.Weak solution of problem (11), (12), (13), from Theorem 16, satisfies the following inequalities

maxπ‘˜π‘˜ |π‘žπ‘žοΏ½| ≀ maxπ‘˜π‘˜ |π‘žπ‘žοΏ½0|

+𝑇𝑇2 sup

0≀𝑑𝑑≀𝑇𝑇||π‘žπ‘ž||𝐿𝐿2(𝑅𝑅3) 2 + �‍

𝑑𝑑

0

||π‘žπ‘žπ‘₯π‘₯||𝐿𝐿2(𝑅𝑅3)

2 𝑑𝑑𝑑𝑑,

maxπ‘˜π‘˜ οΏ½βˆ‚π‘žπ‘žοΏ½βˆ‚π‘§π‘§οΏ½ ≀ maxπ‘˜π‘˜ οΏ½βˆ‚π‘žπ‘žοΏ½βˆ‚π‘§π‘§ οΏ½0

+𝑇𝑇2 sup 0≀𝑑𝑑≀𝑇𝑇��

βˆ‚π‘žπ‘žοΏ½ βˆ‚π‘§π‘§οΏ½οΏ½

𝐿𝐿2(𝑅𝑅3)

+ �‍ 𝑑𝑑

0 �‍ 𝑅𝑅3

𝑧𝑧2|π‘žπ‘žπ‘˜π‘˜οΏ½(π‘˜π‘˜, 𝑑𝑑)|2π‘‘π‘‘π‘˜π‘˜π‘‘π‘‘π‘‘π‘‘,

max π‘˜π‘˜ οΏ½

βˆ‚2π‘žπ‘žοΏ½

βˆ‚π‘§π‘§2οΏ½ ≀ maxπ‘˜π‘˜ οΏ½ βˆ‚2π‘žπ‘žοΏ½0

βˆ‚π‘§π‘§2οΏ½

+𝑇𝑇2 sup 0≀𝑑𝑑≀𝑇𝑇��

βˆ‚2π‘žπ‘žοΏ½ βˆ‚π‘§π‘§2οΏ½οΏ½

𝐿𝐿2(𝑅𝑅3)

+ �‍ 𝑑𝑑

0 �‍ 𝑅𝑅3

𝑧𝑧2|π‘žπ‘žπ‘˜π‘˜π‘˜π‘˜οΏ½ (π‘˜π‘˜, 𝑑𝑑)|2π‘‘π‘‘π‘˜π‘˜π‘‘π‘‘π‘‘π‘‘.

Proof. We obtain these estimates using representation (14), Parseval’s equality, Cauchy - Bunyakovskiy in-equality (14) by Lemma 18.

This proves Lemma 19.

Lemma 20. Weak solution of problem (11), (12), (13), from Theorem 16 satisfies the following inequalities

|π‘žπ‘žοΏ½mv(𝑧𝑧, 𝑑𝑑)| ≀ π‘§π‘§πœ‹πœ‹1, οΏ½βˆ‚π‘žπ‘žοΏ½mvβˆ‚π‘§π‘§(𝑧𝑧, 𝑑𝑑)οΏ½ ≀ π‘§π‘§πœ‹πœ‹2,

οΏ½βˆ‚2π‘žπ‘žοΏ½mvβˆ‚π‘§π‘§(𝑧𝑧, 𝑑𝑑)2 οΏ½ ≀ π‘§π‘§πœ‹πœ‹3,

where πœ‹πœ‹1, πœ‹πœ‹2, πœ‹πœ‹3 are limited.

Proof. Let us prove the first estimate. These inequali-ties

|π‘žπ‘žοΏ½mv(𝑧𝑧, 𝑑𝑑)| ≀2 �𝑧𝑧 ‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ 𝑒𝑒𝑝𝑝), 𝑑𝑑)|𝑑𝑑𝑒𝑒𝑝𝑝

≀ 2πœ‹πœ‹π‘§π‘§max

π‘˜π‘˜ |π‘žπ‘žοΏ½| ≀ π‘§π‘§πœ‹πœ‹1, where πœ‹πœ‹1= π‘π‘π‘œπ‘œπ‘›π‘›π‘ π‘ π‘‘π‘‘.

Follows from definition (2) for the average of π‘žπ‘ž and from Lemmas 18, 19.

(9)

This proves Lemma 20.

Lemma 21. Weak solution of problem (11), (12), (13), from Theorem 16 satisfies the following inequalities 𝐢𝐢𝑖𝑖 ≀ π‘π‘π‘œπ‘œπ‘›π‘›π‘ π‘ π‘‘π‘‘, (𝑖𝑖 = 0,2,4), where

𝐢𝐢0= �‍ 𝑑𝑑

0

|𝐹𝐹�1|2𝑑𝑑𝑑𝑑, 𝐹𝐹

1= (π‘žπ‘ž, βˆ‡)π‘žπ‘ž + 𝐹𝐹,

𝐢𝐢2= �‍ 𝑑𝑑

0 οΏ½βˆ‚πΉπΉοΏ½1

βˆ‚π‘§π‘§ οΏ½ 2

𝑑𝑑𝑑𝑑, 𝐢𝐢4= �‍ 𝑑𝑑

0 οΏ½βˆ‚2𝐹𝐹�1

βˆ‚π‘§π‘§2οΏ½ 2

𝑑𝑑𝑑𝑑.

The proof follows from the apriori estimate of Lemma 16 and the statement of Lemma 18.

This completes the proof of Lemma 21.

Lemma 22. Suppose that π‘žπ‘ž ∈ 𝑅𝑅, π‘šπ‘šπ‘šπ‘šπ‘₯π‘₯

π‘˜π‘˜ |π‘žπ‘žοΏ½| < ∞, then

�‍ 𝑅𝑅3

�‍ 𝑅𝑅3

π‘žπ‘ž(π‘₯π‘₯)π‘žπ‘ž(𝑦𝑦)

|π‘₯π‘₯ βˆ’ 𝑦𝑦|2 𝑑𝑑π‘₯π‘₯𝑑𝑑𝑦𝑦 ≀ 𝐢𝐢(|π‘žπ‘ž|𝐿𝐿2+ maxπ‘˜π‘˜ |π‘žπ‘žοΏ½|)2

Proof. Using Plansherel’s theorem, we get the state-ment of the lemma.

This proves Lemma 22.

Lemma 23. Weak solution of problem (11), (12), (13), from Theorem 16 satisfies the following inequalities

|π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)| ≀ |π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))|

+ �2𝜈𝜈1�

1 2 𝐢𝐢0

1 2

𝑧𝑧|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|, (15) where

𝐢𝐢0= �‍ 𝑑𝑑

0

|𝐹𝐹�1|2𝑑𝑑𝑑𝑑, 𝐹𝐹

1= (π‘žπ‘ž, βˆ‡)π‘žπ‘ž + 𝐹𝐹.

Proof. From Formula (14) we get

|π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)| ≀ |π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))|

+| ∫0π‘‘π‘‘β€π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|2(π‘‘π‘‘βˆ’π‘‘π‘‘) (16)

Γ— 𝐹𝐹�1(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)𝑑𝑑𝑑𝑑| where

𝐹𝐹1= (π‘žπ‘ž, βˆ‡)π‘žπ‘ž + 𝐹𝐹. Using the denotation

𝐼𝐼 = | �‍ 𝑑𝑑

0

π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’ πœ†πœ†|2(π‘‘π‘‘βˆ’π‘‘π‘‘)

Γ— 𝐹𝐹�1(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)𝑑𝑑𝑑𝑑|,

Taking into account Holder’s inequality in 𝐼𝐼 we obtain

𝐼𝐼 ≀ ��‍ 𝑑𝑑

0

|π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’

πœ†πœ†|2(π‘‘π‘‘βˆ’π‘‘π‘‘)|𝑝𝑝𝑑𝑑𝑑𝑑�

1 𝑝𝑝

Γ— ��‍ 𝑑𝑑

0

|𝐹𝐹1|π‘žπ‘žπ‘‘π‘‘π‘‘π‘‘οΏ½ 1 π‘žπ‘ž

where 𝑝𝑝, π‘žπ‘ž satisfies the equality 1𝑝𝑝+1π‘žπ‘ž= 1. Suppose 𝑝𝑝 = π‘žπ‘ž = 2. Then

𝐼𝐼 ≀ οΏ½2𝜈𝜈�1 1

2�∫0𝑑𝑑‍|𝐹𝐹�1|2𝑑𝑑𝑑𝑑� 1 2

𝑧𝑧|π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†| .

Taking into consideration the estimate 𝐼𝐼 in (16), we obtain the statement of the lemma.

This proves Lemma 23.

Now, we have the uniform estimates of Rolnik norms for the solution of problems (11), (12), (13). Our further and basic aim is to get the uniform estimates |π‘žπ‘žοΏ½|𝑖𝑖 𝐿𝐿1(𝑅𝑅3),

a component of velocity components in the Cauchy problem for Navier-Stokes’ equations. In order to achieve the aim, we use Theorem8 it implies to get es-timates of spherical average.

Lemma 24. Weak solution of problem (11), (12), (13), from Theorem 16 satisfies the following inequalities

|π‘žπ‘žοΏ½mv|𝐿𝐿1(𝑅𝑅3)≀

𝐢𝐢

2 �𝐴𝐴0(1)+ 𝛽𝛽1|π‘žπ‘žοΏ½mv|𝐿𝐿1(𝑅𝑅3)οΏ½

+|πœ‡πœ‡|𝐿𝐿1�𝑅𝑅3οΏ½ (17) the function πœ‡πœ‡ is defined in Theorem15,

𝐴𝐴0(1)= �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))|

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜, 𝛽𝛽1= οΏ½1𝜈𝜈� 1 2

8πœ‹πœ‹πΆπΆ012, and 𝐢𝐢0 is defined in Lemma 23.

Proof. From the statement of Theorem 14, we get the estimate

|π‘žπ‘žοΏ½mv|𝐿𝐿1(𝑅𝑅3) ≀

𝐢𝐢 2 �‍

𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)|

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜ + |πœ‡πœ‡|𝐿𝐿1(𝑅𝑅3).

(15) in the integral, we obtain

|π‘žπ‘žοΏ½mv|𝐿𝐿1(𝑅𝑅3)≀

𝐢𝐢 2 ( �‍

𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†)|

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜

+ �1𝜈𝜈� 1 2

𝐢𝐢012 �‍ 𝑅𝑅3

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½mv(π‘˜π‘˜, 𝑑𝑑)|

Γ— π‘‘π‘‘π‘’π‘’πœ†πœ†

(10)

Let us use the notation

𝐴𝐴0(1)= �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))|

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜, then

|π‘žπ‘žοΏ½mv|𝐿𝐿1(𝑅𝑅3)≀

𝐢𝐢

2 (𝐴𝐴0(1)+ �1𝜈𝜈� 1 2

𝐢𝐢012

Γ— �‍ 𝑅𝑅3

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½mv(π‘˜π‘˜, 𝑑𝑑)||π‘’π‘’π‘˜π‘˜π‘‘π‘‘π‘’π‘’βˆ’ π‘’π‘’πœ†πœ†πœ†πœ† | π‘‘π‘‘π‘˜π‘˜) + |πœ‡πœ‡|𝐿𝐿1(𝑅𝑅3).

Let us use the notation

𝐼𝐼0= �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

π‘‘π‘‘π‘’π‘’πœ†πœ† |π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†| and obtain 𝐼𝐼0. Since

|π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†| = ((π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†, π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))12= (1 βˆ’ cosπœƒπœƒ)12 where πœƒπœƒ is the angle between the unit vectors π‘’π‘’π‘˜π‘˜, π‘’π‘’πœ†πœ†, it follows that

𝐼𝐼0= 4πœ‹πœ‹ �‍ πœ‹πœ‹

0

sinπœƒπœƒ

(1 βˆ’ cosπœƒπœƒ)12π‘‘π‘‘πœƒπœƒ = 2 7 2πœ‹πœ‹.

Using 𝐼𝐼0 in the estimate |π‘žπ‘žοΏ½mv|𝐿𝐿1(𝑅𝑅3), we obtain the

statement of the lemma.

This completes the proof of Lemma 24.

Theorem 17. Weak solution of problem (11), (12), (13), from Theorem 16 satisfies the following inequali-ties

οΏ½π‘žπ‘žοΏ½mv𝑧𝑧 �𝐿𝐿

1(𝑅𝑅3)

≀𝐢𝐢2 �𝐴𝐴0+ 𝛽𝛽1οΏ½π‘žπ‘žοΏ½mv𝑧𝑧 �𝐿𝐿

1(𝑅𝑅3)

οΏ½

+ οΏ½πœ‡πœ‡π‘§π‘§οΏ½

𝐿𝐿1(𝑅𝑅3), (18)

where

𝐴𝐴0= �‍ 𝑅𝑅3

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))|

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜ and 𝛽𝛽1 is defined in Lemma 24.

Proof. Proof follows from (16), (17).

Corollary 3.Weak solution of problem (11), (12), (13), from Theorem 16 satisfies the following inequalities

οΏ½π‘žπ‘žοΏ½mv𝑧𝑧 �𝐿𝐿

1(𝑅𝑅3)

≀ �𝐢𝐢2 𝐴𝐴0+ οΏ½πœ‡πœ‡π‘§π‘§οΏ½πΏπΏ

1(𝑅𝑅3)οΏ½ 𝐾𝐾,

where

𝐾𝐾 = 𝜈𝜈

1 2

𝜈𝜈12βˆ’ 4πœ‹πœ‹πΆπΆπΆπΆ0 1 2 .

Let’s consider the influence of the following large scale transformations in Navier-Stokes’ equation on 𝐾𝐾

𝑑𝑑′ = 𝑑𝑑𝐴𝐴, πœˆπœˆβ€² =𝜈𝜈

𝐴𝐴 , π‘šπ‘šβ€² = π‘šπ‘š

𝐴𝐴 , 𝐹𝐹0β€² =𝐴𝐴𝐹𝐹02. Statement 2. Let

𝐴𝐴 = 4

𝜈𝜈13(𝐢𝐢𝐢𝐢0+ 1)23 ,

then 𝐾𝐾 ≀87.

Proof. By the definitions 𝐢𝐢 and 𝐢𝐢0, we have

𝐾𝐾 = (𝐴𝐴)𝜈𝜈 12((𝜈𝜈 𝐴𝐴)

1

2βˆ’4πœ‹πœ‹πΆπΆπΆπΆ0 𝐴𝐴2 )βˆ’1 = 𝜈𝜈12(𝜈𝜈12βˆ’4πœ‹πœ‹πΆπΆπΆπΆ0

𝐴𝐴32

)βˆ’1 <8 7. This proves Statement 2.

Lemma 25.Weak solution of problem (11), (12), (13), from Theorem 16 satisfies the following inequalities

οΏ½βˆ‚π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)οΏ½ ≀ οΏ½βˆ‚π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§βˆ’ π‘’π‘’πœ†πœ†))οΏ½

+4𝛼𝛼 οΏ½1𝜈𝜈�

1 2 𝐢𝐢0

1 2

𝑧𝑧2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†| (19)

+ �1 2𝜈𝜈�

1 2 𝐢𝐢2

1 2

𝑧𝑧|π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†|, where

𝐢𝐢2= �‍ 𝑑𝑑

0 οΏ½βˆ‚πΉπΉοΏ½βˆ‚π‘§π‘§ οΏ½1

2 𝑑𝑑𝑑𝑑.

Proof. The underwritten inequalities follows from re-presentation (14)

οΏ½βˆ‚π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)οΏ½ ≀ οΏ½βˆ‚π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§βˆ’ π‘’π‘’πœ†πœ†))οΏ½

+2πœˆπœˆπ‘§π‘§|π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†|2| �‍ 𝑑𝑑

0

(𝑑𝑑 βˆ’ 𝑑𝑑)π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|2(π‘‘π‘‘βˆ’π‘‘π‘‘)

Γ— 𝐹𝐹�1(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)𝑑𝑑𝑑𝑑|

+| �‍ 𝑑𝑑

0

π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’ πœ†πœ†|2(π‘‘π‘‘βˆ’π‘‘π‘‘)

Γ—βˆ‚πΉπΉοΏ½βˆ‚π‘§π‘§ (𝑧𝑧(𝑒𝑒1 π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)𝑑𝑑𝑑𝑑|. Let us introduce the following denotation

𝐼𝐼1= 2πœˆπœˆπ‘§π‘§|π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†|2| �‍ 𝑑𝑑

0

(𝑑𝑑 βˆ’ 𝑑𝑑)π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|2(π‘‘π‘‘βˆ’π‘‘π‘‘)

(11)

𝐼𝐼2= | �‍ 𝑑𝑑

0

π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|2(π‘‘π‘‘βˆ’π‘‘π‘‘)

Γ—βˆ‚πΉπΉοΏ½1

βˆ‚π‘§π‘§ (𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)𝑑𝑑𝑑𝑑|, then

οΏ½βˆ‚π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)οΏ½ ≀ οΏ½βˆ‚π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§βˆ’ π‘’π‘’πœ†πœ†))οΏ½ +𝐼𝐼1+ 𝐼𝐼2.

Estimate 𝐼𝐼1 by means of sup

𝑑𝑑 |𝑑𝑑

π‘šπ‘šπ‘’π‘’βˆ’π‘‘π‘‘| < 𝛼𝛼,

where π‘šπ‘š > 0 we obtain

𝐼𝐼1≀4𝛼𝛼𝑧𝑧 | �‍ 𝑑𝑑

0

π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|2π‘‘π‘‘βˆ’π‘‘π‘‘2

Γ— 𝐹𝐹�1(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)𝑑𝑑𝑑𝑑|. On applying Holder’s inequality, we get

𝐼𝐼1≀4𝛼𝛼𝑧𝑧 ��‍ 𝑑𝑑

0

|π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|2π‘‘π‘‘βˆ’π‘‘π‘‘2 |𝑝𝑝𝑑𝑑𝑑𝑑� 1 𝑝𝑝

Γ— ��‍ 𝑑𝑑

0

|𝐹𝐹1|π‘žπ‘žπ‘‘π‘‘π‘‘π‘‘οΏ½ 1 π‘žπ‘ž ,

where 𝑝𝑝, π‘žπ‘ž satisfy the equality 1𝑝𝑝+1π‘žπ‘ž= 1. For 𝑝𝑝 = π‘žπ‘ž = 2 we have

𝐼𝐼1≀ 4𝛼𝛼 οΏ½1𝜈𝜈� 1 2 𝐢𝐢0

1 2 𝑧𝑧2|π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†|,

𝐼𝐼2≀ οΏ½2𝜈𝜈�1 1 2 𝐢𝐢2

1 2 𝑧𝑧|π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†|,

𝐢𝐢2= �‍ 𝑑𝑑

0 οΏ½βˆ‚πΉπΉοΏ½βˆ‚π‘§π‘§ οΏ½1

2 𝑑𝑑𝑑𝑑.

Inserting 𝐼𝐼1, 𝐼𝐼2 in to οΏ½βˆ‚π‘žπ‘žοΏ½βˆ‚π‘§π‘§οΏ½, we obtain the statement of the lemma.

This completes the proof of Lemma 25.

Theorem 18. Weak solution of problem (11), (12), (13), from Theorem 16 satisfies the following inequali-ties

οΏ½βˆ‚π‘žπ‘žοΏ½mvβˆ‚π‘§π‘§ �𝐿𝐿

1(𝑅𝑅3)

≀𝐢𝐢2 (𝐴𝐴0+ 𝐴𝐴1+ 𝐴𝐴2

+𝛽𝛽3|π‘žπ‘žοΏ½mv|𝐿𝐿1(𝑅𝑅3)+ (𝛽𝛽1+ 𝛽𝛽2) οΏ½π‘žπ‘žοΏ½mv

𝑧𝑧 �𝐿𝐿1(𝑅𝑅3)

+𝛽𝛽1οΏ½βˆ‚π‘žπ‘žοΏ½mv

βˆ‚π‘§π‘§ �𝐿𝐿1(𝑅𝑅3)) + οΏ½

βˆ‚πœ‡πœ‡

βˆ‚π‘§π‘§οΏ½πΏπΏ1(𝑅𝑅3), (20)

where

𝐴𝐴1= �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

οΏ½βˆ‚π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’βˆ‚π‘§π‘§π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))οΏ½

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜,

𝐴𝐴2= �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))|

Γ— οΏ½βˆ‚π‘žπ‘žοΏ½mvβˆ‚π‘§π‘§(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)οΏ½ π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜,

𝛽𝛽2= οΏ½1𝜈𝜈� 1 2

2112πœ‹πœ‹π›Όπ›ΌπΆπΆ0 1

2, 𝛽𝛽3= οΏ½1 𝜈𝜈�

1 2

8πœ‹πœ‹πΆπΆ212,

and 𝐢𝐢2 is defined in Lemma 25, 𝐢𝐢 = π‘π‘π‘œπ‘œπ‘›π‘›π‘ π‘ π‘‘π‘‘.

Proof. From the statement of Theorem 14 we get the following estimate

οΏ½βˆ‚π‘žπ‘žοΏ½mvβˆ‚π‘§π‘§ �𝐿𝐿

1(𝑅𝑅3)

≀𝐢𝐢2 ( �‍ 𝑅𝑅3

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)|

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜

+ �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

οΏ½βˆ‚π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)οΏ½

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜

+ �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)|

Γ— οΏ½βˆ‚π‘žπ‘žοΏ½mvβˆ‚π‘§π‘§(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)οΏ½ π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜) + οΏ½βˆ‚πœ‡πœ‡βˆ‚π‘§π‘§οΏ½πΏπΏ

1(𝑅𝑅3)

.

Let us introduce the following denotation

𝐼𝐼1= �‍ 𝑅𝑅3

�‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)|

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜,

𝐼𝐼2= �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

οΏ½βˆ‚π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)οΏ½

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜,

𝐼𝐼3= �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)|

Γ— οΏ½βˆ‚π‘žπ‘žοΏ½mvβˆ‚π‘§π‘§(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)οΏ½ π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜, then

οΏ½βˆ‚π‘žπ‘žοΏ½mv βˆ‚π‘§π‘§ �𝐿𝐿1(𝑅𝑅3)

≀𝐢𝐢

2 (𝐼𝐼1+ 𝐼𝐼2+ 𝐼𝐼3) + οΏ½ βˆ‚πœ‡πœ‡ βˆ‚π‘§π‘§οΏ½πΏπΏ1(𝑅𝑅3)

.

(12)

𝐼𝐼1≀ 𝐴𝐴0+ 𝛽𝛽1οΏ½π‘žπ‘žοΏ½mv𝑧𝑧 �𝐿𝐿

1(𝑅𝑅3)

.

Inserting inequality (19) into 𝐼𝐼2, we get

𝐼𝐼2≀ �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

οΏ½βˆ‚π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’βˆ‚π‘§π‘§π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))οΏ½

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜

+4𝛼𝛼 οΏ½1𝜈𝜈� 1 2

𝐢𝐢012𝐼𝐼 0 �‍

𝑅𝑅3

|π‘žπ‘žοΏ½mv(π‘˜π‘˜, 𝑑𝑑)| 𝑧𝑧 π‘‘π‘‘π‘˜π‘˜

+ �2𝜈𝜈�1 1 2

𝐢𝐢212𝐼𝐼 0 �‍

𝑅𝑅3

|π‘žπ‘žοΏ½mv(π‘˜π‘˜, 𝑑𝑑)|π‘‘π‘‘π‘˜π‘˜,

Let us take into account the estimate of 𝐼𝐼0 obtained in Lemma 25,

𝐼𝐼0= �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

π‘‘π‘‘π‘’π‘’πœ†πœ† |π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†| = 2

7 2πœ‹πœ‹.

Inserting this value in 𝐼𝐼2, we obtain

𝐼𝐼2≀ �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

οΏ½βˆ‚π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’βˆ‚π‘§π‘§π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))οΏ½

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜

+ �1𝜈𝜈� 1 2

2112πœ‹πœ‹π›Όπ›ΌπΆπΆ0 1 2 �‍

𝑅𝑅3

|π‘žπ‘žοΏ½mv(π‘˜π‘˜, 𝑑𝑑)| 𝑧𝑧 π‘‘π‘‘π‘˜π‘˜

+ �1𝜈𝜈� 1 2

8πœ‹πœ‹πΆπΆ212 �‍ 𝑅𝑅3

|π‘žπ‘žοΏ½mv(π‘˜π‘˜, 𝑑𝑑)|π‘‘π‘‘π‘˜π‘˜.

Let us introduce the following denotation

𝐴𝐴1= �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

οΏ½βˆ‚π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§βˆ’ π‘’π‘’πœ†πœ†))οΏ½

Γ— |π‘žπ‘žοΏ½mv(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)|π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜, then

𝐼𝐼2≀ 𝐴𝐴1+ 𝛽𝛽2οΏ½π‘žπ‘žοΏ½mv𝑧𝑧 �𝐿𝐿

1(𝑅𝑅3)

+ 𝛽𝛽3|π‘žπ‘žοΏ½mv|𝐿𝐿1(𝑅𝑅3),

where

𝛽𝛽2= οΏ½1𝜈𝜈� 1 2

2112πœ‹πœ‹π›Όπ›ΌπΆπΆ0 1 2, 𝛽𝛽

3= �1𝜈𝜈� 1 2

8πœ‹πœ‹πΆπΆ212. Using inequality (16) in 𝐼𝐼3, we get

𝐼𝐼3≀ �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))|

Γ— οΏ½βˆ‚π‘žπ‘žοΏ½mvβˆ‚π‘§π‘§(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)οΏ½ π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜

+ �2𝜈𝜈�1 1 2

𝐢𝐢012𝐼𝐼 0 �‍

𝑅𝑅3

οΏ½βˆ‚π‘žπ‘žοΏ½mvβˆ‚π‘§π‘§(π‘˜π‘˜, 𝑑𝑑)οΏ½ π‘‘π‘‘π‘˜π‘˜.

Similarly as we estimated 𝐼𝐼2, obtain

𝐼𝐼3≀ 𝐴𝐴2+ 𝛽𝛽1οΏ½βˆ‚π‘žπ‘žοΏ½mvβˆ‚π‘§π‘§ �𝐿𝐿

1(𝑅𝑅3)

,

where

𝐴𝐴2= �‍ 𝑅𝑅3

𝑧𝑧 �‍ πœ‹πœ‹

0 οΏ½ ‍

2πœ‹πœ‹

0

|π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†))|

Γ— οΏ½βˆ‚π‘žπ‘žοΏ½mvβˆ‚π‘§π‘§(π‘§π‘§π‘’π‘’πœ†πœ†, 𝑑𝑑)οΏ½ π‘‘π‘‘π‘’π‘’πœ†πœ†π‘‘π‘‘π‘˜π‘˜.

Inserting 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3 οΏ½βˆ‚π‘žπ‘žοΏ½βˆ‚π‘§π‘§mv�𝐿𝐿

1(𝑅𝑅3), we obtain the

state-ment of the theorem.

This completes the proof of Theorem 18.

Lemma 26. Weak solution of problem (11), (12), (13),

from Theorem 16 satisfies the following inequalities

οΏ½βˆ‚2π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§βˆ’ π‘’π‘’πœ†πœ†2 ), 𝑑𝑑)οΏ½ ≀ οΏ½βˆ‚2π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§2βˆ’ π‘’π‘’πœ†πœ†))οΏ½

+ �1𝜈𝜈� 1

2 16𝛼𝛼𝐢𝐢0 1 2 𝑧𝑧3|π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†| + οΏ½

1 𝜈𝜈�

1

2 8𝛼𝛼𝐢𝐢2 1 2 𝑧𝑧2|π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†|

+ �2𝜈𝜈1�

1 2 𝐢𝐢4

1 2

𝑧𝑧|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|, (21) where

sup 𝑑𝑑 |𝑑𝑑

π‘šπ‘šπ‘’π‘’βˆ’π‘‘π‘‘| < 𝛼𝛼,

as π‘šπ‘š > 0,

𝐢𝐢4= �‍ 𝑑𝑑

0 οΏ½βˆ‚2𝐹𝐹�1

βˆ‚π‘§π‘§2οΏ½ 2

𝑑𝑑𝑑𝑑.

Proof. From (14) we have the following inequalities

οΏ½βˆ‚2π‘žπ‘žοΏ½(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§βˆ’ π‘’π‘’πœ†πœ†2 ), 𝑑𝑑)οΏ½ ≀ οΏ½βˆ‚2π‘žπ‘žοΏ½0(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ‚π‘§π‘§2βˆ’ π‘’π‘’πœ†πœ†))οΏ½

+4𝜈𝜈2𝑧𝑧2|π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†|4| �‍ 𝑑𝑑

0

(𝑑𝑑 βˆ’ 𝑑𝑑)2

Γ— π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|2(π‘‘π‘‘βˆ’π‘‘π‘‘)

𝐹𝐹�1(𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)𝑑𝑑𝑑𝑑|

+4πœˆπœˆπ‘§π‘§|π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†|2| �‍ 𝑑𝑑

0

(𝑑𝑑 βˆ’ 𝑑𝑑)

Γ— π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|2(π‘‘π‘‘βˆ’π‘‘π‘‘)βˆ‚πΉπΉοΏ½1

βˆ‚π‘§π‘§ (𝑧𝑧(π‘’π‘’π‘˜π‘˜βˆ’ π‘’π‘’πœ†πœ†), 𝑑𝑑)𝑑𝑑𝑑𝑑|

+ ��‍ 𝑑𝑑

0

π‘’π‘’βˆ’πœˆπœˆπ‘§π‘§2|π‘’π‘’π‘˜π‘˜βˆ’π‘’π‘’πœ†πœ†|2(π‘‘π‘‘βˆ’π‘‘π‘‘)βˆ‚2𝐹𝐹�1

References

Related documents

In view of the spread of drug resistance among the Staphylococcus aureus strains observed, it may be necessary to embark on multidrug therapy or combined

The objective of this study was to evaluate the feasibility and acceptability of decision coaching guided by the Ottawa Family Decision Guide with children and parents

Specifically,the rate of library websitesprovidingaccessibility to administrative information is 85%;accessibility to announcement/internal event information is 73%;

ISSN: 2231-5373 http://www.ijmttjournal.org Page 496 the Prandtl number, the Lewis number, the Brownian motion parameter, the thermophoresis parameter, the

Absence of chemical pesticides in the study area can be used as baseline to evaluate future events that can involve these compounds, which would allow a precise

1 Doctor, Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iranβ€’ 2 BSc in occupactional health, Students