# Some Subordination Results of Multivalent Functions Defined by Integral Operator

N/A
N/A
Protected

Share "Some Subordination Results of Multivalent Functions Defined by Integral Operator"

Copied!
8
0
0

Full text

(1)

Volume 2007, Article ID 71616,8pages doi:10.1155/2007/71616

## Defined by Integral Operator

### Ozkan

Received 29 August 2006; Accepted 1 March 2007

Recommended by Andrei Ronto

The object of the present paper is to give some subordination properties of integral oper-atorᏼαwhich was studied by Jung in 1993.

Copyright © 2007 ¨Oznur ¨Ozkan. This is an open access article distributed under the Cre-ative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and definitions

LetU= {z:z∈Cand|z|<1}, letᏴ(U) be the set of all functionsanalytic inU, and let

Ꮽp=f Ᏼ(U) : f(z)=zp+ap+1zp+1+···

(1.1)

for allz∈Uandp∈N={1, 2, 3,. . .}withᏭ:=Ꮽ1. Forp∈N, let

Ᏼp=f Ᏼ(U) : f(z)=p+bpzp+··· (1.2)

withᏴ:=Ᏼ1.

Given two functions f andg, which are analytic inU, then we say that the function f issubordinatetogand write f ≺gor (more precisely)

f(z)≺g(z) (z∈U), (1.3)

if there exists a Schwarz functionw(z), analytic inUwith

w(0)=0, w(z)<1 (z∈U) (1.4)

such that

(2)

In particular, ifgis univalent inU, then we write the following equivalence:

f(z)≺g(z)⇐⇒f(0)=g(0), f(U)⊂g(U). (1.6)

For analytic functions fj(j=1, 2) given by

fj(z)=z+

k=2

ak,jzk (j=1, 2), (1.7)

let f1∗f2denote theHadamardproduct(or convolution)of f1and f2, defined by

f1∗f2(z) :=z+

k=2

ak,1ak,2zk=:

f2∗f1(z). (1.8)

Next, for real parametersAandBsuch that1≤B < A≤1, we define the function

ϕA,B(z) :=1 +1 +AzBz (z∈U). (1.9)

It is obvious thatϕA,B(z) for1≤B≤1 is the conformal map of the unit diskUonto the

disk symmetrical with respect to the real axis having the center

1−AB

1−B2 (B= ∓1) (1.10)

A−B

1−B2 (B= ∓1). (1.11)

Furthermore, the boundary circle of this disk intersects the real axis at the points

1−A 1−B,

1 +A

1 +B (B= ∓1). (1.12)

Let (a)vdenote thePochhammersymbol(or the shifted factorial), since

(1)n=n! forn∈N0:=N∪ {0}, (1.13)

defined (fora,v∈Cand in terms of the Gamma function) by

(a)v:=Γ(Γa+v)

(a) =

⎧ ⎪ ⎨ ⎪ ⎩

1 v=0,a∈C\{0},

a(a+ 1)···(a+n−1) v=n∈N;a∈C. (1.14)

Recently, the following integral operator was studied by Jung et al. [1] for p=1 and Shams et al. [2]:

αf =αf(z) :=(p+ 1)α

zΓ(α)

z

0

logz t

α−1

f(t)dt=zp+

n=p+1

p+ 1

n+ 1

α

(3)

for f Ꮽpandα >0. Moreover, Jung et al. [1] have shown that

αf(z)=z+ n=2

2

n+ 1

α

anzn (1.16)

for f Ꮽandα >0.

Therefore, Shams et al. [2] showed the following equality:

zαf(z)=(p+ 1)α−1f(z)αf(z) (1.17)

using (1.15).

Letᏼ(γ) denote the subclass ofᏴconsisting of functions f with the following condi-tion:

Ref(z)> γ (1.18)

for 0≤γ <1 and for allz∈U.

2. Main results

In proving our main results, we need the following lemmas.

Lemma2.1 [3, page 71]. Lethbe analytic, univalent, convex inUwithh(0)=1. Also letp be analytic inUwithp(0)=h(0). If

p(z) +z p (z)

γ ≺h(z) (z∈U;γ=0), (2.1)

then

p(z)≺q(z)≺h(z), (2.2)

where

q(z)= γ

z

0t

γ−1h(t)dt zU;Re(γ)0;γ=0. (2.3)

Lemma2.2 [4]. If f ᏼ(γ)for0≤γ <1, then

Ref(z)2γ−1 +2(1−γ)

1 +|z| (z∈U). (2.4)

Lemma2.3 [3, page 132]. Letqbe univalent inUand letθandφbe analytic in a domain

containingq(U)withφ(w)=0, whenw∈q(U). Set

Q(z)=zq(z)·φq(z), h(z)=θq(z)+Q(z), (2.5)

(4)

Rezh(z)

Q(z) =Re

θq(z)

φq(z) + zQ(z)

Q(z)

>0. (2.6)

IfPis analytic inU, withP(0)=q(0),P(U), and

θP(z)+zP(z)·φP[z]≺θq(z)+zq(z)·φq[z]=h(z), (2.7)

thenP≺q, andqis the best dominant.

Theorem2.4. Let α >0,λ >0, and−1≤Bj< Aj≤1 (j=1, 2). If each of the functions

fj(z)Ꮽp(j=1, 2)satisfies the following subordination condition:

λ

α−1f

j(z)

zp + (1−λ) ᏼαf

j(z)

zp ≺ϕAj,Bj(z), (2.8)

then

λ

α−1Ω(z)

zp + (1−λ) ᏼαΩ(z)

zp ≺ϕ1−2β,1(z), (2.9)

where

Ω(z) :=αf1f2(z), (2.10)

β:=14

A1−B1A2−B2

1−B11−B2

1 p+ 1

λ

1

0

u(p+1)/λ−1 1 +u du

. (2.11)

The result is sharp forB1=B2= −1.

Proof. We assume that each of the functions fj(z)Ꮽp(j=1, 2) satisfies the

subordina-tion condisubordina-tion (2.8). If we take

ϕj(z) :α−1f

j(z)

zp + (1−λ) ᏼαf

j(z)

zp , (2.12)

then we write

ϕj(z)ᏼ(γj) (2.13)

forγj=(1−Aj)/(1−Bj) andj=1, 2. Using (1.17) and (2.12), we obtain the equality

αf

j(z)= p+ 1

λ z

p−(p+1) z

0t

(p+1)/λ−1ϕ

j(t)dt (2.14)

forj=1, 2. Then, from definition (2.10) we write

αΩ(z)= p+ 1

λ z

p−(p+1) z

0t

(5)

where, for convenience,

ϕ0(z)α− 1Ω(z)

zp + (1−λ) ᏼαΩ(z)

zp =

p+ 1 λ z

(p+1) z

0t

(p+1)/λ−1ϕ1ϕ2(t)dt.

(2.16)

Sinceϕ1(z)ᏼ(γ1) and

ϕ3(z) :=ϕ2(z)−γ2 21−γ2 +

1 2

1

2

, (2.17)

we see that (ϕ1∗ϕ3)(z)ᏼ(γ1) by applying the well-known Herglotz formula. Thus,

h1∗h2(z)γ3 forγ3:=121−γ11−γ2. (2.18)

If we change variablet=uzand take real part in (2.16), then we obtain the following inequality:

Reh0(z)= p+ 1

λ

z

0u

(p+1)/λ−1Reϕ1ϕ2(uz)du. (2.19)

UsingLemma 2.2in last equality, we obtain

Reϕ0(z) p+ 1

λ

z

0u

(p+1)/λ−12γ31 +2

1−γ3 1 +u|z|

du

> p+ 1 λ

z

0u (p+1)/λ−1

2γ3−1 +2

1−γ3 1 +u

du

=14

A1−B1A2−B2

1−B11−B2

1−p+ 1

λ

1

0

u(p+1)/λ−1 1 +u du

=β.

(2.20)

Thus, we have obtained (2.11).

Now, we must prove that this result is sharp whenB1=B2= −1. LetB1=B2= −1. From (2.14), we can write

αf j(z)=

p+ 1 λ z

p−(p+1) z

0t

(p+1)/λ−11 +Ajt

1−t dt (2.21)

forj=1, 2. Since

1 +A1z 1−z

1 +A2z 1−z

=11 +A11 +A2+

1 +A11 +A2

1−z (2.22)

and with change of variablet=uzin (2.16),

ϕ0(z)= p+ 1

λ z (p+1)

z

0t (p+1)/λ−1

11 +A11 +A2+

1 +A11 +A2 1−uz

(6)

If we choosezon the real axis and letz→ −1, we obtain

h0(z)−→11 +A11 +A21−p+ 1

λ

1

0

u(p+1)/λ−1 1 +u du

. (2.24)

Thus, we complete the proof ofTheorem 2.4.

Corollary2.5. Letα >0and the functionfj(z)Ꮽp(j=1, 2). If the condition

α−1f

j(z)

z

1 +z

1−z (2.25)

is satisfied, then

α−1Ω(z)

z

1 + (16 ln 29)z

1−z , (2.26)

where

Ω:=αf1f2(z), β=58 ln 2. (2.27)

Proof. By puttingp=1,λ=1,A=1,B= −1 inTheorem 2.4, we obtainCorollary 2.5.

Theorem2.6. Let0≤ρ <1. For f Ꮽp, if

Reᏼα−α1f(z)

f(z)

> ρ, (2.28)

then

αf(z)

zp γ

1

(1−z)2γ(1−ρ2)=q(z), (2.29)

whereq(z)is the best dominant.

Proof. Let f Ꮽpand

p(z) :=

αf(z)

zp γ

. (2.30)

Taking logarithmic derivative and multiplying byz, we find that

z p(z)

p(z) =(p+ 1)γ

α−1f(z)

αf(z) 1

, (2.31)

1 + 1

(p+ 1)γ z p(z)

p(z) =

α−1f(z)

αf(z) . (2.32)

Therefore, from (2.28) we write

α−1f(z)

αf(z)

1 + (12ρ)z

(7)

Thus, using (2.33) in (2.32), we obtain

1 + 1

(p+ 1)γ z p(z)

p(z)

1 + (12ρ)z

1−z . (2.34)

Now, define the functionsθandφby

θ(w) :=1, φ(w) := 1

(p+ 1)γw, Ᏸ={w:w=0} (2.35)

inLemma 2.3. If we take

q(z) := 1

(1−z)2γ(1−ρ2), (2.36)

thenqsatisfies the conditions ofLemma 2.3. Thus, the following functions:

Q(z)=zq(z)·φq(z)= 1

(p+ 1)γ zq(z)

q(z) =

2(1−ρ)z 1−z ,

h(z)=θq(z)+Q(z)=1 + 1 (p+ 1)γ

zq(z) q(z) =

1 + (12ρ)z 1−z .

(2.37)

Since h is convex, preconditions of Lemma 2.3 are satisfied. Consequently, from

Lemma 2.3we writep≺q, andqis the best dominant.

Corollary2.7. Let0≤ρ <1. If f Ꮽpsatisfies (2.28), then

Reᏼα−1fj(z)

zp

γ/21−ρ2

>21 (2.38)

and21is the best possible.

Proof. From (2.29), there exists a Schwarz functionw(z) analytic inUwith

w(0)=0, w(z)<1 (z∈U) (2.39)

such that

αf(z)

zp γ

= 1

1−w(z)2γ

1−ρ2, (2.40)

that is,

αf(z)

zp

γ/2(1−ρ2)

=1−w(z)−γ. (2.41)

In the last equality, if we take a real part and use the following inequality:

Rew1/mRe(w)1/m Re(w)>0, (2.42)

(8)

Acknowledgment

The present investigation was supported by Baskent University, Ankara, Turkey.

References

[1] I. B. Jung, Y. C. Kim, and H. M. Srivastava, “The Hardy space of analytic functions associated

with certain one-parameter families of integral operators,”Journal of Mathematical Analysis and

Applications, vol. 176, no. 1, pp. 138–147, 1993.

[2] S. Shams, S. R. Kulkarni, and J. M. Jahangiri, “Subordination properties of p-valent functions

defined by integral operators,”International Journal of Mathematics and Mathematical Sciences,

vol. 2006, Article ID 94572, 3 pages, 2006.

[3] S. S. Miller and P. T. Mocanu,Diﬀerential Subordinations. Theory and Applications, vol. 225 of

Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2000.

[4] J.-L. Liu and H. M. Srivastava, “Certain properties of the Dziok-Srivastava operator,”Applied

Mathematics and Computation, vol. 159, no. 2, pp. 485–493, 2004.

¨

Oznur ¨Ozkan: Department of Statistics and Computer Sciences, Bas¸kent University, Baglıca,

06530 Ankara, Turkey

References

Related documents

Drawing on the fertility literature, we argue there are two intertwined processes by which changes in the timing of migration can affect overall migration levels: (1) a tempo

Data collection revealed that collective learning contributed to adoption of touch technology, with 95% of department members using iPads to conduct department business

For both cultures, the ratio between consumed carbon flow and consumed nitrogen flow (the C:N ratio) was 0.11 ± 0.02 mol.Cmol − 1 during phase I; catalytic specific glucose

paint was diluted with another sample of white paint known to contain less than 1%

Another kind of information I have sought to find in the literature is this type of diet survey data which exists only in scatter form. It is very difficult to

Өндөр уулын бэлчээр ургамлын зүйлийн тоо, бүрхэцээр бусад бүсээс давуутай, харин ургацын хуримтлал нь ойт хээрийн бүсэд илүү байна.. Уур амьсгалын өөрчлөлтийн нөлөө

БНХАУ-ын Өвөрмонголын бүс нутгийн бэлчээрийн мал аж ахуй нь нүүдлийн байдлаас алхам алхмаар суурин байдалд шилжихийн зэрэгцээ нүүдэллэн бэлчээрийг улирлаар сэлгэн