• No results found

The role of smart grids in the building sector

N/A
N/A
Protected

Academic year: 2021

Share "The role of smart grids in the building sector"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Energy

and

Buildings

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

Engineering

Advance

The

role

of

smart

grids

in

the

building

sector

Dionysia

Kolokotsa

SchoolofEnvironmentalEngineering,TechnicalUniversityofCrete,Kounoudipiana,Crete,Greece

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Availableonline23December2015 Keywords:

Smartgrids Microgrids Smartbuildings Zeroenergybuildings Smartcommunities

a

b

s

t

r

a

c

t

Thesmartgridsaremodernelectricpowergridinfrastructureforenhancedefficiencyandreliability throughautomatedcontrol,high-powerconverters,moderncommunicationsinfrastructure,sensing andmeteringtechnologies,andmodernenergymanagementtechniquesbasedontheoptimizationof demand,energyandnetworkavailability.Theroleofbuildingsinthisframeworkisverycrucial.This paperaddressescriticalissuesonsmartgridtechnologiesandtheintegrationofbuildingsinthisnew powergridframework.Themainobjectiveofthispaperistoprovideacontemporarylookatthecurrent stateoftheartinthepotentialofbuildingsandcommunitiestobeintegratedinsmartgridsaswellas todiscussthestill-openresearchissuesinthisfield.Thechallengesforthebuildingsectorarediscussed andfutureresearchprospectsareanalysed.

©2015TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction...703

2. Smartandzeroenergybuildings...704

2.1. Smartmetering...704

2.2. Demandresponse(DR)...704

2.3. Distributedsystems...705

3. Smartandzeroenergycommunities ... 705

4. Conclusionsandfutureprospects...706

References...707

1. Introduction

Smartgridisadynamicallyinteractivereal-timeinfrastructure

conceptthatencompassesthemany visionsof thestakeholders

ofdiverseenergy systems.[1].Smart gridsare electricalpower

gridsthat are more efficient and more resilient and therefore,

“smarter”thantheexistingconventionalpowergrids.The

smart-nessisfocusednotonlyontheeliminationofblack-outs,butalso

onmakingthegridgreener,moreefficient,adaptabletocustomers’

needs,andtherefore,lesscostly[1,2].Smartgridsincorporatethe

innovativeITtechnologythatallowsfortwo-waycommunication

betweentheutilityanditscustomers/users.Asaresultthesensing

alongthetransmissionlinesandthesensingfromthecustomer’s

sideiswhatmakesthegrid“smart”.

∗ Tel.:+302821037808.

E-mailaddress:dkolokotsa@enveng.tuc.gr

LiketheInternet,theSmartGridconsistsofcontrols,

comput-ers,automation,newtechnologies,smartbuildingsandequipment

workingtogether,butin thiscase thesetechnologieswillwork

withtheelectricalgridtoresponddigitallytothequickly

chang-ingenergydemandsoftheusers.Thereforesmartgridscreatean

exceptional opportunity for thesupport ofthe developmentof

smartzeroenergybuildingsandcommunitiesandofferthestep

towardstheInternetofThingsfortheEnergyandBuildingIndustry

[3,4].

SmartGridsopenthedoortonewapplicationswithfar-reaching

inter-disciplinaryimpacts:providingthecapacitytosafely

inte-gratemorerenewableenergysources(RES),smartbuildingsand

distributedgeneratorsintothenetwork;deliveringpowermore

efficiently and reliably through demandresponse and

compre-hensivecontrolandmonitoringcapabilities;usingautomaticgrid

reconfigurationtopreventorrestoreoutages(self-healing

capa-bilities);enabling consumers tohave greatercontrol over their

electricityconsumptionandtoactivelyparticipateintheelectricity

market.

http://dx.doi.org/10.1016/j.enbuild.2015.12.033

(2)

Smart Grids can create a revolution in the building sector.

Theaccumulatedexperienceofthelastdecadeshasshownthat

thehierarchical,centrallycontrolledgridofthe20thCenturyis

ill-suitedtotheneeds ofthe 21stCentury. The smartgrid can

beconsideredasamodernelectricpowergridinfrastructurefor

enhanced efficiency and reliability through automated control,

high-power converters,modern communications infrastructure,

sensingandmeteringtechnologies,andmodernenergy

manage-menttechniques basedonthe optimizationofdemand, energy

andnetworkavailability.Theroleofbuildingsinthisframework

isverycrucial.Thispaperaddressescriticalissuesonsmartgrid

technologiesandtheintegrationofbuildingsinthisnewpower

gridframework[5].Themainobjectiveofthispaperistoprovide

acontemporarylookatthecurrentstateoftheartinthe

poten-tialofbuildingsandcommunitiestobeintegratedinsmartgridsas

wellastodiscussthestill-openresearchissuesinthisfield.Since

thevastmajorityofsmartgrids’potentialcustomersarebuildings

(residential,commercial,retailandindustrial)andcommunities,

thepaperaddressesthechallengesposedbysmartgridsonbuilding

andcommunitylevel.

2. Smartandzeroenergybuildings

Theenergyconsumptionforbuildingsaccountsfor40%ofthe

energyusedworldwide.Ithasbecomeawidely-acceptedfactthat

measuresandchangesinthebuildingmodusoperandicanyield

substantialenergysavingsminimizingthebuildings’carbon

foot-print[6,7].Moreover,buildingsinthenearfutureshouldbeable

toproducetheamountofenergytheyconsume,i.e.,becomezero

ornearlyzeroenergybuildings(ZEBs)[8,9].Thisisamandatory

requirementbasedonthefactthatby31December2020,allnew

buildingsshallbenearlyzero-energyconsumptionbuildings.New

buildingsoccupiedandownedbypublicauthoritiesshallcomply

withthesamecriteriaby31December2018[8,10].

ZEBsarebuildingsthatworkinsynergywiththegrid,avoiding

puttingadditionalstressonthepowerinfrastructure[11].

Achiev-inga ZEBincludes apart fromminimizing the required energy

throughefficient measuresand covering theminimized energy

needsbyadoptingrenewablesources,a seriesofoptimisedand

wellbalanced operationsbetweenconsumptionand production

coupledwithsuccessfulgridintegration[12].

Information and Computer enabled Technologies (ICT) and

smart gridsimplementationare the keysto achieve the

afore-mentionedzeroenergygoals[13].ICTforenergymanagementin

buildingshasevolvedconsiderablythelastdecadesleadingtoa

betterunderstandingandpenetrationoftheterm“smart

build-ings”[14].Advances in thedesign, operationoptimization and

controlofenergy-influencingbuildingelements(e.g.,HVAC,solar,

fuelcells, CHP,shading,natural ventilation, etc.)unleashedthe

potentialforrealizationofsignificantenergysavingsand

efficien-ciesintheoperationofbothnewandexistingdwellingsworldwide.

Smartbuildingsreadytobeinterconnectedwithsmartgridsshould

complywiththefollowingrequirements:

(a)Incorporationofsmartmetering.

(b)Demandresponsecapabilities.

(c)Distributedarchitecture.

(d)Interoperability.

2.1. Smartmetering

Smartmeteringisaprerequisiteandstartingpointforeffective

implementationofsmartgridsandzeroenergybuildings’

perspec-tive.InFinland,theusageofsmartmeteringencouragedconsumers

toincreaseenergyefficiencyby7%.Inorderforelectricityproviders

todeliverintelligentservicesforcustomers,bidirectional

meter-inginterfacesshouldbeusedtoobtaincustomers’energydemand

information[15].Moreoverthroughtheadvancesofsmart

meter-ing,sensorsbasedapproachescanbeexploitedtoprovideenergy

loadforecasting [16]. Data collectedfrom smart meters,

build-ingmanagement systems and weather stationscan beusedby

advanced artificial intelligent techniquesand machine learning

algorithmstoinferthecomplexrelationshipsbetweentheenergy

consumption and various variables such as temperature, solar

radiation,timeofdayandoccupancy[16–21].Duetothefast

devel-opmentandapplicationoflowcostoptionsforenergymetering

inrecentyears,energyloadpredictionisbecomingincreasingly

relevantandcosteffective[16,22].

Smartmeteringwithsensor basedapproaches wasexploited

intheframeworkofGreen@Hospitalproject(

www.greenhospital-project.eu/).Inthisproject,theoutdoortemperaturesand

hospi-tals’energydemandwerepredictedfor4,8,12 and24hahead

[23].Thispredictionisthenusedforoptimalcontrolofthe

hos-pitals’airhandlingunitsleadingtoalmost20%reductionofthe

energyuse.Otherresearchersexploitneuralnetworks’

capabili-tiesfor24h-aheadbuilding-levelelectricityloadforecastingusing

datacollectedfromvariousoperationalcommercialandindustrial

buildingsites[19].Dataminingbasedapproachestodeveloping

ensemblemodelsforpredictingnext-dayenergyconsumptionand

peak powerdemand,withtheaimofimprovingtheprediction

accuracyarealsodeveloped.Thisapproachwasadoptedtoanalyse

thelargeenergyconsumptiondataofthetallestbuildinginHong

Kong[22]withverysatisfactoryresults.Theseensemblemodels

canbevaluabletoolsfordevelopingstrategiesoffaultdetectionand

diagnosis,operationoptimizationandinteractionsbetween

build-ingsandsmartgrid.Moreover,dataprocessingandinterpretation

extractedbythesmartmeteringcanprovideusefulinformation

forthebuildings’energybehaviour.Advancedtechniquessuchas

clusteranalysisareusedbyvariousresearchers[14,24]leadingto

thedeterminationof optimumclustering proceduresaswellas

buildingbenchmarking.

2.2. Demandresponse(DR)

DR[25,26]offersthecapabilitytoapplychangesinthe

elec-tricityusagebytheconsumers fromtheirnormal consumption

patternsinresponsetochangesintheelectricitypricingovertime

[27].Thisleadstolowerenergydemandduringpeakhoursor

dur-ingperiodsthatelectricitygrid’sreliabilityisputatrisk.Therefore

demandresponseisareductionindemanddesignedtoreducepeak

loadoravoidsystememergencies.Hence,demandresponsecan

beamorecost-effectivealternativethanaddinggeneration

capa-bilitiestomeetthepeak andor occasionaldemandspikes.The

underlyingobjectiveofDRistoactivelyengagecustomersin

mod-ifyingtheirconsumptioninresponsetopricingsignals.Demand

responseisexpectedtoincreaseenergymarketefficiencyand

secu-rityofsupply,whichwillultimatelybenefitcustomersbywayof

optionsformanagingtheirelectricitycostsandleadtoreduced

environmentalimpact.

Thealready availableDRprogramsare generallycategorized

into incentive-and price-based programs. Incentive-based

pro-grams provide economic incentives for customers to reduce

demandattimesofcapacityshortageorexceptionallyhigh

electric-ityprices,whereasprice-baseddemandresponseprogramsinvolve

dynamictariffratesthatpromotegeneralchangesinpatternsof

electricityuse.Time-of-usetariffs,whichareoneofthemajor

price-based demandresponse programs in useinvolvedifferent unit

priceswithindifferentblocksoftime,andreflecttheaveragecost

ofutilitiesduringtheseperiods[26].

TherearesomeeffortsincountryleveltoshowthebenefitsofDR

(3)

caseforDRareanalysedbyBradleyetal.[27].Acost/benefit

analy-sisisperformedinaquantitativemannershowingthatthebenefits

oncountrylevelareclearly verysignificant,i.e.,2.8% reduction

inoverallelectricityuseanda1.3%shiftinpeakdemand.

More-overtheeconomicviabilityoftheDRmainlydependsonensuring

participationbytheendusers,i.e.,thebuildingsector.Increaseof

participationcanbeensuredbyloweringtheparticipantcostsand

sharingofbenefits.Finallyitisrevealedthattheactualcostsofthe

infrastructurearealsoaffectedbycustomerengagementandtrust.

AnempiricalstudyforSwedenisperformedbyBartuschetal.[26],

inordertoestimatetheendusers’responsetoademand-based

time-of-useelectricity distributiontariffamongSwedish

single-familyresidentialhouses.Thestudyshowedthatinalongterm

theresidentialhouseholdsstillrespondtothepricesignalsofthe

tariffbycuttingdemandinpeakhoursandshiftingelectricity

con-sumptionfrompeaktooff-peakhours.

Energy efficient smart buildings are possible by integrating

smartmeter,smartsockets,domesticrenewableenergygeneration

andenergy storagesystemsforintegrated energymanagement,

andthis integratedsystemsupportsdemandsideload

manage-ment,distributedgenerationanddistributedstorageprovisionsof

futuresmartgrids[28,29].Consequently,theeffectiveintegration

ofbuildingsinsmartgridsrequirestheappropriatelevelsofdigital

technologyandinteroperability[30].Thesuccessful

implemen-tationof DRas mentioned in thepreviousparagraphs requires

near-real-time powermanagement [31] and advanced building

automationand communicationprotocols.Moreinformation on

thevariouscommunicationprotocolsthatcansupporttheZEB

per-spectivecanbefoundin[8].RecentstudiesinterconnectASHRAE

BACNETprotocolwiththewirelessZigBeeprotocoltoprovideDRin

thebuildings’energymanagementside.TheAddendumannounced

byASHRAEspecifiesthatthewirelesscommunicationforBACnet

willbebasedonZigBeeprotocol[32].Theinterconnectionof

Bac-netwithZigBeeallowsthemanagementofelectricalresourcesand

devices’load,targetingtooptimiseandreducetheelectricitycost

andreducepeakpowerconsumption.Therealtime

characteris-ticsandfunctionalitiesoftheBACnet–ZigBeeinterconnectionare

examined,showingthepotentialandcriticalroleofrecent

devel-opmentsintheimplementationofsmartgrids’infrastructurein

buildings.Otherresearchersprovideinterconnectionofthe

BAC-netandEnOceanprotocolstomeasureenergymeteringofvarious

appliancesinbuildingsandcontroltheloadusingwireless

commu-nications[25].Additionally,theDRusingthespecificconnectivity

isshownusingexperimentalfacilitiesthatcanrespondtoreal-time

changesintheelectricityprice.

2.3. Distributedsystems

Distributedsystemsplayacrucialpartineffectingsmart

build-ings’ demandresponse as theyprovidethe necessarytechnical

infrastructure [33]. Moreover distributed systems support the

effectiveexploitationofenergystorage.Sincesmartgridsmay

inte-graterenewableenergysources,energystorageisoftenseenas

necessaryfor theelectric utilitysystemswithlargeamountsof

solarorwindpowergenerationtocompensatefortheinabilityto

schedulethesefacilitiestomatchpowerdemand.

Loadshiftingthrougheffectivethermalenergystorageor

elec-tricitystorageisamajorpartofsmartgridsandalreadyexploited

byvariousstudiesforgeneration–consumptionmatchingandzero

energytargeting[32,33].Thereforeasthemajorpowerconsumers

atdemandside,buildingscanactuallyperformasdistributed

ther-malstoragestohelprelievepowerimbalanceofagrid.Thisrequires

accuratepredictionofpossiblepowerdemandvariationsof

build-ingsandenergyinformationfromthegridsideforinteractionand

optimization[36]based onmeasurementsacquiredfromsmart

metering.

Finallysmartgridscanplayasignificantroleinthebuilding

sec-torduetothefactthattheycreateaphysicalproximitybetween

consumers and energy production that may help increase end

users’awarenesstowardsamorerationaluseofenergyfor

build-ings.Studiesshowthattheusersawarenesscombinedwithsmart

gridscandecreasetheenergycostsby15%[37].

3. Smartandzeroenergycommunities

Movingfromthebuildingtothecommunitylevel,therequests

ofthefuture communitiesareverydemanding.Theyshouldbe

placesofadvancedsocial progressandenvironmental

regenera-tion,aswellasplacesofattractionandenginesofeconomicgrowth

basedonaholisticintegratedapproachinwhichallaspectsof

sus-tainabilityaretakenintoaccount.

As mentioned in the Leipzig Charter (http://ec.europa.

eu/regionalpolicy/archive/themes/urban/leipzigcharter.pdf),

sustainablecommunitiesandcitiesshould:

• Createthesuitableenvironmentforurbanpopulationsthatcan

attractindustry,businesses,tourismandworkforces.

• Modernizetheinfrastructurenetworks.Thisapproachisabout

achievingahigh-qualityandaffordableurbantransportsystem

thatincludesanetworklinkingthecitytotheregion,aswellas

providingandimprovingsupplynetworkssuchasenergy,

waste-watertreatmentandwatersupply.

• Ensuretheefficientuseofnaturalresources,economicefficiency

andtheenergyefficiencyinnewandexistingbuildings.

TheNational RenewableEnergyLaboratory definedthe zero

energycommunityas“onethathasgreatlyreducedenergyneeds

throughefficiencygainsuchthatthebalanceofenergyforvehicles,

thermal,andelectricalenergywithinthecommunityismetby

renew-ableenergy”[12]and“communityscenarioscouldlinktransportation,

homeandtheelectricgridaswellasenablelargequantitiesof

renew-ablepowerontothegrid”.

Therefore, a smart zero energy community (http://www.

smartcommunities.org) is a regionwhere itscitizens and local

authoritiesareexploitingtheinformationtechnologyto“transform

lifeandworkinsignificantandfundamentalratherthan

incremen-talways”tomeettheaforementionedstrategiesandobjectives.As

mentionedintheSmartCommunitieswebsite:“Thegoalofsuchan

effortismorethanthemeredeploymentoftechnology.Ratheritis

aboutpreparingone’scommunitytomeetthechallengesofaglobal,

knowledgeeconomy”.

SmartGridscanbethebasisofsmartzeroenergycommunities

offering:

(1)Reliabilityandsecurityastheprominenceofinformation

tech-nology.

(2)Optimal operation thus contributing to a

generation–consumption matching [8] through the full

exploitationofLowZeroCarbon(LZC)emissions’technologies

[12,36].

(3)AdaptationtotherapidlyevolvingICTtechnologies,aswellas

exploitationoftheinternetcapabilitiesandsmartdevicesand

applications[4].

(4)Thenecessarybalancebetweentheenergydemandandenergy

production oncommunity,neighbourhoodand districtlevel

contributingtothesmartandsustainableurbanenvironment.

Effective management of the intermittency of Renewable

EnergySources powergenerationaswellas ofoperationaland

capacityreserveinconjunctionwiththebuildings’energydemand

profiles. In order tounderstand more clearly therole of smart

(4)

Fig.1.Thesmartgrid’scomponents.

thenextparagraphs.MoredetailsontheSmartGridspenetration

worldwidecanbefoundin[39].

Therole ofnetenergymetering and thetimeof useratein

theelectricitydemandofazeroenergyapartmentcommunityare

investigated[40].Theapartments’communityisplacedinWest

VillageinDavis,California.Smartschedulingisappliedinorderto

achievepeakloadshavingbyusingthevarioushousehold

appli-ancesduringoff-peakhours.Thepeakdemandisreducedby18%,

thepart-peakdemandby32%andtheoff-peakdemandisincreased

by12%.Sincetheapartmentsareusingphotovoltaicsfor

electric-ity,thecommunityoccupantscanbenefitsignificantlyifthesurplus

generationbythephotovoltaicsismaximizedandsoldtothegrid

duringpeakhours(Fig.1).

MoreoveralowenergycommunityconfigurationfortheIsland

ofHawaiiisproposedin[41].Theoverallworkincludedenergy

pro-ductionusingphotovoltaics,storagesystemsusingbatteriesand

compressedairsystems,demand responseof buildings,passive

coolingtechniquesforenergyefficiencyaswellasmicroclimate

andlandscapeassessment.

Anadvancedenergymanagementandoptimizationmodelfor

theoperationof theLeaf MicrocridCommunityis proposedby

Kolokotsaetal.[42].Theaimofthemodelistominimizetheenergy

costof themicrogrid byperforming ageneration–consumption

matchingusing geneticalgorithms.Theoptimizationprocedure

issupported byenergy loadforecasting and energy production

prediction (bythephotovoltaics and hydroelectric plant) using

artificialneuralnetworks.Whiletheoptimizationhorizonis24h

ahead, the optimization and management procedure leads to

almost6% reduction of the energy costsfor the microgrid and

significantcostsavingsforthecommunitywithoutextraenergy

investment.

Similarworksincludeapartfromgeneticalgorithms[43,44]the

useoffuzzylogicandParticleSwarmOptimization(PSO)method

[45]aswellasnon-linear constrainmultiobjectiveoptimization

method[46].

Anotherpotentialapplicationofsmartgridsincommunitylevel

istheoperationofsmallandmediumenterprises(SMEs)which

havemultipleoperationalcharacteristicsrangingfromoffice

build-ings,retail,industrial,etc.anddifferentenergypatternsandneeds

[47].ThoughthepotentialforcarbonreductionofSMEsisunclear

duetothediversityoftheenduses,smartgridscanbeaviable

toolforSMEsdecarbonizationsinceadditionaldatacanbeavailable

throughdetailedsmartmetering.Thereforetheelectricityloadsof

theSMEscannediscretizedandtheproportionsthatareavailable

forloadshiftingorshavingcanbemoreeasilyidentified.

Thesecanbespaceheating,coolingandhotwaterinthe

com-mercialsectorandheatingorcoolinginindustry.

Lastbutnotleast,thesocialaspectsofsmartgridsincommunity

levelshouldbeclearlyexamined.Thefastpromotionofsmartgrids’

capabilitiesandpotentialapplicationswillbemucheasilydigested

bythelocalcommunitiesifsocialinclusionistakenintoaccount.

Theroleofsocialexpertsinthisaspectisofgreatimportance[48].

4. Conclusionsandfutureprospects

SmartGridscanbeconsideredverypromisingfortheenergy

andbuildingenvironment industryduetothefactthatcreatea

physicalproximitybetweenconsumersandmicroenergysources

thathelpincreaseconsumerawarenesstowardsamorerational

useofenergy.

Moreoversmartgridscanoffernewopportunitiesforthe

reduc-tionofgasemissionsbycreatingtechnicalconditionsthatincrease

theconnectionofdevicesandrenewableenergyresourcesatthe

lowvoltagelevel.

Inaddition,smartgridsinthebuildingsectorofferagreat

oppor-tunityforimprovingthepowerqualityand reliabilityofenergy

sourcesduetothefactthatitoffersdecentralizationofsupply,

bet-tersupplyanddemandmatching,reductionoftransmissionlosses

andminimizationofdowntimes.Thusenergyinvestmentscanbe

shiftedfromtheexpansionoftransmissionandlargescale

gener-ationsystemstotheenergyefficiencyinthebuildingsector,i.e.,

improvingbuildingfabric,increasinggreeninfrastructureinthe

community,improvingindoorandoutdoorenvironment

interac-tionbylandscapesolutions.

Inaddition,widespreadapplicationofmodularmicro

genera-tionsourcesoncommunitylevelmaycontributetothereduction

oftheenergypriceinthepowermarket.Further,pricereduction

maybeachievedbyoptimizingmicro-generationoperationand

performingbuildingloadforecastingwhichispossibleduetothe

availabledatafromthemeteringprocess.Asaresultthesmartgrids

canbeviewedasaggregatorsofbuildings,consumersand

com-munitiesthatwillbeempoweredwithbetterpricesandvaluable

opportunities.

In order to reach the aforementioned goals, several

chal-lengesanddrawbacksshouldbeovercome.Technicalchallenges

(5)

competencetooperatesuccessfullythemicrogenerationenergy

sourcesaswellastointeractwiththebuildingoccupants.These

aspectsrequireextensiveresearcheffortswithaninterdisciplinary

perspective that will examine smart grids’ real time

manage-ment,protectionandcontrol.Simultaneously,theroleoftheend

usersand buildingoccupants shouldbeenhanced and

success-fullyincorporated.Internet of thingscanplay a significantrole

inthisdirectionasitcansupportawarenessraisingofendusers

andprovideuserfriendlyapplicationsfordemandresponseand

loadmanagement capabilities. Inorder toachieve this, specific

telecommunicationininfrastructuresaswellasopen

communi-cationprotocolsshouldbeprovidedtohelpmanaging,operating

andcontrollingbuildingswithinsmartgrids.

Anothersignificantchallengeisrelatedtotheincreasedinitial

installationcostwhichconstitutesagreatdisadvantage.Specific

policiesandincentivesshouldbeprovidedbythegovernmental

bodiestoencourageinvestmentinordertoreachnationalcarbon

reductiongoals.

Finally,significanteffortshouldbeputinthedevelopmentof

standardsconcerningtheoperationalcharacteristics,thepower

quality,realtimeoptimizationandoverallmanagement.

References

[1]M.E.El-hawary,Thesmartgrid—state-of-the-artandfuturetrends,Electric PowerCompon.Syst.42(2014)239–250,http://dx.doi.org/10.1080/ 15325008.2013.868558.

[2]C.F.Covrig,A.Mengolini,SmartgridprojectsinEurope:lessonslearnedand currentdevelopments2012update,2013.

[3]L.Chen,Z.C.Huang,P.Wu,C.Liu,Transmissionlineconditionmonitoring basedonInternetofthingsinsmartgrid,Appl.Mech.Mater.336–338(2013) 2488–2493,http://dx.doi.org/10.4028/www.scientific.net/AMM.336-338. 2488.

[4]Y.Zhen,X.Li,Y.Zhang,L.Zeng,Q.Ou,X.Yin,Transmissiontowerprotection systembasedonInternetofthingsinsmartgrid,Proceedingsofthe7th InternationalConferenceonComputerScience&Education(ICCSE),IEEE, 2012,pp.863–867,doi:10.1109/ICCSE.2012.6295205.

[5]V.C.Güngör,D.Sahin,T.Kocak,S.Ergüt,C.Buccella,C.Cecati,etal.,Smartgrid technologies:communicationtechnologiesandstandards,IEEETrans.Ind. Inform.7(2011)529–539,http://dx.doi.org/10.1109/TII.2011.2166794. [6]S.Deng,R.Z.Wang,Y.J.Dai,Howtoevaluateperformanceofnetzeroenergy

building—aliteratureresearch,Energy71(2014)1–16,http://dx.doi.org/10. 1016/j.energy.2014.05.007.

[7]M.Santamouris,D.Kolokotsa,Passivecoolingdissipationtechniquesfor buildingsandotherstructures:thestateoftheart,EnergyBuild.57(2013) 74–94,http://dx.doi.org/10.1016/j.enbuild.2012.11.002.

[8]D.Kolokotsa,D.Rovas,E.Kosmatopoulos,K.Kalaitzakis,Aroadmaptowards intelligentnetzero-andpositive-energybuildings,SolarEnergy85(2011) 3067–3084.

[9]E.Pyloudi,S.Papantoniou,D.Kolokotsa,Retrofittinganofficebuilding towardsanetzeroenergybuilding,Adv.Build.EnergyRes.(2014)1–14, http://dx.doi.org/10.1080/17512549.2014.917985.

[10]M.Kapsalaki,V.Leal,Recentprogressonnetzeroenergybuildings,Adv.Build. EnergyRes.5(2011)129–162.

[11]D.H.W.Li,L.Yang,J.C.Lam,Zeroenergybuildingsandsustainable developmentimplications:areview,Energy54(2013)1–10,http://dx.doi. org/10.1016/j.energy.2013.01.070(**Thespecificpaperprovidesadeep reviewontheavailabletechnologiesandcasestudiesforthedevelopment andimplementationofzeroenergybuildings.Moreoverasummaryof recentlydevelopedZEBisprovided).

[12]N.Carlisle,O.VanGeet,Definitionofa“ZeroNetEnergy”Community,NREL, Colorado,USA,2009.

[13]G.Privat,Howinformationandcommunicationtechnologieswillshape SmartGrids,In:SmartGrids,2013,pp.263–280,doi:10.1002/9781118562581 (chapter9).

[14]T.G.Nikolaou,D.S.Kolokotsa,G.S.Stavrakakis,I.D.Skias,Ontheapplicationof clusteringtechniquesforofficebuildings’energyandthermalcomfort classification,IEEETrans.SmartGrid3(2012)2196–2210.

[15]M.Bae,H.Kim,E.Kim,A.Y.Chung,H.Kim,J.H.Roh,Towardelectricityretail competition:surveyandcasestudyontechnicalinfrastructureforadvanced electricitymarketsystem,Appl.Energy133(2014)252–273,http://dx.doi. org/10.1016/j.apenergy.2014.07.044.

[16]R.K.Jain,K.M.Smith,P.J.Culligan,J.E.Taylor,Forecastingenergyconsumption ofmulti-familyresidentialbuildingsusingsupportvectorregression: Investigatingtheimpactoftemporalandspatialmonitoringgranularityon performanceaccuracy,Appl.Energy123(2014)168–178,http://dx.doi.org/ 10.1016/j.apenergy.2014.02.057.

[17]H.Zhao,F.Magoulès,Areviewonthepredictionofbuildingenergy consumption,Renew.Sustain.EnergyRev.16(2012)3586–3592,http://dx. doi.org/10.1016/j.rser.2012.02.049.

[18]K.Gobakis,D.Kolokotsa,A.Synnefa,M.Saliari,K.Giannopoulou,M. Santamouris,Developmentofamodelforurbanheatislandprediction usingneuralnetworktechniques,Sustain.CitiesSoc.1(2011) 104–115.

[19]J.G.Jetcheva,M.Majidpour,W.-P.Chen,Neuralnetworkmodelensembles forbuilding-levelelectricityloadforecasts,EnergyBuild.84(2014) 214–223,http://dx.doi.org/10.1016/j.enbuild.2014.08.004.

[20]A.Mellit,A.M.Pavan,A24-hforecastofsolarirradianceusingartificialneural network:applicationforperformancepredictionofagrid-connectedPVplant atTrieste,Italy,SolarEnergy84(2010)807–821.

[21]S.Papantoniou,D.Kolokotsa,K.Kalaitzakis,D.N.Cesarini,E.Cubi, C.Cristalli,Adaptivelightingcontrollersusingsmartsensors,Int.J.Sustain. Energy(2014)1–17,http://dx.doi.org/10.1080/14786451.2014.

923887.

[22]C.Fan,F.Xiao,S.Wang,Developmentofpredictionmodelsfornext-day buildingenergyconsumptionandpeakpowerdemandusingdatamining techniques,Appl.Energy127(2014)1–10,http://dx.doi.org/10.1016/j. apenergy.2014.04.016.

[23]S.Papantoniou,D.Kolokotsa,K.Kalaitzakis,Buildingoptimizationandcontrol algorithmsimplementedinexistingBEMSusingawebbasedenergy managementandcontrolsystem,EnergyBuild.(2014),http://dx.doi.org/10. 1016/j.enbuild.2014.10.083.

[24]I.P.Panapakidis,T.A.Papadopoulos,G.C.Christoforidis,G.K.Papagiannis, Patternrecognitionalgorithmsforelectricityloadcurveanalysisofbuildings, EnergyBuild.73(2014)137–145,http://dx.doi.org/10.1016/j.enbuild.2014. 01.002.

[25]Y.-C.Li,S.H.Hong,BACnet–EnOceanSmartGridGatewayanditsapplication todemandresponseinbuildings,EnergyBuild.78(2014)183–191,http://dx. doi.org/10.1016/j.enbuild.2014.04.022.

[26]C.Bartusch,K.Alvehag,Furtherexploringthepotentialofresidentialdemand responseprogramsinelectricitydistribution,Appl.Energy125(2014)39–59, http://dx.doi.org/10.1016/j.apenergy.2014.03.054.

[27]P.Bradley,M.Leach,J.Torriti,Areviewofthecostsandbenefitsofdemand responseforelectricityintheUK,EnergyPolicy52(2013)312–327,http://dx. doi.org/10.1016/j.enpol.2012.09.039.

[28]C.Keles,A.Karabiber,M.Akcin,A.Kaygusuz,B.B.Alagoz,O.Gul,Asmart buildingpowermanagementconcept:smartsocketapplicationswithDC distribution,Int.J.Electr.PowerEnergySyst.64(2015)679–688,http://dx. doi.org/10.1016/j.ijepes.2014.07.075.

[29]G.Kayo,A.Hasan,K.Siren,Energysharingandmatchingindifferent combinationsofbuildings,CHPcapacitiesandoperationstrategy,Energy Build.82(2014)685–695,http://dx.doi.org/10.1016/j.enbuild.2014.07.077. [30]J.A.Oliveira-Lima,V.Delgado-Gomes,J.F.Martins,C.Lima,Standard-based

service-orientedinfrastructuretointegrateintelligentbuildingsin distributedgenerationandsmartgrids,EnergyBuild.76(2014)450–458, http://dx.doi.org/10.1016/j.enbuild.2014.03.013.

[31]S.H.Hong,S.H.Kim,G.M.Kim,H.L.Kim,ExperimentalevaluationofBZ-GW (BACnet-ZigBeesmartgridgateway)fordemandresponseinbuildings, Energy65(2014)62–70,http://dx.doi.org/10.1016/j.energy.2013.12.008. [32]ANSI/SHRAEstandard135-2010:adatacommunicationprotocolforbuilding

automationandcontrolnetwork,2012.

[33]G.Chalkiadakis,V.Robu,R.Kota,A.Rogers,N.Jennings,Cooperativesof distributedenergyresourcesforefficientvirtualpowerplants,Proceedingsof the10thInternationalConferenceonAutonomousAgentsandMultiagent Systems,Taipei,Taiwan,2011.

[36]X.Xue,S.Wang,Y.Sun,F.Xiao,Aninteractivebuildingpowerdemand managementstrategyforfacilitatingsmartgridoptimization,Appl.Energy 116(2014)297–310,http://dx.doi.org/10.1016/j.apenergy.2013.11.064. [37]X.H.Li,S.H.Hong,User-expectedprice-baseddemandresponsealgorithmfor

ahome-to-gridsystem,Energy64(2014)437–449,http://dx.doi.org/10.1016/ j.energy.2013.11.049.

[39]G.Bartels,GlobalSmartGridFederationReport,2012(Thespecificreport underlinestherecenttrendsandpenetrationofsmartgridsinvariouspartsof theworld.Itindicatesthemethodologyforlargescaledeploymentofsmart gridsincities).

[40]K.Gaiser,P.Stroeve,Theimpactofschedulingappliancesandratestructure onbillsavingsfornet-zeroenergycommunities:applicationtoWestVillage, Appl.Energy113(2014)1586–1595,http://dx.doi.org/10.1016/j.apenergy. 2013.08.075.

[41]K.M.Zhang,R.J.Thomas,M.Bohm,M.Miller,Anintegrateddesignapproach forsustainablecommunitydevelopment,Proceedingsofthe42ndHawaii InternationalConferenceonSystemSciences,IEEE,2009,pp.1–10,doi: 10.1109/HICSS.2009.67.

[42]E.Provata,D.Kolokotsa,S.Papantoniou,M.Pietrini,A.Giovannelli,G.Romiti, DevelopmentofoptimizationalgorithmsfortheLeafCommunitymicrogrid, Renew.Energy74(2015)782–795,http://dx.doi.org/10.1016/j.renene.2014. 08.080(*Thespecificpaperfocusesontheaplicationofartificialintelligence inmanagementpracticesforsmartgrids.TheLEAFmicrogridcommunity’s resourcesareusedfortheimplementationofadvancedenergymanagement andoptimisationtechniques).

[43]F.A.Mohamed,H.N.Koivo,Onlinemanagementgeneticalgorithmsof microgridforresidentialapplication,EnergyConvers.Manag.(2012) 562–568,http://dx.doi.org/10.1016/j.enconman.2012.06.010.

(6)

[44]H.Z.Liang,H.B.Gooi,Unitcommitmentinmicrogridsbyimprovedgenetic algorithm,IPEC,2010ConferenceProceedings,2010,pp.842–847,doi: 10.1109/IPECON.2010.5697083.

[45]G.Kyriakarakos,A.I.Dounis,K.G.Arvanitis,G.Papadakis,Afuzzylogicenergy managementsystemforpolygenerationmicrogrids,Renew.Energy41(2012) 315–327,http://dx.doi.org/10.1016/j.renene.201111.019.

[46]F.A.Mohamed,H.N.Koivo,Onlinemanagementofmicrogridwithbattery storageusingmultiobjectiveoptimization,ProceedingsoftheInternational ConferenceonPowerEngineering,EnergyandElectricalDrives,2007,doi: 10.1109/POWERENG.2007.4380118.

[47]J.Rawlings,P.Coker,J.Doak,B.Burfoot,Dosmartgridsofferanewincentive forSMEcarbonreduction?Sustain.CitiesSoc.10(2014)245–250,http://dx. doi.org/10.1016/j.scs.2013.04.003.

[48]M.Wolsink,Theresearchagendaonsocialacceptanceofdistributed generationinsmartgrids:renewableascommonpoolresources,Renew. Sustain.EnergyRev.16(2012)822–835,http://dx.doi.org/10.1016/j.rser. 2011.09.006.

References

Related documents

Administration. University of Texas, Centre for Excellence in Patient Safety. Francis JJ, Johnstone M, Robertson C, Glidewell L, et al. What is an adequate sample

Whole Demo Loin Divided Aitch Bone Blade Bone Backbone Sidestrap Muscle Tenderloin Riblets Backribs Boneless Loin.. Center Cut Pork Loin (8

In Forrester’s 19-criteria evaluation of public cloud vendors, we identified the 16 most significant public cloud platform providers for large enterprises — Acquia, Amazon

Based on a review of previous literature of mobile AR systems for pedagogical purposes, published between 2000-2017, we pre- sent findings demonstrating the mobile platforms used in

storage virtualization network virtualization internet internet server pool storage pool NAS pool load balancer pool firewall pool switching pool switching pool utility

Through the LSTF funding and effective partnership working, sustainable passenger transport jobs are being created, bringing new individuals into the sector, enhancing

Career planning and advancement involve the following stages and activities: (1) assess and research personal goals and abilities and career fields; (2) evaluate the employment

Based on the multi-sensor system developed for the Artificial Learning Environment for Autonomous Driving (ALEAD) project (Song et al.,2019), shown in Figure 1, a range