• No results found

Rotenone–acetic acid (2/1)

N/A
N/A
Protected

Academic year: 2020

Share "Rotenone–acetic acid (2/1)"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o532

Shi-Ping Yanget al. 2C23H22O6C2H4O2 DOI: 10.1107/S1600536804004817 Acta Cryst.(2004). E60, o532±o534 Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

Rotenone±acetic acid (2/1)

Shi-Ping Yang,a* Hong-Mei

Chen,aFan Zhang,aQiong-Qiong

Chen,aXi-Bin Yu,aJi-Guang

Huangband Han-Hong Xub

aSchool of Chemistry, Shanghai Teachers'

University, Shanghai 200234, People's Republic of China, andbLaboratory of Insect Toxicology,

South China Agricultural University, Guangzhou 510642, People's Republic of China

Correspondence e-mail: shipingy@shtu.edu.cn

Key indicators Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.007 AÊ Rfactor = 0.060 wRfactor = 0.146 Data-to-parameter ratio = 8.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The structure determination of the title compound, a 2:1 adduct of rotenone and acetic acid, 2C23H22O6C2H4O2,

con®rms that the rotenone molecule has an approximately V-shaped structure.

Comment

Rotenone is a naturally occurring heterocyclic compound widely used as an insecticide. It exerts its effects mainly by blocking oxidative phosphorylation and/or mitosis in cells through apparently separate pathways (Lof¯er & Schneider, 1982). Information on the mode of action and selectivity of rotenone is important so that the compound may be used safely and ef®ciently. The three-dimensional structure of most biologically active molecules plays a role in governing their interactions and activities. Thus, in the course of a systematic study of the relation between the structure and bioactivity of rotenone, we have isolated the 2:1 adduct of rotenone and acetic acid, (I), and report here its preparation and structure.

Received 30 January 2004 Accepted 2 March 2004 Online 13 March 2004

Figure 1

(2)

The X-ray diffraction analysis of (I) shows that there are two rotenone molecules and one acetic acid molecule in the asymmetric unit, as shown in Fig. 1. The distances and angles within the two rotenone molecules agree with those of related molecules (Begleyet al., 1989, 1993).

The two rotenone molecules in (I) are very similar, with two nearly ¯at regions (rings I and II, and rings III, IV and V). In each rotenone molecule, ring II can be regarded as having an envelope conformation, whereas ring III adopts a 1,2-diplanar conformation (Bucourt, 1974), as indicated by the torsion angles (Table 1). The torsion angles in the ®ve-membered ring V (Table 1) indicate an envelope conformation (Bucourt, 1974), with the isopropenyl group equatorial, as proposed earlier (BuÈchiet al., 1961; Carlsonet al., 1973).

Except for the isopropenyl group, the non-H atoms of (I) lie close to the plane of aromatic rings I and IV, resulting in an approximately V-shaped molecule, with dihedral angles of

74.7 (1) and 74.8 (1) between rings I and IV in the two

molecules.

The acetic acid molecule is linked through OÐH O

hydrogen bonding to one of the rotenone molecules (Table 2). The packing of the molecules is governed by weak van der Waals interactions.

Experimental

Rotenone (5 g) in ethanoic acid (50 ml) was re¯uxed for 2 h. After cooling and ®ltration, the solution was allowed to stand in air at room temperature for two months, after which time a single crystal was obtained suitable for X-ray analysis.

Crystal data

2C23H22O6C2H4O2

Mr= 848.86

Monoclinic,P21

a= 9.1356 (16) AÊ

b= 15.359 (3) AÊ

c= 15.082 (3) AÊ

= 92.652 (4)

V= 2113.9 (7) AÊ3

Z= 2

Dx= 1.334 Mg mÿ3

MoKradiation Cell parameters from 2045

re¯ections

= 5.1±39.9 = 0.10 mmÿ1

T= 293 (2) K Block, colourless 0.510.200.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Bruker, 1998)

Tmin= 0.952,Tmax= 0.994

12 858 measured re¯ections

5099 independent re¯ections 3945 re¯ections withI> 2(I)

Rint= 0.052 max= 28.3

h=ÿ11!12

k=ÿ20!10

l=ÿ19!19

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.060

wR(F2) = 0.146

S= 0.95 5099 re¯ections 566 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0596P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.009 max= 0.39 e AÊÿ3 min=ÿ0.31 e AÊÿ3

Table 1

Selected torsion angles ().

O3ÐC5ÐC6ÐC7 ÿ0.6 (6)

C5ÐC6ÐC7ÐC8 13.9 (6)

C6ÐC7ÐC8ÐC9 ÿ41.7 (5)

C7ÐC8ÐC9ÐO3 59.9 (5)

C8ÐC9ÐO3ÐC5 ÿ46.6 (5)

C9ÐO3ÐC5ÐC6 17.1 (6)

O2ÐC8ÐC7ÐC10 ÿ49.9 (5)

C8ÐC7ÐC10ÐC11 27.0 (5)

C7ÐC10ÐC11ÐC12 ÿ0.4 (6) C10ÐC11ÐC12ÐO2 ÿ4.9 (6) C11ÐC12ÐO2ÐC8 ÿ18.7 (5)

C12ÐO2ÐC8ÐC7 46.5 (5)

O9ÐC28ÐC29ÐC30 ÿ0.6 (7) C28ÐC29ÐC30ÐC31 15.1 (6) C29ÐC30ÐC31ÐC32 ÿ42.4 (5) C30ÐC31ÐC32ÐO9 58.0 (5) C31ÐC32ÐO9ÐC28 ÿ43.5 (5)

C32ÐO9ÐC28ÐC29 15.2 (6) O8ÐC30ÐC31ÐC33 50.1 (5) C30ÐC31ÐC33ÐC34 ÿ152.5 (5) C31ÐC33ÐC34ÐC35 9.9 (4) C33ÐC34ÐC35ÐO8 1.7 (6) C34ÐC35ÐO8ÐC30 2.1 (4) C35ÐO8ÐC30ÐC31 ÿ139.4 (4) O4ÐC13ÐC14ÐC17 ÿ0.9 (6) C13ÐC14ÐC17ÐC18 167.0 (5)

C14ÐC7ÐC18ÐO4 0.9 (2)

C7ÐC18ÐO4ÐC13 5.85 (13)

C18ÐO4ÐC13ÐC14 ÿ168.3 (5) O10ÐC36ÐC37ÐC40 1.0 (6) C36ÐC37ÐC38ÐC39 ÿ0.4 (8) C37ÐC38ÐC39ÐO10 0.6 (4) C38ÐC39ÐO10ÐC36 ÿ179.4 (8) C39ÐO10ÐC36ÐC37 0.7 (4)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O13ÐH13 O7 0.82 2.01 2.776 (7) 155

Owing to the lack of atoms heavier than O, the absolute con®g-uration of (I) could not be determined by X-ray analysis and the Friedel pairs were merged. The con®guration was then assigned on the basis of the con®guration of the starting rotenone (Rossiet al., 1988). All H atoms were positioned geometrically and re®ned using a riding model.

Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction:SAINT (Bruker, 1998) andSHELXTL (Sheldrick, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEP-3 for Windows(Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication:SHELXTL.

We acknowledge ®nancial support from the NSFC (grant No. 30100118) and the Science Grant of SHTU (grant No. 870).

Figure 2

(3)

organic papers

o534

Shi-Ping Yanget al. 2C23H22O6C2H4O2 Acta Cryst.(2004). E60, o532±o534

References

Begley, M. J., Crombie, L., Hadi, A. H. bin A. & Josephs, J. L. (1989).J. Chem. Soc. Perkin Trans.1, pp. 204±208.

Begley, M. J., Crombie, L., Hadi, A. H. bin A. & Josephs, J. L. (1993).J. Chem. Soc. Perkin Trans.1, pp. 2605±2609.

Bruker (1998).SMART(Version 5.0),SAINT (Version 4.0) andSADABS

(Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.

BuÈchi, G., Crombie, L., Godin, P. J., Kaltenbronn, J. S., Siddalingaiah, K. S. & Whiting, D. A. (1961).J. Chem. Soc.pp. 2843±2860.

Bucourt, R. (1974).Top. Stereochem.8, 159±175.

Carlson, D. G., Weisleder, D. & Tallent, W. H. (1973).Tetrahedron,29, 2731± 2735.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Lof¯er, M. & Schneider, F. (1982).Mol. Cell. Biochem.48, 77±90.

Rossi, M., Fule, P. Z. & Taylor, M. R. (1988). Bioorg. Chem. 16, 376± 387.

Sheldrick, G. M. (1995).SHELXTL.Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

(4)

supporting information

Acta Cryst. (2004). E60, o532–o534 [https://doi.org/10.1107/S1600536804004817]

Rotenone

acetic acid (2/1)

Shi-Ping Yang, Hong-Mei Chen, Fan Zhang, Qiong-Qiong Chen, Xi-Bin Yu, Ji-Guang Huang and

Han-Hong Xu

Rotenone–acetic acid (2/1)

Crystal data

2C23H22O6·C2H4O2

Mr = 848.86 Monoclinic, P21

Hall symbol: P 2yb a = 9.1356 (16) Å b = 15.359 (3) Å c = 15.082 (3) Å β = 92.652 (4)° V = 2113.9 (7) Å3

Z = 2

F(000) = 896 Dx = 1.334 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2045 reflections θ = 5.1–39.9°

µ = 0.10 mm−1

T = 293 K Block, colourless 0.51 × 0.20 × 0.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1998) Tmin = 0.952, Tmax = 0.994

12858 measured reflections 5099 independent reflections 3945 reflections with I > 2σ(I) Rint = 0.052

θmax = 28.3°, θmin = 1.9°

h = −11→12 k = −20→10 l = −19→19

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.060

wR(F2) = 0.146

S = 0.95 5048 reflections 566 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0596P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.009

Δρmax = 0.39 e Å−3

Δρmin = −0.31 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, o532–o534

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.9153 (5) 0.0213 (2) 0.3699 (2) 0.0682 (11) O2 0.8380 (3) 0.27909 (19) 0.31431 (19) 0.0455 (8) O3 0.8033 (3) 0.33043 (19) 0.4907 (2) 0.0474 (8) O4 1.1258 (4) 0.2753 (2) 0.0722 (2) 0.0587 (9) O5 1.1954 (4) 0.1033 (2) 0.6567 (2) 0.0584 (9) O6 1.1735 (4) 0.2630 (2) 0.7136 (2) 0.0611 (10) O7 0.6209 (4) 0.1117 (2) 0.6224 (2) 0.0603 (9) O8 0.6269 (3) −0.1255 (2) 0.49791 (19) 0.0452 (7) O9 0.7096 (3) −0.22307 (19) 0.6511 (2) 0.0503 (8) O10 0.2809 (4) −0.0438 (3) 0.2837 (2) 0.0651 (10) O11 0.3899 (4) −0.0374 (3) 0.8873 (3) 0.0746 (11) O12 0.4032 (4) −0.2048 (2) 0.8978 (2) 0.0693 (11) O13 0.7921 (8) 0.1707 (4) 0.7670 (5) 0.155 (3)

H13 0.7511 0.1390 0.7298 0.233*

O14 0.9080 (9) 0.0560 (5) 0.7822 (5) 0.170 (3) C1 1.0108 (5) 0.1297 (3) 0.5387 (3) 0.0421 (10)

H1 1.0204 0.0730 0.5180 0.051*

C2 1.0959 (5) 0.1561 (3) 0.6102 (3) 0.0431 (11) C3 1.0854 (5) 0.2418 (3) 0.6400 (3) 0.0459 (12) C4 0.9863 (5) 0.2978 (3) 0.5990 (3) 0.0435 (11)

H4 0.9778 0.3547 0.6191 0.052*

C5 0.8989 (4) 0.2687 (3) 0.5274 (3) 0.0392 (10) C6 0.9094 (5) 0.1853 (3) 0.4954 (3) 0.0409 (11) C7 0.8127 (5) 0.1555 (3) 0.4164 (3) 0.0418 (11)

H7 0.7344 0.1199 0.4399 0.050*

C8 0.7405 (5) 0.2315 (3) 0.3692 (3) 0.0429 (11)

H8 0.6569 0.2103 0.3322 0.051*

C9 0.6873 (5) 0.2966 (3) 0.4343 (3) 0.0485 (12)

H9A 0.6396 0.3443 0.4022 0.058*

H9B 0.6152 0.2693 0.4705 0.058*

C10 0.8949 (5) 0.0982 (3) 0.3538 (3) 0.0465 (12) C11 0.9482 (5) 0.1421 (3) 0.2749 (3) 0.0395 (10) C12 0.9214 (5) 0.2304 (3) 0.2613 (3) 0.0373 (10) C13 0.9852 (5) 0.2728 (3) 0.1928 (3) 0.0418 (10) C14 1.0712 (5) 0.2259 (3) 0.1371 (3) 0.0481 (12) C15 1.0980 (6) 0.1383 (3) 0.1470 (3) 0.0579 (14)

H15 1.1563 0.1082 0.1084 0.069*

C16 1.0351 (5) 0.0972 (3) 0.2164 (3) 0.0528 (13)

H16 1.0507 0.0378 0.2247 0.063*

(6)

H17A 0.9985 0.4057 0.2102 0.064*

H17B 0.8831 0.3788 0.1335 0.064*

C18 1.1001 (6) 0.3669 (3) 0.0942 (3) 0.0546 (13)

H18 1.1894 0.3908 0.1234 0.065*

C19 1.0670 (6) 0.4164 (3) 0.0102 (3) 0.0560 (13) C20 0.9266 (7) 0.4032 (5) −0.0367 (4) 0.093 (2)

H20A 0.9272 0.4310 −0.0937 0.140*

H20B 0.8504 0.4280 −0.0029 0.140*

H20C 0.9093 0.3420 −0.0444 0.140*

C21 1.1675 (8) 0.4707 (5) −0.0174 (5) 0.098 (2)

H21A 1.1497 0.5027 −0.0691 0.117*

H21B 1.2561 0.4769 0.0150 0.117*

C22 1.1848 (6) 0.0131 (3) 0.6392 (4) 0.0569 (13)

H22A 1.0854 −0.0056 0.6449 0.085*

H22B 1.2477 −0.0181 0.6809 0.085*

H22C 1.2141 0.0016 0.5801 0.085*

C23 1.1554 (7) 0.3471 (4) 0.7485 (4) 0.089 (2)

H23A 1.1807 0.3896 0.7051 0.133*

H23B 1.2179 0.3540 0.8009 0.133*

H23C 1.0551 0.3551 0.7632 0.133*

C24 0.5445 (5) −0.0350 (3) 0.7596 (3) 0.0460 (12)

H24 0.5372 0.0253 0.7547 0.055*

C25 0.4739 (5) −0.0772 (3) 0.8255 (3) 0.0504 (12) C26 0.4799 (5) −0.1672 (4) 0.8319 (3) 0.0505 (13) C27 0.5627 (5) −0.2134 (3) 0.7738 (3) 0.0453 (11)

H27 0.5709 −0.2735 0.7791 0.054*

C28 0.6341 (5) −0.1696 (3) 0.7072 (3) 0.0393 (11) C29 0.6271 (5) −0.0813 (3) 0.6998 (3) 0.0411 (11) C30 0.7061 (5) −0.0344 (3) 0.6270 (3) 0.0426 (11)

H30 0.7962 −0.0097 0.6544 0.051*

C31 0.7511 (5) −0.0987 (3) 0.5562 (3) 0.0451 (11)

H31 0.8256 −0.0717 0.5204 0.054*

C32 0.8122 (5) −0.1817 (3) 0.5968 (3) 0.0516 (13)

H32A 0.8380 −0.2212 0.5498 0.062*

H32B 0.9007 −0.1685 0.6322 0.062*

C33 0.6176 (5) 0.0400 (3) 0.5878 (3) 0.0465 (12) C34 0.5262 (5) 0.0206 (3) 0.5075 (3) 0.0416 (11) C35 0.5385 (5) −0.0605 (3) 0.4675 (3) 0.0398 (10) C36 0.4521 (5) −0.0796 (3) 0.3917 (3) 0.0444 (11) C37 0.3572 (5) −0.0167 (3) 0.3587 (3) 0.0517 (13) C38 0.3425 (6) 0.0647 (4) 0.3960 (4) 0.0626 (15)

H38 0.2774 0.1057 0.3716 0.075*

C39 0.4277 (5) 0.0821 (3) 0.4703 (3) 0.0509 (12)

H39 0.4205 0.1363 0.4972 0.061*

C40 0.4385 (6) −0.1592 (3) 0.3343 (3) 0.0522 (12)

H40A 0.3892 −0.2060 0.3640 0.063*

H40B 0.5336 −0.1793 0.3168 0.063*

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, o532–o534

H41 0.2669 −0.1667 0.2401 0.069*

C42 0.4296 (7) −0.1102 (5) 0.1741 (4) 0.0754 (17) C43 0.4633 (10) −0.0320 (6) 0.1476 (6) 0.131 (3)

H43A 0.4345 0.0164 0.1794 0.157*

H43B 0.5162 −0.0248 0.0968 0.157*

C44 0.4748 (9) −0.1916 (6) 0.1281 (5) 0.120 (3)

H44A 0.5352 −0.1769 0.0799 0.180*

H44B 0.3891 −0.2220 0.1055 0.180*

H44C 0.5289 −0.2283 0.1695 0.180*

C45 0.3868 (8) 0.0541 (4) 0.8858 (5) 0.095 (2)

H45A 0.4846 0.0762 0.8949 0.142*

H45B 0.3273 0.0749 0.9321 0.142*

H45C 0.3463 0.0736 0.8294 0.142*

C46 0.4079 (8) −0.2962 (4) 0.9069 (4) 0.091 (2)

H46A 0.3781 −0.3229 0.8514 0.137*

H46B 0.3428 −0.3139 0.9517 0.137*

H46C 0.5060 −0.3140 0.9238 0.137*

C47 0.8792 (10) 0.1287 (5) 0.8118 (7) 0.112 (3) C48 0.9771 (12) 0.1576 (6) 0.8839 (6) 0.154 (4)

H48A 1.0500 0.1956 0.8612 0.231*

H48B 1.0241 0.1081 0.9117 0.231*

H48C 0.9223 0.1884 0.9268 0.231*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

C9 0.037 (2) 0.059 (3) 0.049 (3) 0.006 (2) 0.003 (2) 0.009 (2) C10 0.051 (3) 0.045 (3) 0.043 (3) −0.006 (2) −0.010 (2) −0.001 (2) C11 0.043 (2) 0.036 (2) 0.039 (2) 0.000 (2) −0.013 (2) −0.0058 (19) C12 0.040 (2) 0.037 (2) 0.034 (2) 0.005 (2) −0.008 (2) −0.0041 (19) C13 0.050 (3) 0.038 (2) 0.037 (2) 0.007 (2) −0.003 (2) 0.000 (2) C14 0.056 (3) 0.051 (3) 0.037 (3) 0.008 (2) −0.003 (2) −0.002 (2) C15 0.073 (4) 0.055 (3) 0.045 (3) 0.016 (3) 0.001 (3) −0.010 (3) C16 0.073 (3) 0.038 (3) 0.046 (3) 0.007 (3) −0.010 (3) −0.003 (2) C17 0.075 (3) 0.043 (3) 0.043 (3) 0.009 (3) 0.010 (2) −0.001 (2) C18 0.071 (3) 0.051 (3) 0.042 (3) 0.001 (3) 0.005 (2) 0.002 (2) C19 0.072 (3) 0.055 (3) 0.042 (3) 0.008 (3) 0.012 (3) 0.009 (2) C20 0.105 (5) 0.118 (6) 0.056 (4) 0.005 (5) −0.014 (4) 0.013 (4) C21 0.101 (5) 0.118 (6) 0.075 (5) −0.013 (5) 0.020 (4) 0.040 (4) C22 0.060 (3) 0.049 (3) 0.061 (3) 0.009 (3) −0.004 (3) 0.011 (3) C23 0.107 (5) 0.073 (4) 0.082 (4) 0.017 (4) −0.037 (4) −0.030 (3) C24 0.052 (3) 0.046 (3) 0.040 (3) 0.004 (2) 0.002 (2) −0.003 (2) C25 0.053 (3) 0.059 (3) 0.040 (3) 0.002 (3) 0.005 (2) −0.008 (2) C26 0.048 (3) 0.069 (4) 0.035 (3) −0.007 (3) −0.003 (2) 0.002 (2) C27 0.048 (3) 0.048 (3) 0.038 (2) −0.004 (2) −0.009 (2) 0.003 (2) C28 0.038 (2) 0.043 (3) 0.036 (2) 0.003 (2) −0.005 (2) 0.003 (2) C29 0.036 (2) 0.047 (3) 0.040 (3) −0.003 (2) −0.002 (2) 0.002 (2) C30 0.038 (2) 0.046 (3) 0.044 (3) −0.006 (2) 0.000 (2) 0.003 (2) C31 0.038 (2) 0.054 (3) 0.043 (3) −0.002 (2) 0.005 (2) 0.006 (2) C32 0.043 (3) 0.065 (3) 0.046 (3) 0.014 (2) 0.000 (2) 0.003 (2) C33 0.047 (3) 0.044 (3) 0.050 (3) −0.010 (2) 0.013 (2) 0.004 (2) C34 0.041 (2) 0.037 (2) 0.047 (3) −0.002 (2) 0.005 (2) 0.008 (2) C35 0.039 (2) 0.036 (2) 0.044 (3) −0.001 (2) 0.011 (2) 0.010 (2) C36 0.044 (3) 0.050 (3) 0.039 (2) 0.001 (2) 0.002 (2) 0.011 (2) C37 0.045 (3) 0.056 (3) 0.053 (3) 0.001 (2) −0.004 (2) 0.014 (3) C38 0.054 (3) 0.049 (3) 0.084 (4) 0.013 (3) −0.010 (3) 0.020 (3) C39 0.052 (3) 0.045 (3) 0.056 (3) 0.003 (2) 0.005 (2) 0.006 (2) C40 0.058 (3) 0.055 (3) 0.043 (3) 0.009 (3) 0.004 (2) 0.004 (2) C41 0.055 (3) 0.072 (4) 0.046 (3) 0.002 (3) −0.006 (2) 0.003 (3) C42 0.071 (4) 0.095 (5) 0.058 (4) 0.008 (4) −0.008 (3) 0.009 (4) C43 0.153 (8) 0.138 (8) 0.107 (7) 0.032 (7) 0.050 (6) 0.058 (6) C44 0.115 (6) 0.172 (8) 0.073 (5) −0.009 (6) 0.006 (4) −0.056 (5) C45 0.111 (5) 0.092 (5) 0.083 (5) 0.014 (4) 0.035 (4) −0.036 (4) C46 0.131 (6) 0.082 (5) 0.062 (4) −0.030 (4) 0.026 (4) 0.011 (4) C47 0.114 (6) 0.043 (4) 0.177 (10) −0.004 (4) −0.021 (6) 0.035 (5) C48 0.221 (11) 0.126 (8) 0.109 (7) −0.052 (8) −0.059 (8) 0.008 (6)

Geometric parameters (Å, º)

O1—C10 1.219 (5) C20—H20B 0.9600

O2—C12 1.355 (5) C20—H20C 0.9600

O2—C8 1.444 (5) C21—H21A 0.9300

O3—C5 1.387 (5) C21—H21B 0.9300

(9)

supporting information

sup-6 Acta Cryst. (2004). E60, o532–o534

O4—C14 1.351 (6) C22—H22B 0.9600

O4—C18 1.467 (6) C22—H22C 0.9600

O5—C2 1.384 (5) C23—H23A 0.9600

O5—C22 1.413 (6) C23—H23B 0.9600

O6—C3 1.379 (5) C23—H23C 0.9600

O6—C23 1.407 (6) C24—C25 1.373 (7)

O7—C33 1.218 (5) C24—C29 1.398 (6)

O8—C35 1.350 (5) C24—H24 0.9300

O8—C31 1.461 (5) C25—C26 1.386 (7)

O9—C28 1.385 (5) C26—C27 1.380 (7)

O9—C32 1.423 (6) C27—C28 1.396 (6)

O10—C37 1.366 (6) C27—H27 0.9300

O10—C41 1.457 (7) C28—C29 1.362 (6)

O11—C25 1.378 (6) C29—C30 1.522 (6)

O11—C45 1.405 (7) C30—C33 1.505 (6)

O12—C26 1.370 (6) C30—C31 1.526 (6)

O12—C46 1.411 (7) C30—H30 0.9800

O13—C47 1.207 (8) C31—C32 1.510 (6)

O13—H13 0.8200 C31—H31 0.9800

O14—C47 1.236 (10) C32—H32A 0.9700

C1—C2 1.361 (6) C32—H32B 0.9700

C1—C6 1.400 (6) C33—C34 1.469 (6)

C1—H1 0.9300 C34—C35 1.391 (6)

C2—C3 1.396 (7) C34—C39 1.404 (6)

C3—C4 1.375 (6) C35—C36 1.390 (6)

C4—C5 1.387 (6) C36—C37 1.376 (6)

C4—H4 0.9300 C36—C40 1.499 (7)

C5—C6 1.373 (6) C37—C38 1.381 (7)

C6—C7 1.520 (6) C38—C39 1.361 (7)

C7—C8 1.503 (6) C38—H38 0.9300

C7—C10 1.516 (7) C39—H39 0.9300

C7—H7 0.9800 C40—C41 1.533 (6)

C8—C9 1.498 (7) C40—H40A 0.9700

C8—H8 0.9800 C40—H40B 0.9700

C9—H9A 0.9700 C41—C42 1.481 (8)

C9—H9B 0.9700 C41—H41 0.9800

C10—C11 1.469 (6) C42—C43 1.307 (10)

C11—C12 1.391 (6) C42—C44 1.498 (10)

C11—C16 1.396 (6) C43—H43A 0.9300

C12—C13 1.373 (6) C43—H43B 0.9300

C13—C14 1.380 (6) C44—H44A 0.9600

C13—C17 1.496 (7) C44—H44B 0.9600

C14—C15 1.375 (7) C44—H44C 0.9600

C15—C16 1.371 (7) C45—H45A 0.9600

C15—H15 0.9300 C45—H45B 0.9600

C16—H16 0.9300 C45—H45C 0.9600

C17—C18 1.544 (7) C46—H46A 0.9600

(10)

C17—H17B 0.9700 C46—H46C 0.9600

C18—C19 1.497 (7) C47—C48 1.446 (11)

C18—H18 0.9800 C48—H48A 0.9600

C19—C21 1.322 (8) C48—H48B 0.9600

C19—C20 1.449 (7) C48—H48C 0.9600

C20—H20A 0.9600

C12—O2—C8 116.0 (3) H23B—C23—H23C 109.5

C5—O3—C9 115.2 (3) C25—C24—C29 120.8 (5)

C14—O4—C18 107.9 (4) C25—C24—H24 119.6

C2—O5—C22 116.2 (4) C29—C24—H24 119.6

C3—O6—C23 116.3 (4) C24—C25—O11 125.1 (5)

C35—O8—C31 115.6 (3) C24—C25—C26 120.2 (5) C28—O9—C32 116.5 (3) O11—C25—C26 114.7 (5) C37—O10—C41 108.2 (4) O12—C26—C27 123.9 (5) C25—O11—C45 116.4 (5) O12—C26—C25 116.8 (5) C26—O12—C46 118.4 (5) C27—C26—C25 119.3 (5)

C47—O13—H13 109.5 C26—C27—C28 119.9 (4)

C2—C1—C6 121.9 (4) C26—C27—H27 120.1

C2—C1—H1 119.1 C28—C27—H27 120.1

C6—C1—H1 119.1 C29—C28—O9 124.2 (4)

C1—C2—O5 124.4 (4) C29—C28—C27 121.1 (5)

C1—C2—C3 119.4 (4) O9—C28—C27 114.6 (4)

O5—C2—C3 116.2 (4) C28—C29—C24 118.6 (5)

C4—C3—O6 124.2 (4) C28—C29—C30 120.6 (4)

C4—C3—C2 119.8 (4) C24—C29—C30 120.8 (4)

O6—C3—C2 115.9 (4) C33—C30—C29 112.3 (4)

C3—C4—C5 119.5 (4) C33—C30—C31 111.9 (4)

C3—C4—H4 120.2 C29—C30—C31 110.5 (4)

C5—C4—H4 120.2 C33—C30—H30 107.3

C6—C5—O3 123.4 (4) C29—C30—H30 107.3

C6—C5—C4 121.8 (4) C31—C30—H30 107.3

O3—C5—C4 114.8 (4) O8—C31—C32 105.5 (4)

C5—C6—C1 117.5 (4) O8—C31—C30 112.1 (3)

C5—C6—C7 120.6 (4) C32—C31—C30 111.7 (4)

C1—C6—C7 121.9 (4) O8—C31—H31 109.1

C8—C7—C10 112.0 (4) C32—C31—H31 109.1

C8—C7—C6 111.3 (4) C30—C31—H31 109.1

C10—C7—C6 112.1 (4) O9—C32—C31 111.7 (4)

C8—C7—H7 107.0 O9—C32—H32A 109.3

C10—C7—H7 107.0 C31—C32—H32A 109.3

C6—C7—H7 107.0 O9—C32—H32B 109.3

O2—C8—C9 105.4 (4) C31—C32—H32B 109.3

O2—C8—C7 113.3 (3) H32A—C32—H32B 107.9

C9—C8—C7 110.9 (4) O7—C33—C34 122.6 (4)

O2—C8—H8 109.1 O7—C33—C30 121.0 (4)

C9—C8—H8 109.1 C34—C33—C30 116.3 (4)

(11)

supporting information

sup-8 Acta Cryst. (2004). E60, o532–o534

O3—C9—C8 112.3 (3) C35—C34—C33 119.1 (4)

O3—C9—H9A 109.1 C39—C34—C33 121.5 (4)

C8—C9—H9A 109.1 O8—C35—C36 115.6 (4)

O3—C9—H9B 109.1 O8—C35—C34 125.0 (4)

C8—C9—H9B 109.1 C36—C35—C34 119.4 (4)

H9A—C9—H9B 107.9 C37—C36—C35 118.3 (5)

O1—C10—C11 123.6 (5) C37—C36—C40 109.2 (4)

O1—C10—C7 120.9 (4) C35—C36—C40 132.5 (4)

C11—C10—C7 115.5 (4) O10—C37—C36 112.0 (4) C12—C11—C16 119.3 (4) O10—C37—C38 123.9 (5) C12—C11—C10 120.2 (4) C36—C37—C38 124.1 (5) C16—C11—C10 120.3 (4) C39—C38—C37 116.7 (5)

O2—C12—C13 116.8 (4) C39—C38—H38 121.6

O2—C12—C11 123.4 (4) C37—C38—H38 121.6

C13—C12—C11 119.7 (4) C38—C39—C34 122.0 (5)

C12—C13—C14 118.9 (4) C38—C39—H39 119.0

C12—C13—C17 132.3 (4) C34—C39—H39 119.0

C14—C13—C17 108.8 (4) C36—C40—C41 101.7 (4)

O4—C14—C15 124.0 (5) C36—C40—H40A 111.4

O4—C14—C13 112.8 (4) C41—C40—H40A 111.4

C15—C14—C13 123.2 (5) C36—C40—H40B 111.4

C16—C15—C14 117.1 (5) C41—C40—H40B 111.4

C16—C15—H15 121.5 H40A—C40—H40B 109.3

C14—C15—H15 121.5 O10—C41—C42 110.4 (5)

C15—C16—C11 121.7 (5) O10—C41—C40 105.8 (4)

C15—C16—H16 119.1 C42—C41—C40 114.0 (4)

C11—C16—H16 119.1 O10—C41—H41 108.8

C13—C17—C18 101.5 (4) C42—C41—H41 108.8

C13—C17—H17A 111.5 C40—C41—H41 108.8

C18—C17—H17A 111.5 C43—C42—C41 122.0 (7)

C13—C17—H17B 111.5 C43—C42—C44 123.5 (7)

C18—C17—H17B 111.5 C41—C42—C44 114.5 (6)

H17A—C17—H17B 109.3 C42—C43—H43A 120.0

O4—C18—C19 108.9 (4) C42—C43—H43B 120.0

O4—C18—C17 105.1 (4) H43A—C43—H43B 120.0

C19—C18—C17 116.3 (4) C42—C44—H44A 109.5

O4—C18—H18 108.8 C42—C44—H44B 109.5

C19—C18—H18 108.8 H44A—C44—H44B 109.5

C17—C18—H18 108.8 C42—C44—H44C 109.5

C21—C19—C20 123.2 (6) H44A—C44—H44C 109.5 C21—C19—C18 118.1 (5) H44B—C44—H44C 109.5

C20—C19—C18 118.8 (5) O11—C45—H45A 109.5

C19—C20—H20A 109.5 O11—C45—H45B 109.5

C19—C20—H20B 109.5 H45A—C45—H45B 109.5

H20A—C20—H20B 109.5 O11—C45—H45C 109.5

C19—C20—H20C 109.5 H45A—C45—H45C 109.5

H20A—C20—H20C 109.5 H45B—C45—H45C 109.5

(12)

C19—C21—H21A 120.0 O12—C46—H46B 109.5

C19—C21—H21B 120.0 H46A—C46—H46B 109.5

H21A—C21—H21B 120.0 O12—C46—H46C 109.5

O5—C22—H22A 109.5 H46A—C46—H46C 109.5

O5—C22—H22B 109.5 H46B—C46—H46C 109.5

H22A—C22—H22B 109.5 O13—C47—O14 115.2 (10)

O5—C22—H22C 109.5 O13—C47—C48 128.7 (9)

H22A—C22—H22C 109.5 O14—C47—C48 114.5 (9)

H22B—C22—H22C 109.5 C47—C48—H48A 109.5

O6—C23—H23A 109.5 C47—C48—H48B 109.5

O6—C23—H23B 109.5 H48A—C48—H48B 109.5

H23A—C23—H23B 109.5 C47—C48—H48C 109.5

O6—C23—H23C 109.5 H48A—C48—H48C 109.5

H23A—C23—H23C 109.5 H48B—C48—H48C 109.5

O3—C5—C6—C7 −0.6 (6) C32—O9—C28—C29 15.2 (6) C5—C6—C7—C8 13.9 (6) O8—C30—C31—C33 50.1 (5) C6—C7—C8—C9 −41.7 (5) C30—C31—C33—C34 −152.5 (5) C7—C8—C9—O3 59.9 (5) C31—C33—C34—C35 9.9 (4) C8—C9—O3—C5 −46.6 (5) C33—C34—C35—O8 1.7 (6) C9—O3—C5—C6 17.1 (6) C34—C35—O8—C30 2.1 (4) O2—C8—C7—C10 −49.9 (5) C35—O8—C30—C31 −139.4 (4) C8—C7—C10—C11 27.0 (5) O4—C13—C14—C17 −0.9 (6) C7—C10—C11—C12 −0.4 (6) C13—C14—C17—C18 167.0 (5) C10—C11—C12—O2 −4.9 (6) C14—C7—C18—O4 0.9 (2) C11—C12—O2—C8 −18.7 (5) C7—C18—O4—C13 5.85 (13) C12—O2—C8—C7 46.5 (5) C18—O4—C13—C14 −168.3 (5) O9—C28—C29—C30 −0.6 (7) O10—C36—C37—C40 1.0 (6) C28—C29—C30—C31 15.1 (6) C36—C37—C38—C39 −0.4 (8) C29—C30—C31—C32 −42.4 (5) C37—C38—C39—O10 0.6 (4) C30—C31—C32—O9 58.0 (5) C38—C39—O10—C36 −179.4 (8) C31—C32—O9—C28 −43.5 (5) C39—O10—C36—C37 0.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

References

Related documents

In conclusion, our study provides first-hand clinical evidence that perioperative probiotic administration may help those patients undergoing confined CRC resection surgery

This model is often said to have the structure of a pure (classic) duopoly where both companies satisfy the complete market demand. One can find numerous studies

In this paper, we show a practice case (about an Electric Research institute of Mexican government) of strategic planning for the computer science security based on6. the

ABBREVIATIONS: CVS ⫽ central vein sign; EDSS ⫽ Expanded Disability Status Scale; HC ⫽ healthy control; IEV-SWI ⫽ inter-echo variance susceptibility-weighted imaging; LL ⫽ lesions

Many retrofit solutions have been proposed and investigated in the recent past to improve the seismic response of beam-column connections and more specifically to avoid

Altered cognitive scores in patients with MS were significantly associated with decreased fractional anisotropy and increased mean diffusivity in all examined domains, while in

The normal postoperative findings of posterior nasopharyngeal dextranomer/hyaluronic acid copolymer injection are character- ized by the presence of bilateral nasopharyngeal

The Lithuanian communications ministry also wants to create a digital data communications network, extending and replacing crossbar-type equipment; to extend and upgrade the