• No results found

Edge Vertex Dominating Sets and Edge Vertex Domination Polynomials of Cycles

N/A
N/A
Protected

Academic year: 2020

Share "Edge Vertex Dominating Sets and Edge Vertex Domination Polynomials of Cycles"

Copied!
14
0
0

Loading.... (view fulltext now)

Full text

(1)

http://dx.doi.org/10.4236/ojdm.2015.54007

Edge-Vertex Dominating Sets and

Edge-Vertex Domination Polynomials

of Cycles

A. Vijayan1, J. Sherin Beula2

1Department of Mathematics, Nesamony Memorial Christian College, Marthandam, India

2Department of Mathematics, Mar Ephraem College of Engineering & Technology, Marthandam, India Email: dravijayan@gmail.com, sherinbeula@gmail.com

Received 27 March 2015; accepted 27 September 2015; published 30 September 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Abstract

Let G = (V, E) be a simple graph. A set SE(G) is an edge-vertex dominating set of G (or simply an ev-dominating set), if for all vertices v V(G); there exists an edge eS such that e dominates v. Let

(

)

ev n

D C i, denote the family of all ev-dominating sets of Cn with cardinality i. Let

(

)

(

)

ev n ev n

d C i, = D C i, . In this paper, we obtain a recursive formula for d C iev

(

n,

)

. Using this

re-cursive formula, we construct the polynomial,

(

)

 

(

)

   

n i

ev n i n ev n

D C x d C i x

4

, ,

=

= , which we call edge-

vertex domination polynomial of Cn (or simply an ev-domination polynomial of Cn) and obtain

some properties of this polynomial.

Keywords

ev-Domination Set, ev-Domination Number, ev-Domination Polynomials

1. Introduction

Let G = (V, E) be a simple graph of order |V| = n. A set SV(G) is a dominating set of G, if every vertex V S\ is adjacent to at least one vertex in S. For any vertex v V, the open neighbourhood of ν is the set

( ) {

}

N v = u V uv E∈ ∈ and the closed neighbourhood of ν is the set N v

[ ]

=N v

( ) { }

v . For a set SV, the open neighbourhood of S is N S

( )

=U N vv S

( )

and the closed neighbourhood of S is N S

[ ]

=N S

( )

S. The domination number of a graph G is defined as the minimum size of a dominating set in G and it is denoted as

( )

G

(2)

Definition 1.1

For a graph G = (V, E), an edge e uv E G= ∈

( )

, ev-dominates a vertex w V G

( )

if 1) u = w or v = w (w is incident to e) or

2) uw or vw is an edge in G (w is adjacent to u or v). Definition 1.2 [1]

A set S E G

( )

is an edge-vertex dominating set of G (or simply an ev-dominating set), if for all vertices

( )

v V G∈ ; there exists an edge e S∈ such that e dominates v. The ev-domination number of a graph G is de-fined as the minimum size of an ev-dominating set of edges in G and it is denoted as γev

( )

G .

Definition 1.3

Let D C iev

(

n,

)

be the family of ev-dominating sets of a graph Cn with cardinality i and let

(

,

)

(

,

)

ev n ev n

d C i = D C i . We call the polynomial

(

)

(

)

4

, n , i

ev n i n ev n

D C x  d C i x

=  

=

the ev-domination poly-nomial of the graph Cn.

In the next section, we construct the families of the ev-dominating sets of cycles by recursive method. As usual we use   x for the largest integer less than or equal to x and   x for the smallest integer greater than or equal to x. Also, we denote the set

{

e e1, , ,2 en

}

by [en] and the set

{

1,2, , n

}

by [n], throughout this pa-per.

2. Edge-Vertex Dominating Sets of Cycles

Let D C iev

(

n,

)

be the family of ev-dominating sets of Cn with cardinality i. We investigate the ev-domina- ting sets of Cn. We need the following lemma to prove our main results in this section.

Lemma 2.1: [2]

( )

4

ev Cn n

γ =   

 .

By Lemma 2.1 and the definition of ev-domination number, one has the following Lemma: Lemma 2.2: D C iev

(

n,

)

= Φ if and only if i n> or i 4n

  <   .

Lemma 2.3: If a graph G contains a simple path of length 4k− 1, then every ev-dominating set of G must contain at least k vertices of the path.

Proof: The path has 4k vertices. As every edge dominates at most 4 vertices, the 4k vertices are covered by at least k edges.

Lemma 2.4. If Y D Cev

(

n−5, 1i

)

, and there exists x∈ [en] such that Y

{ }

xD C iev

(

n,

)

then

(

4, 1

)

ev n

Y D C∈ − i− .

Proof: Suppose that Y D Cev

(

n−4, 1i

)

. Since Y D Cev

(

n−5, 1i

)

, Y contains at least one edge labelled en−5, en−6 or en−7.

If en−5∈Y, then Y D Cev

(

n−4, 1i

)

, a contradiction. Hence en−6 or en−7∈Y, but then in this case

{ }

ev

(

n,

)

YxD C i for any x∈ [en], also a contradiction. Lemma 2.5. [3]

1) If D Cev

(

n−1, 1i− =

)

D Cev

(

n−4, 1i− = Φ

)

then D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− = Φ

)

.

2) If D Cev

(

n−1, 1i− ≠ Φ

)

, and D Cev

(

n−4, 1i− ≠ Φ

)

then D Cev

(

n−2, 1i− ≠ Φ

)

and D Cev

(

n−3, 1i− ≠ Φ

)

. 3) If D Cev

(

n1, 1i− = Φ

)

, D Cev

(

n−2, 1i− = Φ

)

, D Cev

(

n−3, 1i− = Φ

)

, and D Cev

(

n−4, 1i− = Φ

)

, then

(

,

)

ev n

D C i = Φ.

Proof: 1) Since D Cev

(

n−1, 1i− =

)

D Cev

(

n−4, 1i− = Φ

)

, by Lemma 2.2, i− > −1 n 1 or

4 1

4 n i− <  − 

 . In

ei-ther case, we have D Cev

(

n2, 1i− = Φ

)

and D Cev

(

n−3, 1i− = Φ

)

.

2) Since D Cev

(

n−1, 1i− ≠ Φ

)

and D Cev

(

n−4, 1i− ≠ Φ

)

, by Lemma 2.2, we have

1 1 1

4

ni n

 ≤ − ≤ −

 

  and

4 1 4

4

ni n

 ≤ − ≤ −

 

  . Hence

2 1 2

4

ni n

 ≤ − ≤ −

 

  and

3 1 3

4

ni n

 ≤ − ≤ −

 

(3)

(

2, 1

)

ev n

D Ci− ≠ Φ and D Cev

(

n−3, 1i− ≠ Φ

)

.

3) By hypothesis, i− > −1 n 1 or 1 4 4 n i− <  − 

 . Therefore, i n> or 44 1 n i< − +

  . Therefore, i n> or

4 n i<   

 . Therefore, D C iev

(

n,

)

= Φ.

Lemma 2.6. [4] If D C iev

(

n,

)

≠ Φ, then

1) D Cev

(

n−1, 1i− =

)

D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− = Φ

)

and D Cev

(

n−4, 1i− ≠ Φ

)

if and only if n = 4k and i = k for some kN.

2) D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− =

)

D Cev

(

n−4, 1i− = Φ

)

and D Cev

(

n−1, 1i− ≠ Φ

)

if and only if i = n. 3) D Cev

(

n−1, 1i− = Φ

)

, D Cev

(

n−2, 1i− ≠ Φ

)

, D Cev

(

n−3, 1i− ≠ Φ

)

, D Cev

(

n−4, 1i− ≠ Φ

)

, if and only if n =

4k + 2 and 4 2 4 k i=  + 

  for some k N.

4) D Cev

(

n−1, 1i− ≠ Φ

)

, D Cev

(

n−2, 1i− ≠ Φ

)

, D Cev

(

n−3, 1i− ≠ Φ

)

and D Cev

(

n−4, 1i− = Φ

)

if and only if i = n – 2.

5) D Cev

(

n−1, 1i− ≠ Φ

)

, D Cev

(

n−2, 1i− ≠ Φ

)

, D Cev

(

n−3, 1i− = Φ

)

and D Cev

(

n−4, 1i− ≠ Φ

)

if and only if i = n – 1.

6) D Cev

(

n−1, 1i− ≠ Φ

)

, D Cev

(

n−2, 1i− ≠ Φ

)

, D Cev

(

n−3, 1i− ≠ Φ

)

and D Cev

(

n−4, 1i− ≠ Φ

)

if and only if

1 1 3

4

ni n

 + ≤ ≤ −

 

  .

Proof: 1) (⇒) Since D Cev

(

n−1, 1i− =

)

D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− = Φ

)

, by Lemma 2.2, i− > −1 n 1 or 3

1 4 n i− <  − 

 . If i− > −1 n 1, then i n> and by Lemma 2.2, D C iev

(

n,

)

= Φ, a contradiction.

So

3 1

4 n i− <  − 

  (2.1)

and since D Cev

(

n−4, 1i− ≠ Φ

)

, we have

4 1 4

4

ni n

 ≤ − ≤ −

 

  (2.2)

From (2.1) and (2.2),

4 1 3

4 4

ni n

 ≤ − < 

   

    (2.3)

When n is a multiple of 4, 4 1

4 4

nn

 = −

 

  and

3

4 4

nn

 =

 

  . Therefore, 4 1 1 4

n− ≤ − <i n . Therefore,

1 1

4 n

i− = − , we get 4 n

i= . Thus, when n=4k, (2.3) holds good and 4 n

i= =k. When n≠4k,

4 1

4 4

nn

   =

   

    and

3 1

4 4

nn

   =

   

    . Therefore, 4 1 1 4 1

n i n

 − ≤ − < 

   

    , which is not possible.

Hence n=4k and i k=

(⇐) If n = 4k and i = k for some k N, then by Lemma 2.2, 1 4 1 1

4 4

nkk i i

  == = > −

   

    . Therefore,

1 1

4 n i− <  − 

(4)

Now 4 4 4 1 1

4 4

nkk i

  == − = −

   

    . Therefore,

4 1

4

ni

 ≤ −

 

  , which implies D Cev

(

n−4, 1i− ≠ Φ

)

.

2) (⇒) Since D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− =

)

D Cev

(

n−4, 1i− = Φ

)

, by Lemma 2.2, i− > −1 n 2 or 4

1 4 n i− <  − 

 . If

4 1

4 n i− <  − 

  then by Lemma 2.2, D Cev

(

n−1, 1i− = Φ

)

, a contradiction.

So

1 2

i− > −n (2.4) Since,

(

1, 1

)

ev n

D Ci− ≠ Φ,

1 1 1

4

ni n

 ≤ − ≤ −

 

  (2.5)

From (2.4) and (2.5), we have n− ≥ − > −1 i 1 n 2. Therefore, i− = −1 n 1. Therefore, i n=

(⇐) If i n= , then by Lemma 2.2, 4

n i n

  ≤ ≤  

  . Therefore,

1 1 1

4

ni n

 ≤ − ≤ −

 

 

Therefore, D Cev

(

n−1, 1i− ≠ Φ

)

3) (⇒) Since D Cev

(

n−1, 1i− = Φ

)

, by Lemma 2.2, i− > −1 n 1 or

1 1<

4 n i−  − 

 . If i− > −1 n 1, then

1 2 3 4

i− > − > − > −n n n , by Lemma 2.2, D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− =

)

D Cev

(

n−4, 1i− = Φ

)

, a contradic-tion.

Therefore, 1 1 4 n i− <  − 

 , which implies,

1 1 4 n i< − +

  (2.6)

Since, D Cev

(

n−2, 1i− ≠ Φ

)

,

2 1 2

4

ni n

 ≤ − ≤ −

 

  .

Hence,

2 1 1

4

ni n

 + ≤ ≤ −

 

  (2.7)

Similarly,

3 1 2

4

ni n

 + ≤ ≤ −

 

  (2.8)

and

4 1 3

4

ni n

 + ≤ ≤ −

 

  (2.9)

From (2.6), (2.7), (2.8) and (2.9),

2 1 1 1

4 4

ni n

 + ≤ < +

   

    (2.10)

Therefore, (2.10) hold when 2 4 n

k= − or n=4k+2 and 1 4 2 4 k i k= + =  + 

 , for some k N∈ . Suppose

4 2

n= k+ , then 2 1 1

4

nk

 + = +

 

  and 41 1 2

nk

 + = +

 

  . Therefore, from (2.10), we have, k+ ≤ < +1 i k 2,

(5)

Case 1) When n=4k.

From (2.10), we get 4 2 1 1 4

kk

 + = +

 

  and 4 1 14 1

kk

 + = +

 

  . Therefore, k+ ≤ < +1 i k 1, which is not

possible.

Case 2) When n=4k+1. From (2.10), we get 4 1 2 1 1 4

k+ − k

 + = +

 

  and 4 1 1 14 1

k+ − k

 + = +

 

  .

There-fore, k+ ≤ < +1 i k 1, which is not possible.

Case 3) When n=4k+3. From (2.10), we get 4 3 2 1 2 4

k+ − k

 + = +

 

  and

4 3 1 1 2

4

k+ − k

 + = +

 

 

Therefore, k+ ≤ < +2 i k 2, which is not possible. Therefore, n=4k+2 (⇐) If n = 4k + 2 and 4 2

4 k i=  + 

  for some k N, and D C iev

(

n,

)

≠ Φ, then by Lemma 2.2, 4

n i n

  ≤ ≤  

  ,

4 2 1

4 4

n k+ i i

  == > −

   

    . Therefore,

1 1

4 n i− <  − 

 . Therefore, D Cev

(

n−1, 1i− = Φ

)

.

Also, 2 4

nk

 =

 

  . Therefore,

2 1 2

4

ni n

 ≤ − ≤ −

 

  and

3 1 3

4

ni n

 ≤ − ≤ −

 

  and

4 1 4

4

ni n

 ≤ − ≤ −

 

  .

Hence D Cev

(

n−2, 1i− ≠ Φ

)

, D Cev

(

n−3, 1i− ≠ Φ

)

, D Cev

(

n−4, 1i− ≠ Φ

)

. 4) (⇒) Since D Cev

(

n−4, 1i− = Φ

)

, by Lemma 2.2,

1 4

i− > −n or 1 4

4 n i− <  − 

  (2.11)

Since D Cev

(

n−3, 1i− ≠ Φ

)

, by Lemma 2.2,

3 1 3

4

ni n

 ≤ − ≤ −

 

  (2.12)

Similarly, D Cev

(

n−2, 1i− ≠ Φ

)

and D Cev

(

n−1, 1i− ≠ Φ

)

, by Lemma 2.2

2 1 2

4

ni n

 ≤ − ≤ −

 

  (2.13)

and

1 1 1

4

ni n

 ≤ − ≤ −

 

  (2.14)

From (2.11), we get 1 4 4 n i− <  − 

  which is not possible.

Therefore,

1 4 3 2

i− > − ⇒ > − ⇒ ≥ −n i n i n (2.15) From (2.12),

1 3 2

i− ≤ − ⇒ ≤ −n i n (2.16) From (2.15) and (2.16), i n= −2

(⇐) If i n= −2 , i− = −1 n 3 then by Lemma 2.2, i− > −1 n 4 or 1 4 4 n i− <  − 

  . Therefore,

(

4, 1

)

ev n

D Ci− = Φ. Also

1 1 1

4

ni n

 ≤ − ≤ −

 

  ,therefore, D Cev

(

n−1, 1i− ≠ Φ

)

;

2 1 2

4

ni n

 ≤ − ≤ −

 

  ,

there-fore, D Cev

(

n−2, 1i− ≠ Φ

)

; and

3 1 3

4

ni n

 ≤ − ≤ −

 

  , therefore, D Cev

(

n−3, 1i− ≠ Φ

)

.

(6)

1 4

i− > −n or 1 4

4 n i− <  − 

  (2.17)

Since D Cev

(

n−3, 1i− = Φ

)

by Lemma 2.2,

1 3

i− > −n or 1 3

4 n i− <  − 

  (2.18)

Since D Cev

(

n−2, 1i− ≠ Φ

)

and D Cev

(

n−1, 1i− ≠ Φ

)

, by Lemma 2.2,

2 1 2

4

ni n

 ≤ − ≤ −

 

  (2.19)

and

1 1 1

4

ni n

 ≤ − ≤ −

 

  (2.20)

From (2.19) and (2.20), we have 1 1 2 4

ni n

 ≤ − ≤ −

 

  . From (2.18), we have i− > −1 n 3. Therefore,

1 2

i− ≥ −n . But i− ≤ −1 n 2. Therefore, i− = −1 n 2. Therefore, i n= −1.

(⇐) If i n= −1, i− = −1 n 2 then by Lemma 2.2, D Cev

(

n−3, 1i− = Φ

)

and i− > −1 n 4 therefore,

(

4, 1

)

ev n

D Ci− = Φ and

1 1 1

4

ni n

 ≤ − ≤ −

 

  , therefore, D Cev

(

n−1, 1i− ≠ Φ

)

and

2 2 2

4

ni n

 ≤ − ≤ −

 

  ,

therefore, D Cev

(

n−2, 1i− ≠ Φ

)

.

6) (⇒) Since D Cev

(

n−1, 1i− ≠ Φ

)

, D Cev

(

n−2, 1i− ≠ Φ

)

, D Cev

(

n−3, 1i− ≠ Φ

)

, and D Cev

(

n−4, 1i− ≠ Φ

)

, by

Lemma 2.2, 1 1 1

4

ni n

 ≤ − ≤ −

 

  ,

2 1 2

4

ni n

 ≤ − ≤ −

 

  ,

3 1 3

4

ni n

 ≤ − ≤ −

 

  , and

4 1 4

4

ni n

 ≤ − ≤ −

 

  .

So 1 1 4

4

ni n

 ≤ − ≤ −

 

  and hence 41 1 3

ni n

 + ≤ ≤ −

 

  .

(⇐) If 1 1 3

4

ni n

 + ≤ ≤ −

 

  , then by Lemma 2.2 we have,

1 1 1

4

ni n

 ≤ − ≤ −

 

  ,

2 1 2

4

ni n

 ≤ − ≤ −

 

  ,

3 1 3

4

ni n

 ≤ − ≤ −

 

  ,

4 1 4

4

ni n

 ≤ − ≤ −

 

  .

Therefore, D Cev

(

n−1, 1i− ≠ Φ

)

, D Cev

(

n−2, 1i− ≠ Φ

)

, D Cev

(

n−3, 1i− ≠ Φ

)

, and D Cev

(

n−4, 1i− ≠ Φ

)

. Theorem 2.7 [5]

For every n≥5 and 4 n i≥   

 ,

1) If D Cev

(

n−1, 1i− =

)

D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− = Φ

)

and D Cev

(

n−4, 1i− ≠ Φ

)

then

(

,

) {

{

1, , ,5 3

} {

, 2, , ,6 2

} {

, 3, , ,7 1

} {

, 4, ,8 ,

}

}

ev n n n n n D C i = e e ee e ee e ee e e .

2) If D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− =

)

D Cev

(

n−4, 1i− = Φ

)

and D Cev

(

n−1, 1i− ≠ Φ

)

then

(

,

)

{ }

[ ]

ev n n D C i = e .

3) If D Cev

(

n−1, 1i− = Φ

)

,D Cev

(

n−2, 1i− ≠ Φ

)

,D Cev

(

n−3, 1i− ≠ Φ

)

and D Cev

(

n−4, 1i− ≠ Φ

)

then

(

,

)

1 2 3

ev n

D C i =Y Y Y∪ ∪ , where

{

} {

} {

} {

}

{

}

1 1, , ,5 n 5, n1 , 2, , ,6 n 4, n , 3, , ,7 n 3, n1 , 4, , ,8 n 2, n Y = e e eee e ee e e eee e ee

{ }

(

)

{ }

(

)

{ }

2 1 2 2 3

2 2 1 2 2 2 3

, if / , 1

, if / , 1

, otherwise

n ev n

n ev n

n

X X

X X

e e D C i

Y e e X D C i

e

− −

− −

  ∈ ∈ − 

  

=  ∈ ∈ − 

 

 

(7)

{ }

(

)

{ }

(

)

{ }

(

)

{ }

3 1 3 3 4

2 2 3 3 4

1 3 3 3

3 3

4

, if / , 1

, if / , 1

, if / , 1

, otherwise

n ev n

n ev n

n ev n

n

X X X X

Y X

e e D C i

e e D C i

e e X X D C i

e

− −

− −

− −

 ∈ ∈ −

∈ ∈ −

 

 

 

=  

 

 

 

∈ ∈ −

 

 

4) If D Cev

(

n−3, 1i− = Φ

)

, D Cev

(

n−2, 1i− ≠ Φ

)

, and D Cev

(

n−1, 1i− ≠ Φ

)

then

(

,

)

{

[ ]

{ }

/

[ ]

}

ev n n n D C i = ex x e

5) If D Cev

(

n−1, 1i− ≠ Φ

)

,D Cev

(

n−2, 1i− ≠ Φ

)

,D Cev

(

n−3, 1i− ≠ Φ

)

and D Cev

(

n−4, 1i− ≠ Φ

)

then

(

)

{

{

{ }

(

)

}

{

{ }

(

)

}

{ }

(

)

{

}

{

{ }

(

)

}

}

1 1 1 2 1 2 2

3 2 3 3 4 3 4 4

, / , 1 / , 1

/ , 1 / , 1

ev n n ev n n ev n

n ev n n ev n

D C i X e X D C i X e X D C i

X e X D C i X e X D C i

− − −

− − − −

= ∈ − ∈ −

∈ − ∈ −

∪ ∪ ∪

∪ ∪ ∪ ∪

Proof:

1) Since, D Cev

(

n−1, 1i− =

)

D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− = Φ

)

and D Cev

(

n−4, 1i− ≠ Φ

)

, by Lemma 2.6 (i) 4

n= k, and i k= for some k N∈ . The sets

{

e e1 5, , , en−3

} {

, e e2, , ,6 en−2

} {

, e e3, , ,7 en−1

} {

, , , ,e e4 8 en

}

have

4

n elements and each one covers all vertices. Also, no other sets of cardinality 4

n covers all vertices.

Therefore, the collection of ev-dominating sets of cardinality 4 n is

{

} {

} {

} {

}

{

e e1, , ,5 en−3 , e e2, , ,6 en−2 , e e3, , ,7 en−1 , e e4, , ,8 en

}

Hence, D C iev

(

n,

) {

=

{

e e1, , ,5 en−3

} {

, e e2, , ,6 en−2

} {

, e e3, , ,7 en−1

} {

, e e4, ,8,en

}

}

.

2) We have D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− =

)

D Cev

(

n−4, 1i− = Φ

)

and D Cev

(

n−1, 1i− ≠ Φ

)

. By Lemma 2.6 (2), we have i = n. So, D C iev

(

n,

)

=

{ }

[ ]

en .

3) We have D Cev

(

n−1, 1i− = Φ

)

,D Cev

(

n−2, 1i− ≠ Φ

)

,D Cev

(

n−3, 1i− ≠ Φ

)

and D Cev

(

n−4, 1i− ≠ Φ

)

, by

Lemma 2.6 (3), n=4k+2 and 4 2

4 1

i k+  k

 =

= + , for some k N∈ .

Let Y1=

{

{

e e1, , ,5 e4 3k− ,e4 1k+

} {

, e e2, , ,6 e4 2k− ,e4k+2

} {

, e e3, ,7,e4 1k−,e4 1k+

} {

, e e4, , ,8 e e4k, 4k+2

}

}

{ }

(

)

{

}

(

)

{

}

4 1 2 2 4 1

2 4 1 2 2 2 4 1

4 2 2

, if / ,

, if / ,

, otherwise

k ev k

k ev k

k

X X X

e e D C k

Y e X k

e

X

e D C

+ −

+

  ∈ ∈ 

  

 

=  ∈ ∈ 

  

  

 

{

}

(

)

{ }

(

)

{

}

(

)

{

}

4 1 1 3 3 4 2

4 2 3 3 4 2

4 1 3 3 3 4 2

3 3

4 2

, if / ,

, if / ,

, if / ,

, otherwise

k ev k

k ev k

k ev k

k

e e D C k

e e D C k

e e

X X X X

Y X

X D

X C k

e

− −

+ −

+

 ∈

 

 

 

=  

 

 

∈ 

∈ ∈

 

∈ ∈

 

 

We shall prove that D Cev

(

4k+2,k+ =1

)

Y Y Y1∪ ∪2 3. It is clear that Y1⊆D Cev

(

4 2k+ ,k+1

)

,

(

)

2 ev 4 2k , 1

YD C + k+ , and Y3 ⊆D Cev

(

4 2k+ ,k+1

)

. Therefore, Y Y Y1∪ ∪2 3⊆D Cev

(

4 2k+ ,k+1

)

. Conversely, Let Y D Cev

(

4 2k+ ,k+1

)

. Suppose, Y is of the form

{

e e1 5, , , e4 3k− ,e4 1k+

}

,

(8)

1

Y Y∉ and Y is of the form

{ }

(

)

{

}

(

)

{

}

4 1 2 2 4 1

4 1 2 2 2 4

2 1

4 2

, if / ,

, if / ,

, otherwise

k ev k

k ev k

k

e e D C k

e e X D C

X X X e X k − + − +   ∈ ∈                 

∪ then Y Y2D Cev

(

4 1k−,k

)

.

Now suppose, Y Y∉ 1, Y Y∉ 2 and YDev

(

C4 2k+ ,k+1

)

. We split D Cev

(

4 2k− ,k

)

as four parts. If

(

)

3 ev 4 2k ,

XD Ck with e1∈X3 then X3∪

{

e4 1k

}

Y3 and X3∪

{ }

en−3 ∉Y2 and ∉Y1. If

(

)

3 ev 4 2k ,

XD Ck with e2∈X3 then X3∪

{ }

e4kY3 and X3∪

{ }

e4kY2 and ∉Y1. If

(

)

3 ev 4 2k ,

XD Ck with e3∈X3 then X3∪

{

e4 1k+

}

Y3 and X3∪

{

e4 1k+

}

Y2 and ∉Y1. If

(

)

3 ev 4 2k ,

XD Ck with e4∈X3 then X3∪

{

e4 2k+

}

Y3 and X3∪

{

e4 2k+

}

Y2 and ∉Y1. In this case Y is of

the form

{

}

(

)

{ }

(

)

{

}

(

)

{

}

4 1 1 3 3 4 2

4 2 3 3 4 2

4 1 3 3 3 4

3

2

4 2

, if / ,

, if / ,

, if / ,

, otherwise

k ev k

k ev k

k ev k

k

X X X X

e e D C k

e e D C k

e e X D C k

e X X − − − + − +  ∈ ∈  ∈ ∈   ∈ ∈   

∪ then Y Y∈ ∈3 D Cev

(

4 2k− ,k

)

. Therefore,

(

4 2, 1

)

1 2 3 ev k

D C + k+ ⊆Y Y Y∪ ∪ . Thus, we have proved that

(

,

)

1 2 3

ev n

D C i =Y Y∪ ∪∪Y

where Y1=

{

{

e e1, , ,5 en5,en1

} {

, e e2, , ,6 en4,en

} {

, e e3, , ,7 en3,en1

} {

, e e4, , ,8 en2,en

}

}

{ }

(

)

{ }

(

)

{ }

2 1 2 2 3

2 2 1 2 2 2 3

, if / , 1

, if / , 1

, otherwise

n ev n

n ev n

n

e e D C i

Y e e

X X

X X X D C i

e − − − −   ∈ ∈ −       = ∈ ∈ −         ∪

{ }

(

)

{ }

(

)

{ }

(

)

{ }

3 1 3 3 4

2 2 3 3 4

1 3 3 3

3 3

4

, if / , 1

, if / , 1

, if / , 1

, otherwise

n ev n

n ev n

n ev n

n

X X X X

Y X

e e D C i

e e D C i

e e X X D C i

e − − − − − −  ∈ ∈ −  ∈ ∈ −        =         ∈ ∈ −     ∪ .

4) If D Cev

(

n−3, 1i− = Φ

)

,D Cev

(

n−2, 1i− ≠ Φ

)

, and D Cev

(

n−1, 1i− ≠ Φ

)

, by Lemma 3.6 (iv) i n= −1. Therefore D C iev

(

n,

)

=

{

[ ]

en

{ }

x x e/ ∈

[ ]

n

}

.

5) D Cev

(

n1, 1i− ≠ Φ

)

,D Cev

(

n2, 1i− ≠ Φ

)

,D Cev

(

n3, 1i− ≠ Φ

)

and D Cev

(

n4, 1i− ≠ Φ

)

.

Clearly,

{

{

{ }

(

)

}

{

{ }

(

)

}

{ }

(

)

{

}

{

{ }

(

)

}

}

(

)

1 1 1 2 1 2 2

3 2 3 3 4 3 4 4

/ , 1 / , 1

/ , 1 / , 1 , .

n ev n n ev n

n ev n n ev n ev n

X e X D C i X e X D C i

X e X D C i X e X D C i D C i

− − − − − − − ∈ − ∈ − ∈ − ∈ − ⊆ ∪ ∪ ∪ ∪ ∪ ∪ ∪

Conversely, let Y D C iev

(

n,

)

. Then en or en−1 or en−2 or en−3∈Y . If enY , then we can write

{ }

1 n

Y X= ∪ e , for some X1∈D Cev

(

n−1, 1i

)

. If en−1∈Y and enY then we can write Y X= 2∪

{ }

en−1 , for some X2∈D Cev

(

n−2, 1i

)

. If en−2∈Y and enY e, n−1∉Y then we can write Y X= 3∪

{ }

en−2 , for some

(

)

3 ev n3, 1

XD Ci− . If en−3∈Y, enY e, n−1∉Y , en−3∉Y then we can write Y X= 4∪

{ }

en−3 , for some

(

)

4 ev n1, 1 XD Ci− .

Therefore we proved that

(

)

{

{

{ }

(

)

}

{

{ }

(

)

}

{ }

(

)

{

1 3 2 1 3 1 3

}

2

{

4 1

{ }

32 4

(

2 4

)

}

}

, / , 1 / , 1

/ , 1 / , 1 .

ev n n ev n n ev n

n ev n n ev n

D C i X e X D C i X e X D C i

X e X D C i X e X D C i

(9)

Hence,

(

)

{

{

{ }

(

)

}

{

{ }

(

)

}

{ }

(

)

{

}

{

{ }

(

)

}

}

1 1 1 2 1 2 2

3 2 3 3 4 3 4 4

, / , 1 / , 1

/ , 1 / , 1

ev n n ev n n ev n

n ev n n ev n

D C i X e X D C i X e X D C i

X e X D C i X e X D C i

− − −

− − − −

= ∈ − ∈ −

∈ − ∈ −

∪ ∪ ∪

∪ ∪ ∪ ∪

3.

Edge-Vertex Domination Polynomials of Cycles

Let

(

)

(

)

4

, n , i

ev n i n ev n

D C x  d C i x

=  

=

be the ev-domination polynomial of a cycle Cn. In this section, we de-rive the expression for D C xev

(

n,

)

.

Theorem 3.1 [6]

1) If D C iev

(

n,

)

is the family of ev-dominating sets with cardinality i of Cn, then

(

,

)

(

1, 1

)

(

2, 1

)

(

3, 1

)

(

4, 1

)

ev n ev n ev n ev n ev n

d C i =d C i− − +d Ci− +d Ci− +d Ci− where d C iev

(

n,

)

= D C iev

(

n,

)

.

2) For every n≥5,

(

,

)

(

1,

)

(

2,

)

(

3,

)

(

4,

)

ev n ev n ev n ev n ev n D C x =x D C − x +D Cx +D Cx D C+ − x  with the initial values

(

1,

)

ev

D C x =x,

(

)

2

2, 2

ev

D C x = x +x,

(

)

3 2

3, 3 3

ev

D C x = x + x +x,

(

)

4 3 2

4, 4 6 4

ev

D C x = x + x + x +x. Proof:

1) Using (1), (2), (3), (4) and (5) of Theorem 2.7, we prove (1) part.

Suppose, D Cev

(

n−1, 1i− =

)

D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− = Φ

)

and D Cev

(

n−4, 1i− ≠ Φ

)

then,

(

,

) {

{

1, ,5 , 3

} {

, 2, , ,6 2

} {

, , , ,3 7 1

} {

, 4, ,8 ,

}

}

ev n n n n n D C i = e e ee e ee e ee e e .

Therefore, D C iev

(

n,

)

=

{

{

e1, , ,e5 en3

} {

, e e2, ,6,en2

} {

, e e3, , ,7 en1

} {

, e e4, ,8,en

}

}

=4. In this case

(

4, 1

)

{

{

1, ,5 , 3

} {

, 2, ,6 , 2

} {

, 3, , ,7 1

} {

, 4, , ,8

}

}

4

ev n n n n n

D Ci− = e e ee e ee e ee e e = and

(

1, 1

)

(

2, 1

)

(

3, 1

)

0 ev n ev n ev n

D Ci− = D Ci− = D Ci− = . Therefore, in this case the theorem holds. Suppose, D Cev

(

n−2, 1i− =

)

D Cev

(

n−3, 1i− =

)

D C

(

n−4, 1i− = Φ

)

and D Cev

(

n−1, 1i− ≠ Φ

)

, then

(

,

)

{ }

[ ]

ev n n

D C i = e Therefore, D C iev

(

n,

)

=

{ }

[ ]

en =1. In this case D Cev

(

n1, 1i− =

)

{

[ ]

en1

}

. Therefore,

(

1, 1

)

{

[ ]

1

}

1

ev n n

D Ci− = e− = and D Cev

(

n−2, 1i

)

= D Cev

(

n−3, 1i

)

= D Cev

(

n−4, 1i

)

=0. Therefore, in this case the theorem holds.

Suppose,

(

)

(

)

(

2

)

(

2

)

1, 1 , 2, 1 , 3, 1 and 4, 1

ev n ev n n n

D Ci− = Φ D Ci− ≠ Φ D Ci− ≠ Φ D Ci− ≠ Φ. In this case,

(

,

)

1 2 3

ev n

D C i =Y Y Y∪ ∪ where

{

} {

} {

} {

}

{

}

1 1, , ,5 n 5, n1 , 2, , ,6 n 4, n , 3, , ,7 n 3, n1 , 4, , ,8 n 2, n Y = e e eee e ee e e eee e ee

{ }

(

)

{ }

(

)

{ }

2 2 2 2

2 2 1 2 2 2

, if 1 / , 1

, if 2 / , 1

, otherwise

n ev n

n ev n

n

e D C i

Y e X D C

X X

X X i

e

− −

− −

  ∈ ∈ − 

  

=  ∈ ∈ − 

  

 

(10)

{ }

(

)

{ }

(

)

{ }

(

)

{ }

3 3 3 3

2 3 3 3

1 3 3

3 3

3

, if 1 / , 1

, if 2 / , 1

, if 3 / , 1

, otherwise

n ev n

n ev n

n ev n

n

e D C i

e D C i

e

X X X X Y

D

X X C

e X

i

− −

− −

− −

 ∈ ∈ −

 

 

 

=  

 

 

∈ ∈ −

 

∈ ∈ −

 

 

Therefore, D C iev

(

n,

)

= +4 D Cev

(

n−3, 1i− +

)

D Cev

(

n−4, 1i

)

. Also, D Cev

(

n−1, 1i

)

=0 and

(

2, 1

)

4

ev n

D Ci− = . Therefore, D C iev

(

n,

)

= D Cev

(

n−1, 1i− +

)

D Cev

(

n−3, 1i− +

)

D Cev

(

n−4, 1i

)

and

(

1, 1

)

0

ev n

D Ci− = . Therefore, in this case the theorem holds. Suppose,

(

1, 1

)

,

(

2, 1

)

and

(

3, 1

)

ev n ev n ev n

D Ci− ≠ Φ D Ci− ≠ Φ D Ci− = Φ Then we have D C iev

(

n,

)

=

{

[ ]

en

{ }

x x e/ ∈

[ ]

n

}

.

Therefore, D C iev

(

n,

)

=n. In this case, D Cev

(

n−1, 1i

)

= −n 1, D Cev

(

n−2, 1i

)

=1 and

(

3, 1

)

0

ev n

D Ci− = . Therefore,

(

,

)

(

1, 1

)

(

2, 1

)

(

3, 1

)

1 1 0

ev n ev n ev n ev n

D C i = D Ci− + D Ci− +D Ci− = − + + =n n. Therefore, in this case the theorem holds.

Suppose,

(

)

(

)

(

2

)

(

)

1, 1 , , 12 , , 13 and , 14

ev n ev n n ev n

D Ci− ≠ Φ D Ci− ≠ Φ D Ci− ≠ Φ D Ci− ≠ Φ. In this case, we have

(

)

{

{

{ }

(

)

}

{

{ }

(

)

}

{ }

(

)

{

}

{

{ }

(

)

}

}

1 1 1 2 1 2 2

3 2 3 3 4 3 4 4

, / , 1 / , 1

/ , 1 / , 1 .

ev n n ev n n ev n

n ev n n ev n

D C i X e X D C i X e X D C i

X e X D C i X e X D C i

− − −

− − − −

= ∈ − ∈ −

∈ − ∈ −

∪ ∪ ∪

∪ ∪ ∪ ∪

Therefore,

(

,

)

(

1, 1

)

(

2, 1

)

(

3, 1

)

(

4, 1 .

)

ev n ev n ev n ev n ev n D C i = D Ci− +D Ci− + D Ci− +D Ci− Hence,

(

,

)

(

1, 1

)

(

2, 1

)

(

3, 1

)

(

4, 1 .

)

ev n ev n ev n ev n ev n

d C i =d C i− − +d Ci− +d Ci− +d Ci

(

,

)

i

(

1, 1

)

i

(

2, 1

)

i

(

3, 1

)

i

(

4, 1

)

i

ev n ev n ev n ev n ev n

d C i x =d Cix d C+ − ix d C+ − ix d C+ − ix

(

,

)

i

(

1, 1

)

i

(

2, 1

)

i

(

3, 1

)

i

(

4, 1

)

i

ev n ev n ev n ev n ev n

d C i x d Ci x d Ci x d Ci x d Ci x

∑ = ∑ − + ∑ − + ∑ − + ∑ −

(

)

(

)

(

)

(

)

(

)

1 1

1 2

1 1

3 4

, , 1 , 1

, 1 , 1

i i i

ev n ev n ev n

i i ev n ev n

d C i x x d C i x x d C i x x d C i x x d C i x

− −

− −

− −

− −

∑ = ∑ − + ∑ −

+ ∑ − + ∑ −

(

)

(

)

1

(

)

1

(

)

1

(

)

1

1 2 3 4

, i , 1 i , 1 i , 1 i , 1 i

ev n ev n ev n ev n ev n

d C i x x d C i xd C i xd C i xd C i x

− − − −

 

∑ = ∑ − + ∑ − + ∑ − + ∑ −

(

,

)

(

1,

)

(

2,

)

(

3,

)

(

4,

)

ev n ev n ev n ev n ev n D C x =x D C − x +D Cx +D Cx D C+ − x . with the initial values

(

1,

)

ev

D C x =x

(

)

2

2, 2

ev

D C x = x +x

(

)

3 2

3, 3 3

ev

D C x = x + x +x

(

)

4 3 2

4, 4 6 4

ev

(11)

We obtain d C iev

(

n,

)

for 1 ≤n ≤ 16 as shown in Table 1.

In the following Theorem, we obtain some properties of d C iev

(

n,

)

.

Theorem 3.2

The following properties hold for the coefficients of D C xev

(

n,

)

; 1) d C nev

(

4n,

)

=4, for every n∈ N.

2) d C nev

(

n,

)

=1, for every n∈ N.

3) d C nev

(

n, − =1

)

n, for every n ≥ 2.

4)

(

)

2

(

)

1

, 2

2 ev n

n n

d C n− =nC = − , for every n≥ 3.

5)

(

)

3

(

)(

)

1 2

, 3

6 ev n

n n n

d C n− =nC = − − , for every n≥ 4.

6)

(

)

4

(

)(

)(

)

1 2 3

, 4

4! ev n

n n n n

d C n− =nC n− = − − − −n, for every n≥ 5.

7) d Cev

(

4 1n−,n

)

=4 1n− , for every n∈ N.

Proof:

1) Since D C nev

(

4n,

) {

=

{

e e1, , ,5 en−3

} {

, e e2, , ,6 en−2

} {

, e e3, , ,7 en−1

} {

, e e4, ,8,en

}

}

, we have

(

4 ,

)

4

ev n

d C n = .

2) Since D C nev

(

n,

)

=

{ }

[ ]

en , we have the result d C iev

(

n,

)

=1 for every n∈ N. 3) Since Dev

(

Cn,n− =1

)

{

[ ]

en

{ }

x /x

[ ]

en

}

, we have d C nev

(

n, − =1

)

n for n ≥ 2.

4) By induction on n. The result is true for n=3. L.H.S.=d Cev

(

3,1 3

)

= (from Table 1) R.H.S. 3 22 3

×

= = .

[image:11.595.91.539.457.722.2]

Therefore, the result is true for n = 3. Now suppose that the result is true for all numbers less than ‘n’ and we prove it for n. By Theorem 3.1

Table 1. d C iev

(

n,

)

, the number of ev-dominating set of Cn with cardinality i.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n

1 1

2 2 1

3 3 3 1

4 4 6 4 1

5 0 10 10 5 1

6 0 9 20 15 6 1

7 0 7 28 35 21 7 1

8 0 4 32 62 56 28 8 1

9 0 0 30 90 117 84 36 9 1

10 0 0 20 110 202 200 120 45 10 1

11 0 0 11 110 297 396 319 165 55 11 1

12 0 0 4 93 372 672 708 483 220 66 12 1

13 0 0 0 65 403 988 1352 1183 702 286 78 13 1

14 0 0 0 35 378 1274 2256 2499 1876 987 364 91 14 1

15 0 0 0 15 303 1450 3330 4635 4330 2853 1350 455 105 15 1

(12)

(

)

(

)

(

)

(

)

(

)

(

)(

1

) ( ) ( )( ) ( )

2 3

(

4

)(

)

(

)

, 2 , 3 , 3 , 3 , 3

1 2 1 1 1 2 2 1 1 1 2 2 1 1

2 2 2 2

ev n ev n ev n ev n ev n

d C n d C n d C n d C n d C n

n n

n n n n n n n n

− − − −

− = − + − + − + −

− −

= + − =  − − + − =  − − + =  − 

5) By induction on n, the result is true for n=4. L.H.S.=d Cev

(

4,1

)

=4 (from Table 1).

(

4

)

4.3.2

R.H.S. ,1 4

6 ev

d C

= = = . Therefore, the result is true for n=4. Now suppose the result is true for all

natural numbers less than n. By Theorem 3.1,

(

)

(

)

(

)

(

)

(

)

(

)(

)(

) (

)(

) ( )

(

)(

)(

) (

)(

) (

)

(

) ( )( ) ( )

(

) ( )( ) ( )

(

)(

)

[

]

(

)(

)

1 2 3 4

, 3 , 4 , 4 , 4 , 4

1 2 3 2 3

2

6 2

1 1 2 3 3 2 3 6 2

6 2

1 3 3 3 6

6 2

1 3 3 1

6

2 1 2 1

3 3

6 6

ev n ev n ev n ev n ev n

d C n d C n d C n d C n d C n

n n n n n

n

n n n n n n

n

n n n

n

n n n

n n n n n

n

− − − −

− = − + − + − + −

− − − − −

= + + −

=  − − − + − − + − 

=  − − + − + 

=  − − + − 

− − − −

= − + =

6) By induction on n, the result is true for n = 5. L.H.S.=d Cev

(

5,1

)

=0 (from Table 1)

(

1

)(

2

)(

3

)

5 4 3 2

R.H.S. 5 0

1 2 3 4 1 2 3 4

n n n n

n

− − − × × ×

= − = − =

× × × × × ×

Therefore the result is true for n=5.

Now suppose that the result is true for all natural numbers less than n and we prove it for n. By Theorem 3.1,

(

)

(

)

(

)

(

)

(

)

(

)(

)(

)(

) ( ) ( )( )( ) ( )( ) ( )

(

)(

)(

)(

) (

)(

)(

)

(

)(

)

(

)

(

)(

)(

)(

) (

)(

)(

)

(

)(

)

(

)

1 2 3 4

, 4 , 5 , 5 , 5 , 5

1 2 3 4 2 3 4 3 4

1 4

24 6 2

1 1 2 3 4 4 2 3 4 12 3 4 24 4 24

24

1 1 2 3 4 4 2 3 4 12 3 4 24 4 1

24

ev n ev n ev n ev n ev n

d C n d C n d C n d C n d C n

n n n n n n n n n

n n

n n n n n n n n n n n

n n n n n n n n n n n

− − − −

− = − + − + − + −

− − − − − − − − −

= − − + + + −

=  − − − − + − − − + − − + − + 

=  − − − − + − − − + − − + − + 

(

)(

)(

)(

) (

)(

)(

)

(

)(

)

(

)

(

) ( )( )( ) ( )( ) (

)

(

)(

) ( )( ) ( )

(

)(

) ( )( ) (

)

(

)(

)(

)

[

]

(

)(

)(

)

1 1 2 3 4 4 2 3 4 12 3 4 24 3

24 3

1 2 4 4 2 4 12 4 2

24

3 2

1 4 4 4 12

24

3 2

1 4 4 4 3

24

1 2 3

4 4 24

1 2 3

24

n n n n n n n n n n n

n

n n n n n n n

n n

n n n n

n n

n n n n

n n n

n n

n n n n n

=  − − − − + − − − + − − + − 

=  − − − + − − + − + 

− −

=  − − + − + 

− −

=  − − + − + 

− − −

= − + −

− − −

= −

Figure

Table 1. d

References

Related documents

In this sense, WRQoL scale was used which assesses five factors of Control at Work, General Well-Being, Home-Work Interface , Job and Career Satisfaction , Stress at Work,

In this study, increasing ground slope or skidding distance increased the total cycle time, which then led to reduced productivity.. The results indicated that the

Резюме: Разработен е методически подход за оценка на качеството на ползваните учебни програми и значимостта на отделните теми в тях, с оглед потребностите

Receiving the images through video surveillance camera in the first phase, we get use of Gaussian mixture model for each frame to achieve a precise background image.. This phase

Vismodegib or cixutumumab in combination with standard chemotherapy for patients with extensive-stage small cell lung cancer: A trial of the ECOG-ACRIN Cancer Research Group

() Singelyn F., Aye F., Gouverneur J: Continuous popliteal sciatic nerve block: an original technique to provide postoperative anal- gesia after foot surgery.

Манай оронд дээрх чиглэлээр хийгдсэн судалгааны ажлууд хомс байгааг харгалзан өөрийн орны уламжлалт сүүн бүтээгдэхүүн болох хоормогноос уураг задлах идэвх

From Table 1–4 we show that RK4MCHW is better for solving a stiff differential equation compare to RK4CoM.. For the non-stiff differential equation RK4MCHW is not as good