• No results found

Chapter 3: Analysis of closed-loop systems

N/A
N/A
Protected

Academic year: 2021

Share "Chapter 3: Analysis of closed-loop systems"

Copied!
72
0
0

Loading.... (view fulltext now)

Full text

(1)

Chapter 3:

Analysis of closed-loop

systems

Control Automático

3º Curso. Ing. Industrial

Escuela Técnica Superior de Ingenieros

Universidad de Sevilla

(2)

Control of SISO systems

Control around an operation point (u0,y0)

Process

+

u0 u(t)

-y(t) ∆u(t) Controller r(t) e(t)

(Reference is not a deviation variable ) Automatic control Controller e(t) ∆u(t) Controller

How to chose the value of the controller parameters (Kp and Ti) in a way such that the closed-loop system has an appropriate performance?

(3)

Control of SISO systems

Heuristic design

Tuning based on experiments

Real system

Model

Design based on tables

Tuning based on a set of experiments and a table that determines the

value of each parameter

Zieger-Nichols (Chapter 6)

Mathematical design

The tuning is based on a mathematical analisys of the closed-loop system

and provides guaranteed properties

Transient response Steady state response Robustness

Analitic design techniques Root–locus design techniques Loop-shaping design techniques

(4)

Control of SISO systems

Process

+

u0 u(t)

-y(t) ∆u(t) Controller r(t) e(t) Closed-loop system

It is hard to analize the dynamics of the closed-loop system if the process or the controller are nonlinear systems

The design techniques studied in this course are based on the linearized model of the system around a given operation point (u0,y0)

(5)

Incremental variables model

The linearized model can be compared with the incremental variables model

for a given operating point which is defined as follows:

System

+

-Incremental variables model (u0,y0)

Remark: The model depends on the operating point

Assumption: The initial state is the operation point

(6)

Incremental variables model

Linearized model around (u0,y0)

Linearized model

-∆u(t) Controller

e(t)

Analisys of the closed-loop system. In this case, both the controller and the system are LTI systems.

Assumption: Zero initial conditions.

Teoría de sistemas

Assumption: The properties of this (simplified) system are similar to the ones of the real closed-loop system if the trajectories are close to the operating point

- Speed of the transient

- Tracking of time-varying references - Disturbance rejection

(7)

Teoría de sistemas

TEMA 1. Introducción y fundamentos.

Sistemas dinámicos. Conceptos básicos. Ecuaciones y evolución temporal. Linealidad en los

sistemas dinámicos.

TEMA 2. Representación de sistemas.

Clasificación de los sistemas. Clasificación de comportamientos. Señales de prueba.

Descripción externa e interna. Ecuaciones diferenciales y en diferencias. Simulación.

TEMA 3. Sistemas dinámicos lineales en tiempo continuo.

Transformación de Laplace. Descripción externa de los sistemas dinámicos. Función de

transferencia. Respuesta impulsional. Descripción interna de los sistemas dinámicos.

TEMA 4. Modelado y simulación.

Modelado de sistemas. Modelado de sistemas mecánicos. Modelado de sistemas hidráulicos.

Modelado de sistemas eléctricos. Modelado de sistemas térmicos. Linealización de modelos no lineales. Modelos lineales. Álgebra de bloques. Simulación.

TEMA 5. Respuesta temporal de sistemas lineales.

Sistemas dinámicos lineales de primer orden. Ejemplos. Sistemas dinámicos lineales de

segundo orden. Respuesta ante escalón. Sistemas de orden n.

TEMA 6. Respuesta frecuencial de sistemas lineales.

Función de transferencia en el dominio de la frecuencia. Transformación de Fourier.

Representación gráfica de la función de transferencia. Diagramas más comunes. Diagrama de Bode.

TEMA 7. Estabilidad.

Estabilidad de sistemas lineales. Criterios relativos a la descripción externa de los sistemas

dinámicos. Criterio de Routh-Hurwitz. Criterio de Nyquist. Criterios relativos a la descripción interna.

(8)

Closed-loop transfer function

Laplace transform (assuming zero initial conditions)

Remark: From now on, the variables “y” and “u” denote incremental values; that is, the deviation of the input and the output from the operating point

Linear time invariant systems (LTI)

Properties used: Linearity, transform of the time derivative

(9)

Proportional term

Controller

e(t)

u(t)

The value of the input u(t) is proportional to the error

Transfer function C(s) E(s) U(s) Time domain Frequency domain Desing parameter: Kp

(10)

Integral term

Controller

e(t)

u(t)

The value of the input u(t) is proportional to the error and its integral

Transfer function C(s) E(s) U(s) Temporal domain Frequency domain Desing parameter: Kp, Ti

Lag compensation net

Controller with properties similar to the PI

(11)

Derivative term

Controller e(t) u(t) Transfer function C(s) E(s) U(s) Time domain Frequency domain Design parameters: Kp, Td

Lead compensator net

The value of the input u(t) is proportional to the error and its time derivative

Controller with properties similar to the PD

(12)

PID controller

Controller

e(t) u(t)

Widely used in industry

(13)

PID controller

Controller e(t) u(t) Transfer function C(s) E(s) U(s) Time domain Frequency domain Design parameter: Kp, Td, Ti

Lead-lag compensator

The value of the input u(t) is proportional to the error, its time derivative and its integral

(14)

Index

Closed Loop Transfer Function

Tuning a Controller

Stability analysis of system

Steady-state response of a closed-loop systems

Transient response of a stable system.

(15)

Closed-loop transfer function

Block algebra (Ogata 3.3, Tema 3, Teoría de sistemas)

+ -S1(s) S2(s) S3(s) = S1(s)-S2(s) S1(s) S2(s) = S1(s) S3(s) = S1(s)

Signal sum Signal bifurcation

G(s)

S1(s) S2(s)=G(s)S1(s)

(16)

Closed-loop transfer function

G(s)

-Y(s) C(s) E(s) U(s) R(s)

R(s) Gbc(s) Y(s) Gbc(s) models how the ouput of the closed-loop system reacts to changes in the references The properties of a controller are defined based on the response of the closed-loop system

(17)

Other transfer functions

C(s) G(s) H(s) R(s) Ym(s) U(s) Y(s) Sensor dynamics C(s) G(s) H(s) R(s) Ym(s) U(s) Y(s) Gd(s) D(s) Disturbances -+ + + +
(18)

-Index

Closed Loop Transfer Function

Tuning a Controller

Stability analysis of system

Steady-state response of a closed-loop systems

Transient response of a stable system.

(19)

Controller tuning

Obtain a set of controller parameter (C(s)) in order to guarantee that the closed-loop systems satisfies a given set of conditions (specifications)

Specifications

Stability

Raise time (step reference change) Steady state error

Specifications on the linearized model are

relevant to the behaviour of the real

closed-loop system

Mathematical design

Tuning based on the anlisys of the closed-loop dynamics (which depend on the controller parameters)

Gbc(s) is not defined if parameters of C(s) are not fixed

(20)

Example

Closed-loop system

Closed-loop response? Depends on the value of Kp Three poles that depend on Kp

Static gain depens on Kp

Reference signal: Step change

(21)

Example

Kp=0.1

Kp=1

Kp=10

(22)

Example

0 10 20 30 40 50 60 0 0.5 1 Kp = 0.1, Td = 0, 1/Ti = 0 y(t) 0 10 20 30 40 50 60 0 0.05 0.1 u(t) 0 10 20 30 40 50 60 0 0.5 1 e(t) 0 10 20 30 40 50 60 0 20 40 ∫ 0 t e( τ )d τ

Respuesta del sistema en BC

0 10 20 30 40 50 60 0 0.5 1 1.5 Kp = 1, Td = 0, 1/Ti = 0 y(t) 0 10 20 30 40 50 60 −0.5 0 0.5 1 u(t) 0 10 20 30 40 50 60 −0.5 0 0.5 1 e(t) 0 10 20 30 40 50 60 0 5 10 ∫ 0 t e( τ )d τ

Respuesta del sistema en BC

0 10 20 30 40 50 60 0 1 2 Kp = 10, Td = 0, 1/Ti = 0 y(t) 0 10 20 30 40 50 60 −10 0 10 u(t) 0 10 20 30 40 50 60 −1 0 1 e(t) 0 10 20 30 40 50 60 −0.5 0 0.5 1 ∫ 0 t e( τ )d τ

Respuesta del sistema en BC

0 10 20 30 40 50 60 −10 0 10 20 Kp = 15, Td = 0, 1/Ti = 0 y(t) 0 10 20 30 40 50 60 −200 0 200 u(t) 0 10 20 30 40 50 60 −20 −10 0 10 e(t) 0 10 20 30 40 50 60 −5 0 5 10 ∫ 0 t e( τ )d τ

(23)

Example

0 10 20 30 40 50 60 0 0.5 1 Kp = 0.1, Td = 0, 1/Ti = 0 y(t) 0 10 20 30 40 50 60 0 0.05 0.1 u(t) 0 10 20 30 40 50 60 0 0.5 1 e(t) 0 10 20 30 40 50 60 0 20 40 ∫ 0 t e( τ )d τ
(24)

Example

0 10 20 30 40 50 60 0 0.5 1 1.5 Kp = 1, Td = 0, 1/Ti = 0 y(t) 0 10 20 30 40 50 60 −0.5 0 0.5 1 u(t) 0 10 20 30 40 50 60 −0.5 0 0.5 1 e(t) 0 10 20 30 40 50 60 0 5 10 ∫ 0 t e( τ )d τ
(25)

Example

0 10 20 30 40 50 60 0 1 2 Kp = 10, Td = 0, 1/Ti = 0 y(t) 0 10 20 30 40 50 60 −10 0 10 u(t) 0 10 20 30 40 50 60 −1 0 1 e(t) 0 10 20 30 40 50 60 −0.5 0 0.5 1 ∫ 0 t e( τ )d τ
(26)

Example

0 10 20 30 40 50 60 −10 0 10 20 Kp = 15, Td = 0, 1/Ti = 0 y(t) 0 10 20 30 40 50 60 −200 0 200 u(t) 0 10 20 30 40 50 60 −20 −10 0 10 e(t) 0 10 20 30 40 50 60 −5 0 5 10 ∫ 0 t e( τ )d τ
(27)

Types of behaviour

Unit step response

Clasification of the output signal ∆y(t) depending on the input signal

Unit Step (the most widely used).

Ramp.

Sinusoidal.

Provides information about the dynamic proterties of the system

Model expressed in error variables (u0,y0)

Assumption: Initial conditions in the operating point.

Unit Step: Behaviours:

• Overdamped • Underdamped • Unstable

(28)

Types of behaviour

Overdamped 0 5 10 15 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Step Response Time (sec) Amplitude Delay L Gain K Raise Time ts L ts K

Raise Time: Time to reach 63% of the steady state value.

Delay: Time of reaction for the output with respect to a change in the input.

Gain: Quotient of the output and the input values.

(29)

Types of behaviour

Underdamped K te tp ts Delay L Gain K Raise Time ts Peak Time tp Settling Time te Overshoot Mp

Raise Time: Time to reach

the steady state value for the first time.

Peak Time: Time to reach the

maximum value.

Settling Time: Time to

confine the output within a band of 5% arounf the steady state value.

Overshoot: Percentage

Increment of the peak value with respect to the steady state value..

(30)

Types of behaviour

(31)

Index

Closed Loop Transfer Function

Tuning a Controller

Stability analysis of system

Steady-state response of a closed-loop systems

Transient response of a stable system.

(32)

Stability

(Chapter 7. Stability)

Stability Criterion:

Gbc(s) is stable if and only if all poles are located on the left-half complex plane.

Closed loop poles are the roots of (depend on C(s))

A closed-loop system might become unstable if the controller is not properly designed.

The controller design must guarantee closed loop stability Example: Kp=15

(33)

Stability

Analitic Procedure (Try & Error)

• Evalute closed loop poles for every combination of the controller parameters (Kp, Td, Ti) using the model of the system.

Routh-Hurwitz stability criterion

• A tool to evaluate if a polinomial has roots on the right-half complex plane. • The method prevents form computing the whole set of roots of a higher

order polinomial

• It can be used to evaluate stability conditions

(34)

Routh-Hurwitz Stability Criterion

Allows to determine if there exists a root in the right-half complex plane

Important: Note the notation

1 – If there exists a negative parameter, then the polinomial has at least one root in the right-half plane.

2 – Build the Routh-Hurwitz table. If there exists a negative component on the first column, then the polinomial has at least one root in the right-half plane.

There are special rules to deal with degenerate cases (See Chapter 7)

(35)

Example

Closed loop system

The poles are the solution of the following equation (depends on Kp)

(36)

Example

Closed loop system

The poles are the solution of the following equation (depend on Kp y Ti)

Not vey useful for multiple parameters

(37)

Index

Closed Loop Transfer Function

Tuning a Controller

Stability analysis of systems

Steady-state response of a closed-loop system

Transient response of a stable system.

(38)

Steady State Response

Analysis of system response as time tends to infinity

(We assume the closed loop system is stable)

Steady state error

Final Value Theorem (property of Laplace transform)

Important: Depends on R(s)

(39)

Error for Step input

0 1 2 3 4 5 6 7 8 9 10 0 0.2 0.4 0.6 0.8 1

Error for a constant steady-state input

Position error constant

All stable systems have bounded steady-state errors

(40)

Error for Ramp input

Steady state error for ramp input

Velocity Error

Bounded Velocity Error ⇔ Null position Error (C(s)G(s) has at least one integrator)

For the velocity error to be null (the system reached the reference)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(41)

Error for parabolic input

Steady state error for parabolic input

Acceleration error constant

Bounded acceleration error ⇔ Null position error ⇔ Null velocity error (C(s)G(s) has at least two integrators)

For the parabolic error to be null (The system reaches the reference)

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

(42)

Error Table

Type of a system = Number of integrators

0 1 2 Step 0 0 Ramp 0 Parabolic

Error

Type

(43)

Example

Type I System

Proportional Controller

Proportional Controller affects the Bode Gain of the system, but can not change its Type.

Improves (quantitatively) steady state behaviour.

(44)

Example

0 10 20 30 40 50 60 0 0.5 1 1.5 Kp = 1, Td = 0, 1/Ti = 0 y(t) 0 10 20 30 40 50 60 −0.5 0 0.5 1 u(t) 0 10 20 30 40 50 60 −0.5 0 0.5 1 e(t) 0 10 20 30 40 50 60 0 5 10 ∫ 0 t e( τ )d τ

Respuesta del sistema en BC Position error. Constant reference (Step)

(45)

Example

Velocity error. Increasing reference (ramp)

0 10 20 30 40 50 60 0 20 40 60 Kp = 1, Td = 0, 1/Ti = 0 y(t) 0 10 20 30 40 50 60 0 5 10 u(t) 0 10 20 30 40 50 60 0 5 10 e(t) 0 10 20 30 40 50 60 0 100 200 300 ∫ 0 t e( τ )d τ

(46)

Example

Type I system

PI Controller

P controllers affect the Bode gain of the system and increases the system type

Improves (qualitatively) steady state behaviour

Depends on Kp and Ti

(47)

Example

Position error. Constant reference (Step)

0 10 20 30 40 50 60 0 0.5 1 1.5 Kp = 1, Td = 0, 1/Ti = 0.1 y(t) 0 10 20 30 40 50 60 −1 0 1 2 u(t) 0 10 20 30 40 50 60 −0.5 0 0.5 1 e(t) 0 10 20 30 40 50 60 0 1 2 3 ∫ 0 t e( τ )d τ

(48)

Example

Velocity error. Increasing reference (ramp)

0 10 20 30 40 50 60 0 20 40 60 Kp = 1, Td = 0, 1/Ti = 0.1 y(t) 0 10 20 30 40 50 60 0 5 10 u(t) 0 10 20 30 40 50 60 0 1 2 3 e(t) 0 10 20 30 40 50 60 0 50 100 ∫ 0 t e( τ )d τ

Respuesta del sistema en BC The integral term is

introduced to improve steady state response.

(It might unstabilize the system.

Ex. Try simulation with Kp=1, Ti=1)

(49)

Index

Closed Loop Transfer Function

Tuning a Controller

Stability analysis of systems

Steady-state response of a closed-loop system

Transient response of a stable system.

(50)

Transient Response

Response to unit step input

Classification of output signal ∆y(t) depending on the input signal.

Unit Step (the most widely used).

Ramp.

Sinusoidal.

Provides information about the dynamical properties of the system

Y(s) G(s)

-C(s) E(s) U(s) R(s)

Response in y(t) when a reference r(t) is applied

Reference signal: Unit Step signal. Shows the speed of response of the system (In general the reference signal will be different than the unit step)

(51)

Transient Response

TEMA 5. Respuesta temporal de sistemas lineales.

Sistemas dinámicos lineales de primer orden. Ejemplos. Sistemas

dinámicos lineales de segundo orden. Respuesta ante escalón. Sistemas de orden n.

We are interested in the output y(t) as r(t) varies in time (Closed-loop behavior) The trnasient response of a LTI system depends on the closed-loop transfer function (Gbc(s))

One option: Try & Error

Given a system, simulate or aplly inverde Laplace transform

It is difficult to characterize propoerties as raise time or overshoot Identify the effect of parameters in the response.

(52)

First Order Systems

s

K

y

u

K

y

dt

dy

τ

τ

+

=

=

=

=

+

1

U(s)

Y(s)

G(s)

0

)

0

(

,

units) in time (measured Constant Time : output) & input to according (units u y Gain Static : K τ ∞ ∞ ∆ ∆ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0 1 2 3 4 5 tiempo

2

=

u

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 tiempo y

6

=

y

ττττ

78

.

3

63

.

0

y

=

(53)

Second order Systems

rad/s)

(

frequency

Natural

:

nal)

(adimensio

t

Coefficien

Damping

:

U)

Y/dim

(dim

Gain

Static

:

K

2

n 2 2 2 2 1 2 1 2 2

ω

δ

ω

ω

ω

δ

y

K

u

dt

dy

dt

y

d

u

b

y

a

dt

dy

a

dt

y

d

n n n

+

=

+

=

+

+

2 2 2

2

U(s)

Y(s)

G(s)

n n n

s

s

K

ω

ω

δ

ω

+

+

=

=

(54)

Second order Systems

1

:

Poles

δ

ω

n

±

ω

n

δ

2

Im

Re

<

=

>

:

1

:

1

:

1

δ

δ

δ

Overdamped

Critically damped.

Underdamped

Im

Re

(55)

Second order Systems

2

1

δ

ω

α

π

=

n s

t

2 1 δ ω π − = n p t 2 1

100

.(%)

.

δ π δ − −

=

e

O

S

δ

ω

n e

t

=

3

Underdamped system 0 0 Tiempo y(t) ) ( ) ( ) ( . . ∞ ∞ − = y y t y O S p

)

(

y

e

t

p

t

s

t

(56)

) ( lim gain static the is K where )] 1 cos( ) 1 ( [ ) ( ) 2 ( ) ( ) ( ' 1 ) ( 0 2 2 1 1 2 2 1 1 1 s G K t c t sen b e e a K t y s s p s c s k s s Y s k k k k r k t t j t p j k k k r k j t j i m i k k j → = − = − = = = = ⋅ − + ⋅ − + + = + + ∏ + ∏ + ∏ ⋅ =

ω

δ

ω

δ

ω

ω

δ

ω δ

Higher order Systems

n n n n m m m m m m m m m n n n n n n

a

s

a

s

a

s

b

s

b

s

b

s

G

t

u

b

dt

t

du

b

dt

t

u

d

b

dt

t

u

d

b

y

a

dt

t

dy

a

dt

t

y

d

a

dt

t

y

d

+

+

+

+

+

+

+

=

+

+

+

+

=

+

+

+

+

− − − − − − − − − 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1

...

...

)

(

)

(

)

(

...

)

(

)

(

)

(

...

)

(

)

(

(57)

• In practice, some poles have more influence in the response than others. These poles are called dominant poles

• The dominant poles are those yielding the slowest reponse

• The response speed is given by the exponent of the exponential terms (the real part of the pole). Remember:

Dominant Poles

Dominant dynamics: poles with the slowest response

In practice, the dominat poles are determined from their relative distance to the imaginary axis.

Re Im p1 p’1 p2 p’2 d2 d1 Re Im p1 p2 p’2 d2 d1 p1 is dominant if d2/d1>5

The static gain must remain the same

(58)

Dominant Poles

1

2

)

17

)(

16

)(

1

(

544

)

17

)(

16

)(

1

(

544

)

(

+

=

+

+

+

+

=

s

s

s

s

s

s

G

-1 is el dominant. The remaining poles are neglected

Re

Im

-1

-16

-17

Tiempo(s) 0 1 2 3 4 5 6 0 0.5 1 1.5 2 2.5 y(t)
(59)

Effect of zeros in the output

0 0.5 1 1.5 0 1 2 3 4 5 6 Step Response Time (sec) A m p lit u d e 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.5 1 1.5 2 2.5 Step Response Time (sec) A m p lit u d e
(60)

Effect of zeros in the output

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 1 2 3 4 5 6 Step Response Time (sec) A m p lit u d e y(t) dy(t)/dt yc(t) Qualitatively:
(61)

Non-minimum phase zeros

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Step Response Time (sec) A m p lit u d e 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Step Response Time (sec) A m p lit u d e 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.5 1 1.5 2 2.5 Step Response Time (sec) A m p lit u d e 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 1 2 3 4 5 6 Step Response Time (sec) A m p lit u d e -20 -15 -10 -5 0 5 -1 0 1

x

x

o

o

o

o

(62)

Non-minimum phase zeros

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Step Response Time (sec) A m p lit u d e 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -1 -0.5 0 0.5 1 1.5 2 Step Response Time (sec) A m p lit u d e -20 -15 -10 -5 0 5 -1 0 1

x

x

o

o

(63)

Dynamics cancellation

-7 -6 -5 -4 -3 -2 -1 0 -1 0 1

x

o

x

The closer the zero is to the pole, the less it influences system response Affects the dominant dynamics (in transient regime)

Settling time is not significantly affected.

0 1 2 3 4 5 6 0 0.2 0.4 0.6 0.8 1 Step Response Time (sec) A m p lit u d e

(64)

Design Hypothesis

Quick review of concepts

• Time response of first order systems • Time response of second order systems • Time response of higher order systems • Effect of zeros

It is difficult to obtain explicit results in general

Design Hypothesis

• Explicit expressions for the effect of controller parameters on the transient response for step inputs are required.

• A pair of conjugate complex poles dominate the closed loop response

• Zeros are difficult to deal with, in general. Not considered.

Two design tools:

• Root Locus design

(65)

Index

Closed Loop Transfer Function

Tuning a Controller

Stability analysis of system

Steady-state response of a closed-loop systems

Transient response of a stable system.

(66)

Poles and Zeros of Gbc(s)

Closed-loop transfer function

Zeros of the closed-loop system The same zeros of the open-loop plant plus those of the controller

Poles of the closed-loop system Depend on the design parameter

• In some cases it is possible to get explicit expressions for 2nd order systems with P and PD controllers

• Not possible in general

(67)

Example

P Controller

The poles depend on Kp

Complex plane representation Root Locus

(68)

Example

−6 −5 −4 −3 −2 −1 0 1 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 Kp=0.1 Kp=1 Kp=10 Kp=15
(69)

Illustratuve example:

Magnetic levitation system

Description Value

Ball material Steel

Ball diameter 25 mm Coil diameter 80 mm Winding turns 2850 Resistence 22 Inductance 277 mH a 1 kHz 442 mH a 120 kHz

(70)

Illustratuve example:

Magnetic levitation system

Nonlinear model of the system

2 2 X I k mg X m&& = − m : Ball mass g : Gravity constant

X : Distance between ball and coil (magnitudes to be controlled) I : Coil current (control action) K : constant coefficient

X Fm

Fg

System Linealization

We assume the operating point X0 with control action I0 and consider error variables

X X X I I I ∆ + = ∆ + = 0 0

(71)

The incremental variables depend on the

selected operating point.

(72)

References

Related documents

The application of salicylic acid mitigated the toxic effects of NaCl stress on maize seedlings and considerably improved root and shoot growth, photosynthetic pigments, fresh

However, since this study explores the impact of reflection on students’ learning processes during a problem-based learning unit, specific learning theories that support

Three main kinds of deformation mechanisms have been shown to be activated: stress induced ω phase, stress induced  ’’ martensite and mechanical twinning..

Because both Simply Accounting’s products and Sage 50 HR were standardized on MySQL, Sage has been able to integrate the two products to create a Simply Accounting by Sage

Five of the CWPs under study were characterised further by Western blot analysis of total cell extracts or S-layer preparations of the C.difficile clinical

Except where we receive financial remuneration in exchange for making the communication, we may communicate with you for the following treatment and health care operations

The rationale Patrick and Dillon gave for their use of FL and DigiTech was that it allowed them to (a) optimise students’ lesson time and (b) support their examination PE

The main objective of this study was to identify the factors influencing young Brazilians’ engagement with Facebook, by extending an existing model of social media participation