• No results found

Room temperature ethanol sensor with sub-ppm detection limit: Improving the optical response by using mesoporous silica foam

N/A
N/A
Protected

Academic year: 2021

Share "Room temperature ethanol sensor with sub-ppm detection limit: Improving the optical response by using mesoporous silica foam"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

SensorsandActuatorsB243(2017)1205–1213

Contents lists available atScienceDirect

Sensors

and

Actuators

B:

Chemical

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

Room

temperature

ethanol

sensor

with

sub-ppm

detection

limit:

Improving

the

optical

response

by

using

mesoporous

silica

foam

Dániel

Seb ˝ok

a,∗

,

László

Janovák

a

,

Dániel

Kovács

a

,

András

Sápi

b

,

Dorina

G.

Dobó

b,c

,

Ákos

Kukovecz

b,c

,

Zoltán

Kónya

b,d

,

Imre

Dékány

a,e

aDepartmentofPhysicalChemistryandMaterialsScience,UniversityofSzeged,1Rerrichsquare,H-6720Szeged,Hungary bDepartmentofAppliedandEnvironmentalChemistry,UniversityofSzeged,1Rerrichsquare,H-6720Szeged,Hungary cMTA-SZTE“Lendület”PorousNanocompositesResearchGroup,UniversityofSzeged,1Rerrichsquare,H-6720Szeged,Hungary dMTA-SZTEReactionKineticsandSurfaceChemistryResearchGroup,UniversityofSzeged,1Rerrichsquare,H-6720Szeged,Hungary eMTA-SZTESupramolecularandNanostructuredMaterialsResearchGroup,UniversityofSzeged,8Dómsquare,H-6720Szeged,Hungary

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25August2016 Receivedinrevisedform 17December2016 Accepted19December2016 Availableonline21December2016 Keywords: Thinfilm RIfS Mesoporoussilica Roomtemperature Sub-ppm Ethanolsensor

a

b

s

t

r

a

c

t

Inthispaper,theimprovementinroomtemperatureethanolsensingcharacteristicsofzincperoxide

(ZnO2)basedhybridthinfilmsispresentedbythecombinationofthebeneficialsensingproperties

ofmesoporous materialsandreflectometricinterference spectroscopy(RIfS).Thehybridthin films

werepreparedbyLayer-by-Layer(LbL)self-assemblymethodfromZnO2nanoparticles,polyelectrolyte

[poly(acrylicacid),PAA]and/ormesoporoussilica(MPS).Theexpectedimprovedsensingpropertieswere

attributedtothefractalpropertiesandhighspecificsurfacearea(as)ofthemesoporouscoating/interlayer

material,whichwasevidencedbysmallangleX-rayscattering(SAXS)andN2sorptionmeasurements

(as>650m2/g).Thesensortestsshowedthatthedetectionlimitofthethinfilmsisinthesub-ppmrange

(<500ppb).Applyingsilicafoam(SF)assurfacecoatingorinterlayermaterialinthesandwich-structured

thinfilm(ZnO2/SF)improvedtheopticalresponse(l:wavelengthshift)comparedtotheZnO2/PAAthin

layer,butthesensitivityshowednon-linearcharacteristicandsignaldrift.Thethinfilmwithmixed

struc-ture(ZnO2/PAA/ZnO2/SF)showedlinearsensitivity(␭/c=0.6nm/ppm)inthe0.5–12ppmrangewith

anacceptableselectivityandstablebaseline.Testingthesensorinextended(upto40ppm)concentration

rangeshowedonlyaslightquadraticdeviationfromlinearbehaviorwithR2=0.9987.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Sensorsforvolatileorganiccompounds(VOCs) (e.g.alcohols, benzeneetc.)playanimportantroleineverydaylifeand indus-trialsafety. Indisputable fact is that thesechemical agents are harmfulandunhealthy,sothedetectionofthesemoleculeshas agreatimportanceinenvironmentalandhealthprotection,such asinairandwaterqualitycontrol,foodindustryor–especiallyin thecaseofethanol–the“drivingunderinfluence”(DUI)control. Considering a comprehensive, although not complete overview ofthearticlespublishedinrecentyearsinethanolsensorstopic (Fig.1)wecanconcludethattheprinciples,technicalsolutions, thematerialsused, theoperating temperatureranges and con-centrationlevelsarefairlydiversified.Themostcommonlyused

∗ Correspondingauthor.

E-mailaddress:[email protected](D.Seb ˝ok).

sensor materialsare SnO2 [1–3], ZnO [4–7], SiO2 [8],In2O3 [9] TiO2[10],Fe2O3 [11,12]andothernanostructures[13–16], com-posites[17–25]orcoatings[26,27].Themeasurementprincipleis mainlybasedontheresistivemethod,butalsocapacitive[8,15], optical[2,26–28],quartzcrystalmicrobalance(QCM)[26,28]and piezo(self-poweringdevice)[7,21,22]applicationscanbefound. Fig.1showstheprinciples,studiedconcentrationrangesand oper-atingtemperaturespresentedintheworkscitedabove.Itcanbe seenthatthestudiescanbedividedintotwomajorgroups:room temperature(RT)andhightemperature(around200and300◦C) applications.Mainlyelectricalmethodsandmesoporoussensing materialsarepreferredinthelattercase,therebybroad concen-tration ranges withexcellent detection limits can be achieved. However,ithastobenotedthatVOCpollutantseasilyevaporate atroomtemperatureand canbeveryharmfulandcarcinogenic alreadyatlow concentration.ItcanbeseenonFig.1thatmost oftheRTtechnicalsolutions[2,7,8,15,16,26–28]areabletodetect ethanol vapour onlyabove 10ppm concentration.In this work, http://dx.doi.org/10.1016/j.snb.2016.12.097

(2)

Fig.1.Diagramsummarizingthecomprehensive,althoughnotcompleteoverviewofthearticlespublishedinrecentyearsinethanolsensorstopic(groupedbythe measurementprinciples,thestudiedconcentrationrangesandoperatingtemperatures;note:roomtemperaturehasnotdetailedscale!).

wemadeanattempttocombinethebeneficialsensingproperties ofmesoporousmaterials[3,29,30]andreflectometricinterference technique[31]toconstructahighlysensitiveethanolsensor oper-atingatroomtemperature.

Reflectometricinterferencespectroscopy[28,31–36]isan opti-cal method which is based on the spectral (red) shift of the interferencepatternreflectedfroma(fewhundrednanometersof layerthickness)thinfilm.Thewavelengthshiftiscausedbythe adsorptionoradhesionofmoleculesorcolloidalunits,soitcanbe utilizedinantigen-antibodyreactionsortodetecttheadsorptionof volatilecompounds[].ThesensorsurfaceofRIfStechniquecanbe preparedbyusingthewetcolloidchemicalprocedure,theso-called Layer-by-Layermethod[37,38].TheLbLmethodis widelyused forthinfilmpreparationdirectlyfromcolloidalsystems (nanopar-ticles, polymer solutions, etc.): it is an easy, non-instrumental techniqueanditresultsahomogeneoussurfaceandwell-ordered, transparentstructurewithcontrollablefilmthicknessandafine andporousmicrostructure[39],likethesimilarLangmuir-Blodgett method[40,41].TheseareessentialconditionsforapplyingRIfS technique,andthesensitivity,aswellas,thelimitofdetectioncan beimprovedbytheadditionofvarioussurface-modifyingagents [28,31].

In the present work we demonstrate the beneficial effect of using mesoporous silica materials on the sensitivity and detection limit of RIfS sensor in the gas phase. We show that applyingmixed(nanoparticle/polyelectrolyte/mesoporoussilica) nanostructureresultslinearsensitivityandsub-ppmethanol detec-tionlimitwithoutresponsedrift,whileboththeresponsetimeand selectivityremainstableandadequate.Furthermore,firstlyinthis workwecarriedoutreflectionintensitymeasurementinaddition tothewavelengthshiftmonitoring:thetwotypesofresponses dif-fersignificantly,whichmayhighlight–byfurtherstudies–the

differencesbetweentheadsorptionmechanismsontothevarious surfaces.

2. Experimental

2.1. Materials

Zincperoxidenanoparticleswithanaveragediameterof80nm were synthesized by the photolysis of zinc acetate dehydrate (C4H6O4Zn·2H2O,Fluka,a.r.)describedin[38].Poly(acrylicacid) (PAA,MW=100000,Sigma,a.r.)wasusedasanegativelycharged polyelectrolyte.Furthermore,SBA-15andsilicafoamwereusedas coatingsornegatively chargedinterlayermaterials.Synthesisof SBA-15silicaiswell-known[42].MesoporousSFwereprepared byamodifiedsol-gelroutebasedonthetechniquesuggestedby Bagshaw[43].Inatypicalsynthesis,13.9gTEOSwasslowlyadded to30mL 10 w% TritonX114 aqueoussolutionand the synthe-sismixturewerevigorouslystirredfor24h.Theobtainedsilica suspensionwascollectedbyvacuumfiltrationandlefttodryat roomtemperaturefor24h.Thedriedsamplewasintroducedinto aTeflon-linedstainlesssteelautoclavewithavolumeof100mL where 10mLwater was alsoadded separatelyto ensurewater vapourenvironment.Aftertheassemblyoftheautoclave,itwas heldat140◦Cfor24h.Finally,thesilicafoamwascalcinedinairat 450◦Cfor4h.

2.2. Thinfilmpreparation

Five types of hybrid thin films were prepared byusing the ZnO2 nanoparticles,negatively chargedPAApolyelectrolyte and themesoporous silicasamples (see Fig. 2): (1.) 20 zinc perox-ide/poly(acrylicacid)bilayers([ZnO2/PAA]20);(2–3.)[ZnO2/PAA]20 films with silica foam and SBA-15 coatings ([ZnO2/PAA]20 +SF

(3)

D.Seb ˝oketal./SensorsandActuatorsB243(2017)1205–1213 1207

Fig.2. Theschematicviewofthepreparedandappliedhybridthinfilms.

and [ZnO2/PAA]20 +SBA); (4.) a thin film containing 20 bilay-ers of zinc peroxide/silica foam ([ZnO2/SF]20) and (5.) a thin film containing 10 mixed, zinc peroxide/poly(acrylic acid)/zinc peroxide/silicafoammultilayers([ZnO2/PAA/ZnO2/SF]10).During pre-experiments,SBA-15wasnotsuitableasinterlayermaterial inthinfilmsconsistingof40layers,therefore,itwasonlyapplied asacoating.ThethinfilmswerepreparedbytheLbLdeposition methodbythealternatedadhesion/adsorptionofZnO2 nanoparti-cles,poly(acrylicacid)[44]andmesoporoussilicananostructures (SBA-15andSF)onthesurfaceofglasssubstrate(microscopeslides, MarienfeldSuperior,Germany).Thethinfilmpreparationwas car-riedoutbyusingc=8g/LZnO2,c=0.1g/LPAAandc=10g/Lsilica solutions.Theimmersiontimewas10minforeachstep,whichwas followedbyrinsingwithdeionizedwatertoremovethesurplus (non-electrostaticallyattached)colloidunits.Duringthecoating processthepreviouslypreparedzinc-peroxide/poly(acrylicacid) hybridfilmswereimmersedintothesilicasuspensionandwere driedwithoutrinsingthesurplus.

2.3. Instrumentalmethods

TransmissionElectronMicroscopy(TEM)measurementswere carriedoutbyaFEITECNAIG220X-Twinhigh-resolution trans-missionelectronmicroscope(equippedwithelectrondiffraction) operatingatanacceleratingvoltageof200kV.Thesampleswere drop-castontocarbonfilmcoatedcoppergridsfromethanol sus-pension.

Thespecificsurfacearea(BETmethod)andthetotalporevolume weredeterminedbytheBJHmethodusingaQuantachromeNOVA 2200gassorptionanalyzerbyN2gasadsorption/desorptionat77K. Beforethemeasurements,thesampleswerepre-treatedinvacuum at200◦Cfor2h.Thedensityofthesilicapowderswasmeasured usingahelium

gaspycnometer(Micromeriticstype1305).

SAXStechniquewasusedtoinvestigatethefractalproperties andstructuralparametersofthemesoporoussilicacomponents. SAXScurves were recorded witha slit-collimated Kratky com-pact small-angle system(KCEC/3 Anton-PaarKG,Graz, Austria) equippedwitha position-sensitive detector(PSD50Mfrom M. Braun AG Munich, Germany) containing 1024 channels 55␮m inwidth.CuKradiation(␭CuK␣=0.1542nm)wasgeneratedbya PhilipsPW1830X-raygeneratoroperatingat40kVand30mA.The fractaldimensionof atwo-phasesystemcanbedeterminedby usingthefollowingequation:I(h)=I0h−p,whereh=4sin␭−1 isthescatteringvector,isone-halfofthescatteringangle,isthe wavelengthofCuKradiation,I(h)isthescatteringcurve,I0isthe scatteredintensityath=0,andpistheslopeofthefittedlinein thehigherh-range(Porodregime)inlog-logplotofthescattering curve.If3<p<4thenthesampleissurfacefractal,andthe sam-plehasmassfractalpropertiesinthecaseof1<p<3.Thespecific surfacearea(as)valueswerecalculatedbyusingequationsin[45].

The optical properties of the thin films were studied by a Nanocalc2000spectrophotometer withADC1000-USBA/D con-verter (Ocean Optics). The reflectionspectra of the films were measuredina special,home-builttestcellatdetectionangleof 45◦.Thethickness(d)andeffectiverefractiveindex(n1)ofthethin filmswerecalculatedbasedonthemodelpresentedinFig.3.aand byusing(andfitting)Eq.(1)(moredetailsin[38]):

R (,ne,d)=c1+c2·cos



4n 1dcos ε1 



(1) whereε1 istheangleofrefractionatair/thinfilminterface,is thewavelength,c1andc2areconstantswhichcontainthetijandrij transmissionandreflectionamplitudescalculatedbyFresnel equa-tions(i,j=0,1,2,seeFig.3.a).

Thesametestcellwasusedduringthesensorialtestsindynamic conditions(Fig.3.b):itwasconnectedtoagasflowsystemwhich consistsofthecarriergas(N2)holder,thetemperaturecontrolled liquidsampleholderandanumberofflowcontrollers(MFC) (Cole-Parmer,USA). The vapourconcentration inthe test cellcan be controlledbytheMFCunitsandV1-V5valvesviathemixingrateof pureandvapourcontainingN2flows(theflowcontrollerscan reg-ulatemaximum3922,844and49mL/mingasflow).Theaccuracy oftheflowadjustingontheMFCscaleis±0.5division,sothe preci-sionoftheconcentrationis±0.04ppmor±0.68ppminthecaseof themax.49mL/minorthemax.844mL/mindevices,respectively. Theethanol dosageandrinsing(N2)timeswere3–3min, alter-nately.Thesensorresponses,␭(nm)andR(a.u.)weredefined asthewavelengthshiftofthegivenextremeofthereflection spec-traandthechangeofthereflectionvaluecorrespondingtothis extreme,respectively.The measurementsineach concentration steps(475-11880ppb)wererepeatedthreetimes,theresponses weredeterminedastheaverageofthethreevalue.During selec-tivitymeasurements2␮Lofliquids(methanol,ethanolasalcohols; n-hexaneasaliphatic;toluene,xyleneasaromaticmolecules)was droppedintotheliquidsampleholder(inthiscaseT=70◦C)with a mixingrateof4.9mL/minsub-branchand1000mL/minmain branchflowrates.

3. Resultsanddiscussion

3.1. Characterizationofthemesoporoussilicamaterials

The porosity,pore systemcharacteristic and specificsurface areaare of great importancein thecase of mesoporous adsor-bentsusedinsensorialapplications,thereforeseveralstructural parametersweredeterminedandcalculatedbyusingSAXS tech-nique.Asitisknownintheliterature,SBA-15has2Dhexagonally orderedporesystem[38],whichcanbeidentifiedbyTEMandSAXS technique(Fig.4.a:AandB).Bothmeasurementsclearlyshowthe porestructure;inthelattercasethepeaksath=0.705,1.235and 1.41nm−1correspondtothe1:√3:2ratio,therebytheP6mm

(4)

sym-Fig.3.aTheusedthinfilmmodelforthicknessandrefractiveindexcalculations(indices:0–air,1–thinfilm,2–substrate).bSchemeoftheusedexperimentalsetup(gasflow systemandreflectometrictestcell)andthemeasurementprinciple.

metryisclearlyidentified[46].Thedoublelogarithmicplotofthe scatteringcurveissuitablefordeterminingthefractalproperties ofthematerial.InthecaseofSBA-15theslopeisapproximately −2inthehigherh-range,whichindicatesaframe-likesurface frac-talstructure,aswellas,p≈−3.5forSFsampleischaracteristicfor thesmoothsurfacefeatureofthemesocellularfoamstructure(see Fig.4.a:C).ThespecificsurfaceareavaluesdeterminedbySAXS measurementsare820and730m2/gforSBA-15andSF, respec-tively.

TheN2adsorption/desorptionstudiesofthesilicasamplesshow isothermswithhysteresisloopandporesizedistributionsbetween 3and10nmcharacteristicformesoporousmaterials(Fig.4.b).The specificsurfaceareasandaverageporediametersare798m2g−1, 4.2nmand666m2g−1,4.6nmforSBA-15andSF,respectively.In summary,theSBA-15hashigherspecificsurfacearea,howeverthe SFshowedhighertotalpore volume(Vp=0.76and 1.30cm3g−1 for SBA-15and SF,respectively). The overall conclusionis that althoughthestructural and fractal natureofthese mesoporous materialsaresignificantlydifferent,buttheaverageporediameters andspecificsurfaceareasaresimilar,andthesevaluesappeartobe sufficientlyhighforconsiderableadsorptioncapacityandsensorial applications.

3.2. Thinfilmcharacterization

Therecordedandfitted(inthe␭=550–850nmrange)reflection spectraandthecalculatedrefractiveindexcurvesofthreetypesof thinfilms(withoutcoating)canbeseenonFig.5.Thelayer thick-nessesandeffectiverefractiveindices(at␭=589nm)are782nm and1.286,894nmand1.258,989nmand1.251for[ZnO2/PAA]20, [ZnO2/PAA/ZnO2/SF]10 and [ZnO2/SF]20, respectively. It can be establishedthatusingSFsilicaasinterlayermaterialincreasesthe thickness(d)anddecreasestheeffectiverefractiveindex(n1)ofthe thinfilms.Inouropinion,themainreasonsforthisisthe follow-ing:thesetypeofhighlyporoussilicananostructuressignificantly increasethemicro-andmacro-levelporosityofthehybridfilms, therebyconsiderablydecreasetheeffectiverefractiveindex,while thepolyelectrolyteformsultrathinlayersinthemultilayer struc-ture,therebyensuringacloserpackingfortheZnO2nanoparticles. Increasingtheporosityandformingthickerandporousinterlayers inthesandwich-likestructureexplaintheslightlylowerrefractive indices,higherfilmthicknessesandtheadvantageouseffectin sen-sorialtests(presentedlaterin3.3).Inthecaseof[ZnO2/PAA]20+SF and[ZnO2/PAA]20+SBAfilmsthesilicamonolayerhasno signifi-cantcontributiontotherefractiveindexandlayerthickness,and giventhefactthatforthesesamplesthecoatinghadnosignificant

(5)

D.Seb ˝oketal./SensorsandActuatorsB243(2017)1205–1213 1209

Fig.4.a(A)ArepresentativeTEMimageofthemesoporousSBA-15sample,(B)theSAXScurvesofSBA-15andSFpowdersamplesinlog–logrepresentation(thepower-law exponentsareindicatedbydottedlines)and(C)theTEMimageoftheSFsilicasample.b(A,C)BETisothermsfortheSBA-15andSFsilicasamplesshowthemesoporous characteristic,(B,D)poresizedistributionofSBA-15andSFsamples,respectively.

Fig.5.(A)Themeasured(solidlines)andcalculated(dottedlines)reflectionspectraof[ZnO2/PAA]20,[ZnO2/PAA/ZnO2/SF]10and[ZnO2/SF]20thinfilms,and(B)thecalculated

refractiveindexcurves.

effectinthesensorialtests,thedetaileddiscussionoftheoptical propertiesisignoredinthisparagraph.

3.3. Sensorialtestofthehybridthinfilms

Thethin filmsweresubjected to reflectometricinterference measurements for testing sensorial applications. The measure-mentswerecarriedoutbymeasuringtheshiftofthelocalminimum ofreflectedintensitynear␭=500nmwavelength.Itis␭min=457nm in thecase of [ZnO2/PAA]20,and ␭min=507nm and 568nm for [ZnO2/PAA/ZnO2/SF]10and[ZnO2/SF]20,respectively(thesevalues arevalidinthet=0measurement point).Therawresults (sen-sorgrams),i.e., the  vs. t and R vs. t curves are presented in Fig. 6.a and b, respectively. Conspicuous differences can be noticedviewing either thetwo sensorgrams or thecurves one byone.It canbeimmediatelyconcludedthatinthecaseof

curves the responsesare positive becauseof the optical thick-nessincreasesduetothevapouradsorption.Significantsignaldrift canbeobservedinthecaseofZnO2/PAA,ZnO2/PAA+coatingand ZnO/SFthinfilms,whichisratherdisturbingphenomenon:should bedrift compensationapplied? In thiscase, not in general.f it isignoredtheneach measurementstep(atthesame concentra-tion)resultsinhigher responsethan thepreviousoneand this factmakesimpossibletoaccuratelydetermineunknown concen-trations.As it can beseen onthe calibration (responsevs. concentration)curves(Fig.7.a),wedidnotapplycompensation,the responsesincreasewithconcentration,evenifnotlinearly. How-ever,inthecaseof[ZnO2/PAA/ZnO2/SF]10hybridthinfilmresponse driftwasnotobservedwhichresultedalinearcalibrationcurve (0.586nm/ppm).InthecaseofRvs.tcurves(Fig.6.b)positive responsecanbeobservedonlyinthecaseof[ZnO2/PAA]20 sen-sor,butif thethinfilm containsMPS (asinterlayer materialor

(6)

Fig.6. aEthanolsensingtests:vs.tcurvesforthetestedthinfilms(labels: structureofthethinfilmandtheethanolconcentrationsteps);inset:responseof [ZnO2/PAA/ZnO2/SF]10mixedstructureforc=475ppbEtOH.bEthanolsensingtests:

Rvs.tcurvesforthetestedthinfilms(labels:structureofthethinfilmandthe ethanolconcentrationsteps).

coating)thenthereflectivitydecreasesduetotheethanoldosage. Furthermore,theresponsesofthecoatedthinfilmsarelowerthan theoriginal,aswellas,thesignalisnotevaluableinthecaseof [ZnO2/SF]20sensorsurface.ItcanbestatedthatevaluableR sig-nalandlinearcalibrationcanonlybeattributedtoPAAcontaining multilayers(withoutcoating),andtheresponsecanbeimprovedby interlayeredmesoporoussilicafoam(Fig.7.b:forclarity,the abso-lutevaluesoftheresponsesareplotted).Insummary,itwasfound thatapplying[ZnO2/PAA],[ZnO2/PAA]+MPScoatingor[ZnO2/SF] structuredthinlayersmostlyfailedduetothesignaldriftand non-linearsensitivity.Themixedstructureof[ZnO2/PAA/ZnO2/SF]was devoidofdriftandshowedlinearcalibrationcurves,sothistype ofhybrid(nanoparticle/polyelectrolyte/mesoporoussilica) multi-layerisan appropriate structure toapplyassensing surface in reflectometricinterferencesensoringasphase.Furthermore,we canconcludethatduringRIfSmeasurementsonsolid/gasinterface themonitoringofR(t)besidetheconventional(t)signalmay revealthecomplexityoftheadsorptionprocessesandmechanisms inmeso-andmacroporoushybridthinfilms.

Basedonthepresentedresultsthe[ZnO2/PAA/ZnO2/SF]10thin filmwasselectedforfurtherexperiments,suchas reproducibil-ity,responsetimeanalysisandselectivity(Fig.8).Itcanbestated that the sensors signal is well reproducible (Fig.8A),the sen-sorsresponsereachesthe90%ofmaximumvaluewithin40sand it is relaxed to10% within 80s(t90% and t10% on Fig.8B) (the totalresponseandrecoverytimeswere180–180s).Selectivitywas testedbydropping2␮Lofdifferentliquidsintoa70◦Cliquid

sam-Fig. 7.a Ethanol sensing (nm) vs. c(ppm) calibration curves for the pre-paredthinlayers(labels:structureofthethinfilmsandcalibrationequationfor [ZnO2/PAA/ZnO2/SF]10mixedstructure).bEthanolsensingRvs.c(ppm)calibration

curvesforthepreparedthinlayers(labels:structureofthethinfilmsandcalibration equationsfor[ZnO2/PAA]20and[ZnO2/PAA/ZnO2/SF]10mixedstructures).

pleholder, which wasconnected into the 1000mL/min carrier gasstreamtowardstheRIfStestcell.Theliquidsweremethanol, ethanol,n-hexane,tolueneandxylene.Thestudiedthinfilmswere [ZnO2/PAA]20and[ZnO2/PAA/ZnO2/SF]10toinvestigatetheeffect ofsilicafoamontheselectivity.Itwasestablishedthatinthecase ofZnO2/PAA/SFmixedstructure2–3timeshigherresponse was observedforethanolthanfortheothervolatileorganiccompounds (VOC),althoughalsotheaffinitytoaromaticmoleculesincreased comparedtoZnO2/PAAstructure(Fig.8C).

3.4. Extendingtheconcentrationrange

ThesensorsignalandcalibrationcurveofZnO2/PAA/ZnO2/SF mixedstructureinthelowppmrange(∼0.48-11.9ppm)was pre-sentedonFig.6.aand7.a,respectively.Itwasdemonstratedthat thelowest set and detected ethanol vapour concentration was 475±40ppb,andthevs.ccalibrationcurvewaslinearinthe c=475–11880ppbrange.Nextthe[ZnO2/PAA/ZnO2/SF]10thinfilm wassubjectedtosensorialtestinahigher,c=2.46-37(±0.68)ppm range(Fig.9.a).Theconcentrationsteps(0–50min)wererepeated aftera50minlongbaselinestabilitytest.Thestatementwasthat thesensorhasafairlystablebaseline(withoutdrift),butthe␭ calibrationcurveshowedaslightquadraticdeviationfromlinear behavior(Fig.9.b).Themostimportantparametersaresummarized inTable1.

(7)

D.Seb ˝oketal./SensorsandActuatorsB243(2017)1205–1213 1211 Table1

Structure,layernumberandlayerthicknessofthinfilmsusedinsensorialapplication,andconcentrationrange,calibratingequation(asthefunctionofconcentration, c),R2parameteranddriftpropertiesobtainedfromsensorialtests(*:LODandLODassumingerror-freecalibrationvalueswerecalculatedby[47]for[ZnO2/PAA/ZnO2/SF]10

inc=0.48-11.9ppmrange).Thetablecontainsearlierreflectometricinterferenceresultsforcomparison(originalandsurfacemodified–bybutyltrichlorosilane,BTS– [ZnO2/poly(styrenesulfonate)]20thinfilms).

Thinfilm d(nm) crange(ppm) Calibration,␭=f(c) R2 Drift LOD(ppm)

[ZnO2/PAA]20 782 0.48–11.9 −0.0086c2+0.339c 0.997 yes –

[ZnO2/SF]20 989 3rdorder – yes –

[ZnO2/PAA/ZnO2/SF]10 894 0.586ca 0.996 no 0.61b [ZnO2/PAA/ZnO2/SF]10 894 0.573cc 0.996 no 0.63d [ZnO2/PAA/ZnO2/SF]10 894 2.46–37 0.0107c2+0.427c 0.999 no – [ZnO2/PSS]20e 514 0−128 0.038c+0.536 0.998 no 29.2 [ZnO2/PSS]20+BTe 0−106 0.331c–0.652 0.997 no 10.3 [ZnO2/PSS]20+BTSe 0−50 0.293c–0.140 0.999 no 5.5

Theresultsindicatedbyboldfontarethemostimportantresultsofthisarticle,andasignificantpartofthediscussionisdetailedaboutthis(ZnO2/PAA/ZnO2/SF)typeof

nanostructure.

acalibrationbyusingcontinuouslyselectedamountsofconcentrations. bLODefc(assumingerror-freecalibration)=0.27ppm;[47].

c calibrationbyusingrandomlyselectedamountsofconcentrations. d LODefc(assumingerror-freecalibration)=0.29ppm;[47].

eD.Seb ˝ok,I.Dékány,Sensor.Actuat.B-Chem.206(2015)435–442.[28].

Fig.8.Responseanalysisfor[ZnO2/PAA/ZnO2/SF]10mixedstructure:(A)

repro-ducibility, (B) response and recovery times and (C) selectivity compared to [ZnO2/PAA]20thinfilm.

Fig.9.aEthanolsensingtestinextendedconcentrationrange:vs.tcurvesfor [ZnO2/PAA/ZnO2/SF]10thinfilminthe2.46–37ppmrange(blackline)compared

tothe0.48-11.9ppmconcentrationrange(grayline)(labels:ethanolconcentration steps).bEthanolsensingtestinextendedconcentrationrange:(nm)vs.c(ppm) calibrationcurvesfor[ZnO2/PAA/ZnO2/SF]10thinfilminthe2.46–37ppmrange

(whitesquares)comparedtothe0.48-11.9ppmconcentrationrange(blackcircles) (labels:calibrationequations).

(8)

structures were subjected to sensorial tests in the gas phase. We showed that thedetection limit of the sensor is sub-ppm (<500ppb),but onlythemixed(ZnO2/PAA/ZnO2/SF) nanostruc-tureshowedlinearsensitivityinthe0.4-11.9ppmrangewithout responsedrift,whileboththeresponsetimeandselectivityremain reasonablegood.Testingthesensorin extended(upto37ppm) concentrationrangeshowedaslightquadraticdeviationfrom lin-ear behavior. In the future the functionalization of the sensor surfacebydifferentmodifyingagentsisexpectedtoenhancethe selectivityandsensitivityofthesensor.

Acknowledgements

Theauthorsareverythankful forthefinancialsupportfrom TheHungarianScientificResearchFund(NKFIHOTKA)PD116224 andGINOP-2.3.2-15-2016-00013.Theworkwasearlierpartially supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP4.2.4.A/2-11-1-2012-0001‘NationalExcellenceProgram’. ASisgratefulforthesupportofJánosBolyaiResearchScholarship oftheHungarianAcademyofSciences.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.snb.2016.12.097.

References

[1]X.Feng,J.Jiang,H.Ding,R.Ding,D.Luo,J.Zhu,Y.Feng,X.Huang, Carbon-assistedsynthesisofmesoporousSnO2nanomaterialashighly sensitiveethanolgassensor,Sensor.Actuat.B-Chem.183(2013)526–534, http://dx.doi.org/10.1016/j.snb.2013.04.006.

[2]S.Sharifpour-Boushehri,S.M.Hosseini-Golgoo,M.-H.Sheikhi,Alowcostand reliablefiberopticethanolsensorbasedonnano-sizedSnO2,Opt.Fiber

Technol.24(2015)93–99,http://dx.doi.org/10.1016/j.yofte.2015.05.002. [3]W.Tan,Q.Yu,X.Ruan,X.Huang,DesignofSnO2-basedhighlysensitive

ethanolgassensorbasedonquasimolecular-clusterimprintingmechanism, Sensor.Actuat.B-Chem.212(2015)47–54,http://dx.doi.org/10.1016/j.snb. 2015.01.035.

[4]L.Zhang,J.Zhao,H.Lu,L.Li,J.Zheng,H.Li,Z.Zhu,Facilesynthesisand ultrahighethanolresponseofhierarchicallyporousZnOnanosheets,Sensor. Actuat.B-Chem.161(2012)209–215,http://dx.doi.org/10.1016/j.snb.2011. 10.021.

[5]L.Wang,Y.Kang,X.Liu,S.Zhang,W.Huang,S.Wang,ZnOnanorodgassensor forethanoldetection,Sensor.Actuat.B-Chem.162(2012)237–243,http://dx. doi.org/10.1016/j.snb.2011.12.073.

[6]F.Meng,S.Ge,Y.Jia,B.Sun,Y.Sun,C.Wang,H.Wu,Z.Jin,M.Li,Interlaced nanoflake-assembledflower-likehierarchicalZnOmicrospherespreparedby bisolventsandtheirsensingpropertiestoethanol,J.Alloy.Compd.632(2015) 645–650,http://dx.doi.org/10.1016/j.jallcom.2015.01.289.

[7]P.Wang,Y.Fu,B.Yu,Y.Zhao,L.Xing,X.Xue,Realizingroom-temperature self-poweredethanolsensingofZnOnanowirearraysbycombiningtheir piezoelectric,photoelectricandgassensingcharacteristics,J.Mater.Chem.A 3(2015)3529–3535,http://dx.doi.org/10.1039/C4TA06266C.

[8]X.J.Li,S.J.Chen,C.Y.Feng,Characterizationofsiliconnanoporouspillararray asroom-temperaturecapacitiveethanolgassensor,Sensor.Actuat.B-Chem. 123(2007)461–465,http://dx.doi.org/10.1016/j.snb.2006.09.021. [9]S.Zhang,P.Song,H.Yan,Z.Yang,Q.Wang,Asimplelarge-scalesynthesisof

mesoporousIn2O3forgassensingapplications,Appl.Surf.Sci.378(2016)

443–450,http://dx.doi.org/10.1016/j.apsusc.2016.04.019.

[14]T.T.LeDang,M.Tonezzer,PolycrystallineNiOnanowires:scalablegrowthand ethanolsensing,Proc.Eng.120(2015)427–434,http://dx.doi.org/10.1016/j. proeng.2015.08.658(Eurosensors2015).

[15]M.S.Hosseini,S.Zeinali,M.H.Sheikhi,Fabricationofcapacitivesensorbased onCu-BTC(MOF-199)nanoporousfilmfordetectionofethanolandmethanol vapors,Sensor.Actuat.B-Chem.230(2016)9–16,http://dx.doi.org/10.1016/j. snb.2016.02.008.

[16]A.Renitta,K.Vijayalakshmi,Anovelroomtemperatureethanolsensorbased oncatalyticFeactivatedporousWO3microspheres,Catal.Commun.73

(2016)58–62,http://dx.doi.org/10.1016/j.catcom.2015.10.014.

[17]Z.Zhu,C.-T.Kao,R.-J.Wu,AhighlysensitiveethanolsensorbasedonAg@TiO2

nanoparticlesatroomtemperature,Appl.Surf.Sci.320(2014)348–355, http://dx.doi.org/10.1016/j.apsusc.2014.09.108.

[18]X.L.Xu,Y.Chen,S.Y.Ma,W.Q.Li,Y.Z.Mao,S.H.Yan,T.Wang,Facilesynthesis ofSnO2mesoporoustubularnanostructurewithhighsensitivitytoethanol,

Mater.Lett.143(2015)55–59,http://dx.doi.org/10.1016/j.matlet.2014.12. 064.

[19]M.Bagheri,A.A.Khodadadi,A.R.Mahjoub,Y.Mortazavi,Gallia–ZnO nanohybridsensorswithdramaticallyhighersensitivitytoethanolin presenceofCO,methaneandVOCs,Sensor.Actuat.B-Chem223(2016) 576–585,http://dx.doi.org/10.1016/j.snb.2015.09.137.

[20]S.Luo,Y.Shen,Z.Wu,M.Cao,F.Gu,L.Wang,Enhancedethanolsensing performanceofmesoporousSn-dopedZnO,Mat.Sci.Semicon.Proc.41(2016) 535–543,http://dx.doi.org/10.1016/j.mssp.2015.10.001.

[21]M.NaderiNasrabadi,Y.Mortazavi,A.A.Khodadadi,Highlysensitiveand selectiveGd2O3-dopedSnO2ethanolsensorssynthesizedbyahigh

temperatureandpressuresolvothermalmethodinamicroreactor,Sensor. Actuat.B-Chem.230(2016)130–139,http://dx.doi.org/10.1016/j.snb.2016. 02.045.

[22]D.Zhu,Y.Fu,W.Zang,Y.Zhao,L.Xing,X.Xue,Room-temperature self-poweredethanolsensorbasedonthepiezo-surfacecouplingeffectof heterostructured␣-Fe2O3/ZnOnanowires,Mater.Lett.166(2016)288–291,

http://dx.doi.org/10.1016/j.matlet.2015.12.106.

[23]Y.Lin,P.Deng,Y.Nie,Y.Hu,L.Xing,Y.Zhang,X.Xue,Room-temperature self-poweredethanolsensingofaPd/ZnOnanoarraynanogeneratordrivenby humanfingermovement,Nanoscale6(2014)4604–4610,http://dx.doi.org/ 10.1039/C3NR06809A.

[24]B.-Y.Kim,J.S.Cho,J.-W.Yoon,C.W.Na,C.-S.Lee,J.H.Ahn,Y.C.Kang,J.-H.Lee, ExtremelysensitiveethanolsensorusingPt-dopedSnO2hollownanospheres

preparedbyKirkendalldiffusion,Sensor.Actuat.B-Chem.234(2016)(2016) 353–360,http://dx.doi.org/10.1016/j.snb.2016.05.002.

[25]Q.Wang,X.Li,F.Liu,Y.Sun,C.Wang,X.Li,P.Sun,J.Lin,G.Lu, Three-dimensionalflake-flowerCo/Snoxidecompositeanditsexcellent ethanolsensingproperties,Sensor.Actuat.B-Chem.230(2016)17–24,http:// dx.doi.org/10.1016/j.snb.2016.01.147.

[26]M.Penza,G.Cassano,P.Aversa,F.Antolini,A.Cusano,M.Consales,M. Giordano,L.Nicolais,Carbonnanotubes-coatedmulti-transducingsensorsfor VOCsdetection,Sens.ActuatorsB:Chem.111–112(2005)171–180,http://dx. doi.org/10.1016/j.snb.2005.06.055.

[27]M.Consales,A.Crescitelli,M.Penza,P.Aversa,P.DelliVeneri,M.Giordano,A. Cusano,SWCNTnano-compositeopticalsensorsforVOCandgastrace detection,Sensor.Actuat.B-Chem.138(2009)351–361,http://dx.doi.org/10. 1016/j.snb.2009.02.041.

[28]D.Seb"ok,I.Dékány,ZnO2nanohybridthinfilmsensorforthedetectionof

ethanolvapouratroomtemperatureusingreflectometricinterference spectroscopy,Sensor.Actuat.B-Chem.206(2015)435–442,http://dx.doi.org/ 10.1016/j.snb.2014.09.087.

[29]Q.Qi,T.Zhang,X.Zheng,L.Wan,Preparationandhumiditysensingproperties ofFe-dopedmesoporoussilicaSBA-15,Sensor.Actuat.B-Chem135(2008) 255–261,http://dx.doi.org/10.1016/j.snb.2008.08.036.

[30]Y.Liu,J.Chen,W.Li,D.Shen,Y.Zhao,M.Pal,H.Yu,B.Tu,D.Zhao,Carbon functionalizedmesoporoussilica-basedgassensorsforindoorvolatile organiccompounds,J.ColloidInterf.Sci.477(2016)54–63,http://dx.doi.org/ 10.1016/j.jcis.2016.05.040.

[31]D.Seb"ok,EditCsapó,NóraÁbrahám,ImreDékány,Reflectometric measurementofn-hexaneadsorptiononZnO2nanohybridfilmmodifiedby

hydrophobicgoldnanoparticles,Appl.Surf.Sci.333(2015)48–53,http://dx. doi.org/10.1016/j.apsusc.2015.01.150.

[32]G.Gauglitz,J.Krause-Bonte,H.Schlemmer,A.Matthes,Spectralinterference refractometrybydiodearrayspectrometry,Anal.Chem.60(1988) 2609–2612,http://dx.doi.org/10.1021/ac00174a015.

(9)

D.Seb ˝oketal./SensorsandActuatorsB243(2017)1205–1213 1213 [33]A.K.Krieg,G.Gauglitz,Anopticalsensorforthedetectionofhuman

pancreaticlipase,Sensor.Actuat.B-Chem.203(2014)663–669,http://dx.doi. org/10.1016/j.snb.2014.07.036.

[34]N.Leopold,S.Busche,G.Gauglitz,B.Lendl,IRabsorptionandreflectometric interferencespectroscopy(RIfS)combinedtoanewsensingapproachforgas analytesabsorbedintothinpolymerfilms,Spectrochim.ActaA:Mol.Biomol. Spectrosc.72(2009)994–999,http://dx.doi.org/10.1016/j.saa.2008.12.032. [35]M.Kasper,S.Busche,F.Dieterle,G.Belge,G.Gauglitz,Quantificationof

quaternarymixturesofalcohols:acomparisonofreflectometricinterference spectroscopyandsurfaceplasmonresonancespectroscopy,Meas.Sci. Technol.15(2004)540–548,http://dx.doi.org/10.1088/0957-0233/15/3/006. [36]M.Vollprecht,F.Dieterle,S.Busche,G.Gauglitz,K.-J.Eichhorn,B.Voit,

Quantificationofquaternarymixturesoflowalcoholsinwater: temporal-Resolvedmeasurementswithmicroporousandhyperbranched polymersensorsforreductionofsensornumber,Anal.Chem.77(2005) 5542–5550,http://dx.doi.org/10.1021/ac0504316.

[37]G.Decher,J.D.Hong,J.Schmitt,Buildupofultrathinmultilayerfilmsbya self-assemblyprocess:III.Consecutivelyalternatingadsorptionofanionicand cationicpolyelectrolytesonchargedsurfaces,ThinSolidFilms210/211(1992) 831–835,http://dx.doi.org/10.1016/0040-6090(92)90417-A.

[38]D.Seb"ok,T.Szabó,I.Dékány,Opticalpropertiesofzincperoxideandzinc oxidemultilayernanohybridfilms,Appl.Surf.Sci.255(2009)6953–6962, http://dx.doi.org/10.1016/j.apsusc.2009.03.020.

[39]G.Decher,J.B.Schlenoff,MultilayerThinFilms,Wiley-VCHVerlagGmbH& KGaA,Weinheim,2003,http://dx.doi.org/10.1002/3527600574. [40]A.Deák,I.Székely,E.Kálmán,Zs.Keresztes,A.L.Kovács,Z.Hórvölgyi,

NanostructuredsilicaLangmuir–Blodgettfilmswithantireflectiveproperties preparedonglasssubstrates,ThinSolidFilms484(2005)310–317,http://dx. doi.org/10.1016/j.tsf.2005.01.096.

[41]Á.Detrich,E.Hild,N.Nagy,E.Volentiru,Z.Hórvölgyi,Combined Langmuir–blodgettandsol-gelcoatings,ThinSolidFilms520(2012) 2537–2544,http://dx.doi.org/10.1016/j.tsf.2011.10.161.

[42]D.Zhao,Q.Huo,J.Feng,B.F.Chmelka,G.D.Stucky,Nonionictriblockandstar diblockcopolymerandoligomericsurfactantsynthesesofhighlyordered, hydrothermallystable,mesoporoussilicastructures,J.Am.Chem.Soc.120 (1998)6024–6036,http://dx.doi.org/10.1021/ja974025i.

[43]S.A.Bagshaw,Morphosynthesisofmacrocellularmesoporoussilicatefoams, Chem.Comm.(1999)767–768,http://dx.doi.org/10.1039/A901480B. [44]N.A.Kotov,I.Dekany,J.H.Fendler,Layer-by-layerself-assemblyof

polyelectrolyte-Semiconductornanoparticlecompositefilms,J.Phys.Chem. 99(1995)13065–13069,http://dx.doi.org/10.1021/j100035a005. [45]A.M.Youssef,T.Bujdosó,V.Hornok,Sz.Papp,A.F.A.Hakima,I.Dékány,

Structuralandthermalpropertiesofpolystyrenenanocompositescontaining hydrophilicandhydrophobiclayereddoublehydroxides,Appl.ClaySci.77-78 (2013)46–51,http://dx.doi.org/10.1016/j.clay.2013.03.011.

[46]N.Varga,M.Benk"o,D.Seb"ok,G.Bohus,L.Janovák,I.Dékány,Mesoporous silicacore–shellcompositefunctionalizedwithpolyelectrolytesfordrug delivery,Micropor.MesoporMat213(2015)134–141,http://dx.doi.org/10. 1016/j.micromeso.2015.02.008.

[47]H.-P.Loock,P.D.Wentzell,Detectionlimitsofchemicalsensors:applications andmisapplications,Sensor.Actuat.B-Chem.173(2012)157–163,http://dx. doi.org/10.1016/j.snb.2012.06.071.

Biographies

DánielSeb ˝ok(physicist)isaresearchfellowattheDepartmentofPhysical Chem-istryandMaterialsScienceattheUniversityofSzeged.HereceivedhisPh.D.degree inChemistryattheUniversityofSzegedin2012.Scientificfieldsofinterest: inves-tigationoftheinteractionofnoblemetalnanoparticlesandbiomoleculesbySmall AngleX-rayScattering(SAXS)andSurfacePlasmonResonance(SPR),developingof gas-andbiosensorsusingnanohybridthinfilms.

LászlóJanovákisanassistantprofessorattheDepartmentofPhysicalChemistry andMaterialsScienceattheUniversityofSzeged.HereceivedhisPh.D.degreein polymerchemistryattheUniversityofSzegedin2010.Scientificfieldsof inter-est:polymerbasedcompositematerialsforbiomedicalapplications,investigation ofsuperhydrophobicandphotocatalytichybridsurfaces.TeachingofColloid Chem-istryandMacromolecularChemistry.

DánielKovácsisanMScstudentofChemistryattheFacultyofScienceand Informat-icsoftheUniversityofSzeged.Scientificfieldsofinterest:synthesis,stabilization andindustrialapplicationofnanomaterials;preparationandcharacterizationof drugdeliverycarriers;sensors.

AndrásSápiisanAssistantProfessorofChemistryattheDepartmentofApplied andEnvironmentalChemistry,UniversityofSzeged.HereceivedhisPhDin2012in Chemistry.Dr.Sápihas>50scientificpublicationinthefieldofnanomaterialsand materialsciences.Hisresearchfocusesonsizecontrolledmetallicnanoparticles andmesoporousmetal-oxides,aswellasatomicandmolecularlevelinvestigation ofsuchmaterialsunderreactionconditionsinheterogeneouscatalysis.Heisan expertofsurfacescienceandcatalysis.

DorinaG.DobóisaPhDcandidateattheDepartmentofAppliedand Environ-mentalChemistryoftheUniversityofSzeged.MemberoftheMTA-SZTE“Lendület” PorousNanocompositesResearchGroupattheUniversityofSzeged.Scientificfields ofinterest:Preparation,characterizationandcatalyticapplicationofmesoporous oxidessynthesizedviathesoftandhardtemplatemethod.

ÁkosKukoveczisassociateprofessorofchemistryattheDepartmentofApplied andEnvironmentalChemistry,UnivesityofSzeged,Hungary.HereceivedhisPh.D. in2001.Hisresearchinterestsareinterfacephenomenainnanoporousmaterials, synthesisoflow-dimensionalmaterialsandsensors.Hismaininstrumentalskills areimagingmethodsandRamanspectroscopy.Heisalsointerestedinprocessplant safetyandcontractR&Dworkfortheindustry.HecurrentlyheadstheMTA-SZTE “Lendület”PorousNanocompositesResearchGroup.

ZoltánKónyawasborninHungaryin1971.HereceivedhisM.Sc.in1994, (Chem-istry,UniversityofSzeged,Hungary)andPh.D.in1998(Chemistry,Universityof Szeged,Hungary).Heisprofessorofchemistryandsince2010,heisheadofthe ChemistryInstituteoftheUniversityofSzeged,Hungary.Dr.Kónyahaspublished 250+papersinrefereedscientificjournalsandco-authored15bookchapters.He holds12nationalandinternationalpatents.Hisresearchinterestisthe devel-opmentofnewnanostructuredmaterialsandtheirapplicationtorealchemical, environmental,biologicalandbiomedicalobjects.

ImreDékányisfullprofessorofchemistryattheDepartmentofPhysical Chem-istryandMaterialsScience,andtheheadoftheresearchgroupontheDepartment ofMedicalChemistry,FacultyofMedicine,UniversityofSzeged.Heismemberof HungarianAcademyofSciencessince2001.Researchinterest:colloidandinterface chemistryandnanostructuredmaterials.MemberoftheeditorialboardofApplied ClayScience.Hehaspublishedover360papers,12bookchapters,heisinventorof over25patentapplications.Thetotalnumberofcitationofhispapersandbooksis 10000+andhisHindexis50.

References

Related documents

Keywords: breast cancer, TNBC, rHDL nanoparticles, SR-B1 receptors, targeted drug delivery, lapatinib,

Keywords: stomatal movement; calcium sensing receptor; phosphorylation; abiotic.. stress;

Mandal, &#34;High Resolution Alpha Particle Detection Using 4H-SiC Epitaxial Layers: Fabrication, Characterization, and Noise Analysis,&#34; Nuclear Instruments and Methods

Figure  8 shows the CO, i.e., the amount of blood ejected from the ventricles owing to the cardiac mechanical responses during reentry, where the initial condition was based on

We introduce an iterative method for finding a common element of the set of common fixed points of a countable family of nonexpansive mappings, the set of solutions of a

We investigated whether T/N ratio cutoff values corrected according to metabolic tumor volume (MTV) could improve the diagnostic performance of 11 C-MET PET/CT for diagnosis

In dieser vorliegenden Studie mit Patienten im T3- und T4-Stadium gab es von 249 Patienten 171 Patienten, die präoperativ keine Metastasen besaßen mit einer medianen

Recently, the material scientists all over the world have used different methods such as chemical vapor deposition (CVD), electro deposition (ED), hydrothermal,