SensorsandActuatorsB243(2017)1205–1213
Contents lists available atScienceDirect
Sensors
and
Actuators
B:
Chemical
j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b
Room
temperature
ethanol
sensor
with
sub-ppm
detection
limit:
Improving
the
optical
response
by
using
mesoporous
silica
foam
Dániel
Seb ˝ok
a,∗,
László
Janovák
a,
Dániel
Kovács
a,
András
Sápi
b,
Dorina
G.
Dobó
b,c,
Ákos
Kukovecz
b,c,
Zoltán
Kónya
b,d,
Imre
Dékány
a,eaDepartmentofPhysicalChemistryandMaterialsScience,UniversityofSzeged,1Rerrichsquare,H-6720Szeged,Hungary bDepartmentofAppliedandEnvironmentalChemistry,UniversityofSzeged,1Rerrichsquare,H-6720Szeged,Hungary cMTA-SZTE“Lendület”PorousNanocompositesResearchGroup,UniversityofSzeged,1Rerrichsquare,H-6720Szeged,Hungary dMTA-SZTEReactionKineticsandSurfaceChemistryResearchGroup,UniversityofSzeged,1Rerrichsquare,H-6720Szeged,Hungary eMTA-SZTESupramolecularandNanostructuredMaterialsResearchGroup,UniversityofSzeged,8Dómsquare,H-6720Szeged,Hungary
a
r
t
i
c
l
e
i
n
f
o
Articlehistory: Received25August2016 Receivedinrevisedform 17December2016 Accepted19December2016 Availableonline21December2016 Keywords: Thinfilm RIfS Mesoporoussilica Roomtemperature Sub-ppm Ethanolsensor
a
b
s
t
r
a
c
t
Inthispaper,theimprovementinroomtemperatureethanolsensingcharacteristicsofzincperoxide
(ZnO2)basedhybridthinfilmsispresentedbythecombinationofthebeneficialsensingproperties
ofmesoporous materialsandreflectometricinterference spectroscopy(RIfS).Thehybridthin films
werepreparedbyLayer-by-Layer(LbL)self-assemblymethodfromZnO2nanoparticles,polyelectrolyte
[poly(acrylicacid),PAA]and/ormesoporoussilica(MPS).Theexpectedimprovedsensingpropertieswere
attributedtothefractalpropertiesandhighspecificsurfacearea(as)ofthemesoporouscoating/interlayer
material,whichwasevidencedbysmallangleX-rayscattering(SAXS)andN2sorptionmeasurements
(as>650m2/g).Thesensortestsshowedthatthedetectionlimitofthethinfilmsisinthesub-ppmrange
(<500ppb).Applyingsilicafoam(SF)assurfacecoatingorinterlayermaterialinthesandwich-structured
thinfilm(ZnO2/SF)improvedtheopticalresponse(l:wavelengthshift)comparedtotheZnO2/PAAthin
layer,butthesensitivityshowednon-linearcharacteristicandsignaldrift.Thethinfilmwithmixed
struc-ture(ZnO2/PAA/ZnO2/SF)showedlinearsensitivity(/c=0.6nm/ppm)inthe0.5–12ppmrangewith
anacceptableselectivityandstablebaseline.Testingthesensorinextended(upto40ppm)concentration
rangeshowedonlyaslightquadraticdeviationfromlinearbehaviorwithR2=0.9987.
©2016ElsevierB.V.Allrightsreserved.
1. Introduction
Sensorsforvolatileorganiccompounds(VOCs) (e.g.alcohols, benzeneetc.)playanimportantroleineverydaylifeand indus-trialsafety. Indisputable fact is that thesechemical agents are harmfulandunhealthy,sothedetectionofthesemoleculeshas agreatimportanceinenvironmentalandhealthprotection,such asinairandwaterqualitycontrol,foodindustryor–especiallyin thecaseofethanol–the“drivingunderinfluence”(DUI)control. Considering a comprehensive, although not complete overview ofthearticlespublishedinrecentyearsinethanolsensorstopic (Fig.1)wecanconcludethattheprinciples,technicalsolutions, thematerialsused, theoperating temperatureranges and con-centrationlevelsarefairlydiversified.Themostcommonlyused
∗ Correspondingauthor.
E-mailaddress:[email protected](D.Seb ˝ok).
sensor materialsare SnO2 [1–3], ZnO [4–7], SiO2 [8],In2O3 [9] TiO2[10],Fe2O3 [11,12]andothernanostructures[13–16], com-posites[17–25]orcoatings[26,27].Themeasurementprincipleis mainlybasedontheresistivemethod,butalsocapacitive[8,15], optical[2,26–28],quartzcrystalmicrobalance(QCM)[26,28]and piezo(self-poweringdevice)[7,21,22]applicationscanbefound. Fig.1showstheprinciples,studiedconcentrationrangesand oper-atingtemperaturespresentedintheworkscitedabove.Itcanbe seenthatthestudiescanbedividedintotwomajorgroups:room temperature(RT)andhightemperature(around200and300◦C) applications.Mainlyelectricalmethodsandmesoporoussensing materialsarepreferredinthelattercase,therebybroad concen-tration ranges withexcellent detection limits can be achieved. However,ithastobenotedthatVOCpollutantseasilyevaporate atroomtemperatureand canbeveryharmfulandcarcinogenic alreadyatlow concentration.ItcanbeseenonFig.1thatmost oftheRTtechnicalsolutions[2,7,8,15,16,26–28]areabletodetect ethanol vapour onlyabove 10ppm concentration.In this work, http://dx.doi.org/10.1016/j.snb.2016.12.097
Fig.1.Diagramsummarizingthecomprehensive,althoughnotcompleteoverviewofthearticlespublishedinrecentyearsinethanolsensorstopic(groupedbythe measurementprinciples,thestudiedconcentrationrangesandoperatingtemperatures;note:roomtemperaturehasnotdetailedscale!).
wemadeanattempttocombinethebeneficialsensingproperties ofmesoporousmaterials[3,29,30]andreflectometricinterference technique[31]toconstructahighlysensitiveethanolsensor oper-atingatroomtemperature.
Reflectometricinterferencespectroscopy[28,31–36]isan opti-cal method which is based on the spectral (red) shift of the interferencepatternreflectedfroma(fewhundrednanometersof layerthickness)thinfilm.Thewavelengthshiftiscausedbythe adsorptionoradhesionofmoleculesorcolloidalunits,soitcanbe utilizedinantigen-antibodyreactionsortodetecttheadsorptionof volatilecompounds[].ThesensorsurfaceofRIfStechniquecanbe preparedbyusingthewetcolloidchemicalprocedure,theso-called Layer-by-Layermethod[37,38].TheLbLmethodis widelyused forthinfilmpreparationdirectlyfromcolloidalsystems (nanopar-ticles, polymer solutions, etc.): it is an easy, non-instrumental techniqueanditresultsahomogeneoussurfaceandwell-ordered, transparentstructurewithcontrollablefilmthicknessandafine andporousmicrostructure[39],likethesimilarLangmuir-Blodgett method[40,41].TheseareessentialconditionsforapplyingRIfS technique,andthesensitivity,aswellas,thelimitofdetectioncan beimprovedbytheadditionofvarioussurface-modifyingagents [28,31].
In the present work we demonstrate the beneficial effect of using mesoporous silica materials on the sensitivity and detection limit of RIfS sensor in the gas phase. We show that applyingmixed(nanoparticle/polyelectrolyte/mesoporoussilica) nanostructureresultslinearsensitivityandsub-ppmethanol detec-tionlimitwithoutresponsedrift,whileboththeresponsetimeand selectivityremainstableandadequate.Furthermore,firstlyinthis workwecarriedoutreflectionintensitymeasurementinaddition tothewavelengthshiftmonitoring:thetwotypesofresponses dif-fersignificantly,whichmayhighlight–byfurtherstudies–the
differencesbetweentheadsorptionmechanismsontothevarious surfaces.
2. Experimental
2.1. Materials
Zincperoxidenanoparticleswithanaveragediameterof80nm were synthesized by the photolysis of zinc acetate dehydrate (C4H6O4Zn·2H2O,Fluka,a.r.)describedin[38].Poly(acrylicacid) (PAA,MW=100000,Sigma,a.r.)wasusedasanegativelycharged polyelectrolyte.Furthermore,SBA-15andsilicafoamwereusedas coatingsornegatively chargedinterlayermaterials.Synthesisof SBA-15silicaiswell-known[42].MesoporousSFwereprepared byamodifiedsol-gelroutebasedonthetechniquesuggestedby Bagshaw[43].Inatypicalsynthesis,13.9gTEOSwasslowlyadded to30mL 10 w% TritonX114 aqueoussolutionand the synthe-sismixturewerevigorouslystirredfor24h.Theobtainedsilica suspensionwascollectedbyvacuumfiltrationandlefttodryat roomtemperaturefor24h.Thedriedsamplewasintroducedinto aTeflon-linedstainlesssteelautoclavewithavolumeof100mL where 10mLwater was alsoadded separatelyto ensurewater vapourenvironment.Aftertheassemblyoftheautoclave,itwas heldat140◦Cfor24h.Finally,thesilicafoamwascalcinedinairat 450◦Cfor4h.
2.2. Thinfilmpreparation
Five types of hybrid thin films were prepared byusing the ZnO2 nanoparticles,negatively chargedPAApolyelectrolyte and themesoporous silicasamples (see Fig. 2): (1.) 20 zinc perox-ide/poly(acrylicacid)bilayers([ZnO2/PAA]20);(2–3.)[ZnO2/PAA]20 films with silica foam and SBA-15 coatings ([ZnO2/PAA]20 +SF
D.Seb ˝oketal./SensorsandActuatorsB243(2017)1205–1213 1207
Fig.2. Theschematicviewofthepreparedandappliedhybridthinfilms.
and [ZnO2/PAA]20 +SBA); (4.) a thin film containing 20 bilay-ers of zinc peroxide/silica foam ([ZnO2/SF]20) and (5.) a thin film containing 10 mixed, zinc peroxide/poly(acrylic acid)/zinc peroxide/silicafoammultilayers([ZnO2/PAA/ZnO2/SF]10).During pre-experiments,SBA-15wasnotsuitableasinterlayermaterial inthinfilmsconsistingof40layers,therefore,itwasonlyapplied asacoating.ThethinfilmswerepreparedbytheLbLdeposition methodbythealternatedadhesion/adsorptionofZnO2 nanoparti-cles,poly(acrylicacid)[44]andmesoporoussilicananostructures (SBA-15andSF)onthesurfaceofglasssubstrate(microscopeslides, MarienfeldSuperior,Germany).Thethinfilmpreparationwas car-riedoutbyusingc=8g/LZnO2,c=0.1g/LPAAandc=10g/Lsilica solutions.Theimmersiontimewas10minforeachstep,whichwas followedbyrinsingwithdeionizedwatertoremovethesurplus (non-electrostaticallyattached)colloidunits.Duringthecoating processthepreviouslypreparedzinc-peroxide/poly(acrylicacid) hybridfilmswereimmersedintothesilicasuspensionandwere driedwithoutrinsingthesurplus.
2.3. Instrumentalmethods
TransmissionElectronMicroscopy(TEM)measurementswere carriedoutbyaFEITECNAIG220X-Twinhigh-resolution trans-missionelectronmicroscope(equippedwithelectrondiffraction) operatingatanacceleratingvoltageof200kV.Thesampleswere drop-castontocarbonfilmcoatedcoppergridsfromethanol sus-pension.
Thespecificsurfacearea(BETmethod)andthetotalporevolume weredeterminedbytheBJHmethodusingaQuantachromeNOVA 2200gassorptionanalyzerbyN2gasadsorption/desorptionat77K. Beforethemeasurements,thesampleswerepre-treatedinvacuum at200◦Cfor2h.Thedensityofthesilicapowderswasmeasured usingahelium
gaspycnometer(Micromeriticstype1305).
SAXStechniquewasusedtoinvestigatethefractalproperties andstructuralparametersofthemesoporoussilicacomponents. SAXScurves were recorded witha slit-collimated Kratky com-pact small-angle system(KCEC/3 Anton-PaarKG,Graz, Austria) equippedwitha position-sensitive detector(PSD50Mfrom M. Braun AG Munich, Germany) containing 1024 channels 55m inwidth.CuK␣radiation(CuK␣=0.1542nm)wasgeneratedbya PhilipsPW1830X-raygeneratoroperatingat40kVand30mA.The fractaldimensionof atwo-phasesystemcanbedeterminedby usingthefollowingequation:I(h)=I0h−p,whereh=4sin−1 isthescatteringvector,isone-halfofthescatteringangle,isthe wavelengthofCuK␣radiation,I(h)isthescatteringcurve,I0isthe scatteredintensityath=0,andpistheslopeofthefittedlinein thehigherh-range(Porodregime)inlog-logplotofthescattering curve.If3<p<4thenthesampleissurfacefractal,andthe sam-plehasmassfractalpropertiesinthecaseof1<p<3.Thespecific surfacearea(as)valueswerecalculatedbyusingequationsin[45].
The optical properties of the thin films were studied by a Nanocalc2000spectrophotometer withADC1000-USBA/D con-verter (Ocean Optics). The reflectionspectra of the films were measuredina special,home-builttestcellatdetectionangleof 45◦.Thethickness(d)andeffectiverefractiveindex(n1)ofthethin filmswerecalculatedbasedonthemodelpresentedinFig.3.aand byusing(andfitting)Eq.(1)(moredetailsin[38]):
R (,ne,d)=c1+c2·cos
4n 1dcos ε1 (1) whereε1 istheangleofrefractionatair/thinfilminterface,is thewavelength,c1andc2areconstantswhichcontainthetijandrij transmissionandreflectionamplitudescalculatedbyFresnel equa-tions(i,j=0,1,2,seeFig.3.a).Thesametestcellwasusedduringthesensorialtestsindynamic conditions(Fig.3.b):itwasconnectedtoagasflowsystemwhich consistsofthecarriergas(N2)holder,thetemperaturecontrolled liquidsampleholderandanumberofflowcontrollers(MFC) (Cole-Parmer,USA). The vapourconcentration inthe test cellcan be controlledbytheMFCunitsandV1-V5valvesviathemixingrateof pureandvapourcontainingN2flows(theflowcontrollerscan reg-ulatemaximum3922,844and49mL/mingasflow).Theaccuracy oftheflowadjustingontheMFCscaleis±0.5division,sothe preci-sionoftheconcentrationis±0.04ppmor±0.68ppminthecaseof themax.49mL/minorthemax.844mL/mindevices,respectively. Theethanol dosageandrinsing(N2)timeswere3–3min, alter-nately.Thesensorresponses,(nm)andR(a.u.)weredefined asthewavelengthshiftofthegivenextremeofthereflection spec-traandthechangeofthereflectionvaluecorrespondingtothis extreme,respectively.The measurementsineach concentration steps(475-11880ppb)wererepeatedthreetimes,theresponses weredeterminedastheaverageofthethreevalue.During selec-tivitymeasurements2Lofliquids(methanol,ethanolasalcohols; n-hexaneasaliphatic;toluene,xyleneasaromaticmolecules)was droppedintotheliquidsampleholder(inthiscaseT=70◦C)with a mixingrateof4.9mL/minsub-branchand1000mL/minmain branchflowrates.
3. Resultsanddiscussion
3.1. Characterizationofthemesoporoussilicamaterials
The porosity,pore systemcharacteristic and specificsurface areaare of great importancein thecase of mesoporous adsor-bentsusedinsensorialapplications,thereforeseveralstructural parametersweredeterminedandcalculatedbyusingSAXS tech-nique.Asitisknownintheliterature,SBA-15has2Dhexagonally orderedporesystem[38],whichcanbeidentifiedbyTEMandSAXS technique(Fig.4.a:AandB).Bothmeasurementsclearlyshowthe porestructure;inthelattercasethepeaksath=0.705,1.235and 1.41nm−1correspondtothe1:√3:2ratio,therebytheP6mm
sym-Fig.3.aTheusedthinfilmmodelforthicknessandrefractiveindexcalculations(indices:0–air,1–thinfilm,2–substrate).bSchemeoftheusedexperimentalsetup(gasflow systemandreflectometrictestcell)andthemeasurementprinciple.
metryisclearlyidentified[46].Thedoublelogarithmicplotofthe scatteringcurveissuitablefordeterminingthefractalproperties ofthematerial.InthecaseofSBA-15theslopeisapproximately −2inthehigherh-range,whichindicatesaframe-likesurface frac-talstructure,aswellas,p≈−3.5forSFsampleischaracteristicfor thesmoothsurfacefeatureofthemesocellularfoamstructure(see Fig.4.a:C).ThespecificsurfaceareavaluesdeterminedbySAXS measurementsare820and730m2/gforSBA-15andSF, respec-tively.
TheN2adsorption/desorptionstudiesofthesilicasamplesshow isothermswithhysteresisloopandporesizedistributionsbetween 3and10nmcharacteristicformesoporousmaterials(Fig.4.b).The specificsurfaceareasandaverageporediametersare798m2g−1, 4.2nmand666m2g−1,4.6nmforSBA-15andSF,respectively.In summary,theSBA-15hashigherspecificsurfacearea,howeverthe SFshowedhighertotalpore volume(Vp=0.76and 1.30cm3g−1 for SBA-15and SF,respectively). The overall conclusionis that althoughthestructural and fractal natureofthese mesoporous materialsaresignificantlydifferent,buttheaverageporediameters andspecificsurfaceareasaresimilar,andthesevaluesappeartobe sufficientlyhighforconsiderableadsorptioncapacityandsensorial applications.
3.2. Thinfilmcharacterization
Therecordedandfitted(inthe=550–850nmrange)reflection spectraandthecalculatedrefractiveindexcurvesofthreetypesof thinfilms(withoutcoating)canbeseenonFig.5.Thelayer thick-nessesandeffectiverefractiveindices(at=589nm)are782nm and1.286,894nmand1.258,989nmand1.251for[ZnO2/PAA]20, [ZnO2/PAA/ZnO2/SF]10 and [ZnO2/SF]20, respectively. It can be establishedthatusingSFsilicaasinterlayermaterialincreasesthe thickness(d)anddecreasestheeffectiverefractiveindex(n1)ofthe thinfilms.Inouropinion,themainreasonsforthisisthe follow-ing:thesetypeofhighlyporoussilicananostructuressignificantly increasethemicro-andmacro-levelporosityofthehybridfilms, therebyconsiderablydecreasetheeffectiverefractiveindex,while thepolyelectrolyteformsultrathinlayersinthemultilayer struc-ture,therebyensuringacloserpackingfortheZnO2nanoparticles. Increasingtheporosityandformingthickerandporousinterlayers inthesandwich-likestructureexplaintheslightlylowerrefractive indices,higherfilmthicknessesandtheadvantageouseffectin sen-sorialtests(presentedlaterin3.3).Inthecaseof[ZnO2/PAA]20+SF and[ZnO2/PAA]20+SBAfilmsthesilicamonolayerhasno signifi-cantcontributiontotherefractiveindexandlayerthickness,and giventhefactthatforthesesamplesthecoatinghadnosignificant
D.Seb ˝oketal./SensorsandActuatorsB243(2017)1205–1213 1209
Fig.4.a(A)ArepresentativeTEMimageofthemesoporousSBA-15sample,(B)theSAXScurvesofSBA-15andSFpowdersamplesinlog–logrepresentation(thepower-law exponentsareindicatedbydottedlines)and(C)theTEMimageoftheSFsilicasample.b(A,C)BETisothermsfortheSBA-15andSFsilicasamplesshowthemesoporous characteristic,(B,D)poresizedistributionofSBA-15andSFsamples,respectively.
Fig.5.(A)Themeasured(solidlines)andcalculated(dottedlines)reflectionspectraof[ZnO2/PAA]20,[ZnO2/PAA/ZnO2/SF]10and[ZnO2/SF]20thinfilms,and(B)thecalculated
refractiveindexcurves.
effectinthesensorialtests,thedetaileddiscussionoftheoptical propertiesisignoredinthisparagraph.
3.3. Sensorialtestofthehybridthinfilms
Thethin filmsweresubjected to reflectometricinterference measurements for testing sensorial applications. The measure-mentswerecarriedoutbymeasuringtheshiftofthelocalminimum ofreflectedintensitynear=500nmwavelength.Itismin=457nm in thecase of [ZnO2/PAA]20,and min=507nm and 568nm for [ZnO2/PAA/ZnO2/SF]10and[ZnO2/SF]20,respectively(thesevalues arevalidinthet=0measurement point).Therawresults (sen-sorgrams),i.e., the vs. t and R vs. t curves are presented in Fig. 6.a and b, respectively. Conspicuous differences can be noticedviewing either thetwo sensorgrams or thecurves one byone.It canbeimmediatelyconcludedthatinthecaseof
curves the responsesare positive becauseof the optical thick-nessincreasesduetothevapouradsorption.Significantsignaldrift canbeobservedinthecaseofZnO2/PAA,ZnO2/PAA+coatingand ZnO/SFthinfilms,whichisratherdisturbingphenomenon:should bedrift compensationapplied? In thiscase, not in general.f it isignoredtheneach measurementstep(atthesame concentra-tion)resultsinhigher responsethan thepreviousoneand this factmakesimpossibletoaccuratelydetermineunknown concen-trations.As it can beseen onthe calibration (responsevs. concentration)curves(Fig.7.a),wedidnotapplycompensation,the responsesincreasewithconcentration,evenifnotlinearly. How-ever,inthecaseof[ZnO2/PAA/ZnO2/SF]10hybridthinfilmresponse driftwasnotobservedwhichresultedalinearcalibrationcurve (0.586nm/ppm).InthecaseofRvs.tcurves(Fig.6.b)positive responsecanbeobservedonlyinthecaseof[ZnO2/PAA]20 sen-sor,butif thethinfilm containsMPS (asinterlayer materialor
Fig.6. aEthanolsensingtests:vs.tcurvesforthetestedthinfilms(labels: structureofthethinfilmandtheethanolconcentrationsteps);inset:responseof [ZnO2/PAA/ZnO2/SF]10mixedstructureforc=475ppbEtOH.bEthanolsensingtests:
Rvs.tcurvesforthetestedthinfilms(labels:structureofthethinfilmandthe ethanolconcentrationsteps).
coating)thenthereflectivitydecreasesduetotheethanoldosage. Furthermore,theresponsesofthecoatedthinfilmsarelowerthan theoriginal,aswellas,thesignalisnotevaluableinthecaseof [ZnO2/SF]20sensorsurface.ItcanbestatedthatevaluableR sig-nalandlinearcalibrationcanonlybeattributedtoPAAcontaining multilayers(withoutcoating),andtheresponsecanbeimprovedby interlayeredmesoporoussilicafoam(Fig.7.b:forclarity,the abso-lutevaluesoftheresponsesareplotted).Insummary,itwasfound thatapplying[ZnO2/PAA],[ZnO2/PAA]+MPScoatingor[ZnO2/SF] structuredthinlayersmostlyfailedduetothesignaldriftand non-linearsensitivity.Themixedstructureof[ZnO2/PAA/ZnO2/SF]was devoidofdriftandshowedlinearcalibrationcurves,sothistype ofhybrid(nanoparticle/polyelectrolyte/mesoporoussilica) multi-layerisan appropriate structure toapplyassensing surface in reflectometricinterferencesensoringasphase.Furthermore,we canconcludethatduringRIfSmeasurementsonsolid/gasinterface themonitoringofR(t)besidetheconventional(t)signalmay revealthecomplexityoftheadsorptionprocessesandmechanisms inmeso-andmacroporoushybridthinfilms.
Basedonthepresentedresultsthe[ZnO2/PAA/ZnO2/SF]10thin filmwasselectedforfurtherexperiments,suchas reproducibil-ity,responsetimeanalysisandselectivity(Fig.8).Itcanbestated that the sensors signal is well reproducible (Fig.8A),the sen-sorsresponsereachesthe90%ofmaximumvaluewithin40sand it is relaxed to10% within 80s(t90% and t10% on Fig.8B) (the totalresponseandrecoverytimeswere180–180s).Selectivitywas testedbydropping2Lofdifferentliquidsintoa70◦Cliquid
sam-Fig. 7.a Ethanol sensing (nm) vs. c(ppm) calibration curves for the pre-paredthinlayers(labels:structureofthethinfilmsandcalibrationequationfor [ZnO2/PAA/ZnO2/SF]10mixedstructure).bEthanolsensingRvs.c(ppm)calibration
curvesforthepreparedthinlayers(labels:structureofthethinfilmsandcalibration equationsfor[ZnO2/PAA]20and[ZnO2/PAA/ZnO2/SF]10mixedstructures).
pleholder, which wasconnected into the 1000mL/min carrier gasstreamtowardstheRIfStestcell.Theliquidsweremethanol, ethanol,n-hexane,tolueneandxylene.Thestudiedthinfilmswere [ZnO2/PAA]20and[ZnO2/PAA/ZnO2/SF]10toinvestigatetheeffect ofsilicafoamontheselectivity.Itwasestablishedthatinthecase ofZnO2/PAA/SFmixedstructure2–3timeshigherresponse was observedforethanolthanfortheothervolatileorganiccompounds (VOC),althoughalsotheaffinitytoaromaticmoleculesincreased comparedtoZnO2/PAAstructure(Fig.8C).
3.4. Extendingtheconcentrationrange
ThesensorsignalandcalibrationcurveofZnO2/PAA/ZnO2/SF mixedstructureinthelowppmrange(∼0.48-11.9ppm)was pre-sentedonFig.6.aand7.a,respectively.Itwasdemonstratedthat thelowest set and detected ethanol vapour concentration was 475±40ppb,andthevs.ccalibrationcurvewaslinearinthe c=475–11880ppbrange.Nextthe[ZnO2/PAA/ZnO2/SF]10thinfilm wassubjectedtosensorialtestinahigher,c=2.46-37(±0.68)ppm range(Fig.9.a).Theconcentrationsteps(0–50min)wererepeated aftera50minlongbaselinestabilitytest.Thestatementwasthat thesensorhasafairlystablebaseline(withoutdrift),butthe calibrationcurveshowedaslightquadraticdeviationfromlinear behavior(Fig.9.b).Themostimportantparametersaresummarized inTable1.
D.Seb ˝oketal./SensorsandActuatorsB243(2017)1205–1213 1211 Table1
Structure,layernumberandlayerthicknessofthinfilmsusedinsensorialapplication,andconcentrationrange,calibratingequation(asthefunctionofconcentration, c),R2parameteranddriftpropertiesobtainedfromsensorialtests(*:LODandLODassumingerror-freecalibrationvalueswerecalculatedby[47]for[ZnO2/PAA/ZnO2/SF]10
inc=0.48-11.9ppmrange).Thetablecontainsearlierreflectometricinterferenceresultsforcomparison(originalandsurfacemodified–bybutyltrichlorosilane,BTS– [ZnO2/poly(styrenesulfonate)]20thinfilms).
Thinfilm d(nm) crange(ppm) Calibration,=f(c) R2 Drift LOD(ppm)
[ZnO2/PAA]20 782 0.48–11.9 −0.0086c2+0.339c 0.997 yes –
[ZnO2/SF]20 989 3rdorder – yes –
[ZnO2/PAA/ZnO2/SF]10 894 0.586ca 0.996 no 0.61b [ZnO2/PAA/ZnO2/SF]10 894 0.573cc 0.996 no 0.63d [ZnO2/PAA/ZnO2/SF]10 894 2.46–37 0.0107c2+0.427c 0.999 no – [ZnO2/PSS]20e 514 0−128 0.038c+0.536 0.998 no 29.2 [ZnO2/PSS]20+BTe 0−106 0.331c–0.652 0.997 no 10.3 [ZnO2/PSS]20+BTSe 0−50 0.293c–0.140 0.999 no 5.5
Theresultsindicatedbyboldfontarethemostimportantresultsofthisarticle,andasignificantpartofthediscussionisdetailedaboutthis(ZnO2/PAA/ZnO2/SF)typeof
nanostructure.
acalibrationbyusingcontinuouslyselectedamountsofconcentrations. bLODefc(assumingerror-freecalibration)=0.27ppm;[47].
c calibrationbyusingrandomlyselectedamountsofconcentrations. d LODefc(assumingerror-freecalibration)=0.29ppm;[47].
eD.Seb ˝ok,I.Dékány,Sensor.Actuat.B-Chem.206(2015)435–442.[28].
Fig.8.Responseanalysisfor[ZnO2/PAA/ZnO2/SF]10mixedstructure:(A)
repro-ducibility, (B) response and recovery times and (C) selectivity compared to [ZnO2/PAA]20thinfilm.
Fig.9.aEthanolsensingtestinextendedconcentrationrange:vs.tcurvesfor [ZnO2/PAA/ZnO2/SF]10thinfilminthe2.46–37ppmrange(blackline)compared
tothe0.48-11.9ppmconcentrationrange(grayline)(labels:ethanolconcentration steps).bEthanolsensingtestinextendedconcentrationrange:(nm)vs.c(ppm) calibrationcurvesfor[ZnO2/PAA/ZnO2/SF]10thinfilminthe2.46–37ppmrange
(whitesquares)comparedtothe0.48-11.9ppmconcentrationrange(blackcircles) (labels:calibrationequations).
structures were subjected to sensorial tests in the gas phase. We showed that thedetection limit of the sensor is sub-ppm (<500ppb),but onlythemixed(ZnO2/PAA/ZnO2/SF) nanostruc-tureshowedlinearsensitivityinthe0.4-11.9ppmrangewithout responsedrift,whileboththeresponsetimeandselectivityremain reasonablegood.Testingthesensorin extended(upto37ppm) concentrationrangeshowedaslightquadraticdeviationfrom lin-ear behavior. In the future the functionalization of the sensor surfacebydifferentmodifyingagentsisexpectedtoenhancethe selectivityandsensitivityofthesensor.
Acknowledgements
Theauthorsareverythankful forthefinancialsupportfrom TheHungarianScientificResearchFund(NKFIHOTKA)PD116224 andGINOP-2.3.2-15-2016-00013.Theworkwasearlierpartially supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP4.2.4.A/2-11-1-2012-0001‘NationalExcellenceProgram’. ASisgratefulforthesupportofJánosBolyaiResearchScholarship oftheHungarianAcademyofSciences.
AppendixA. Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.snb.2016.12.097.
References
[1]X.Feng,J.Jiang,H.Ding,R.Ding,D.Luo,J.Zhu,Y.Feng,X.Huang, Carbon-assistedsynthesisofmesoporousSnO2nanomaterialashighly sensitiveethanolgassensor,Sensor.Actuat.B-Chem.183(2013)526–534, http://dx.doi.org/10.1016/j.snb.2013.04.006.
[2]S.Sharifpour-Boushehri,S.M.Hosseini-Golgoo,M.-H.Sheikhi,Alowcostand reliablefiberopticethanolsensorbasedonnano-sizedSnO2,Opt.Fiber
Technol.24(2015)93–99,http://dx.doi.org/10.1016/j.yofte.2015.05.002. [3]W.Tan,Q.Yu,X.Ruan,X.Huang,DesignofSnO2-basedhighlysensitive
ethanolgassensorbasedonquasimolecular-clusterimprintingmechanism, Sensor.Actuat.B-Chem.212(2015)47–54,http://dx.doi.org/10.1016/j.snb. 2015.01.035.
[4]L.Zhang,J.Zhao,H.Lu,L.Li,J.Zheng,H.Li,Z.Zhu,Facilesynthesisand ultrahighethanolresponseofhierarchicallyporousZnOnanosheets,Sensor. Actuat.B-Chem.161(2012)209–215,http://dx.doi.org/10.1016/j.snb.2011. 10.021.
[5]L.Wang,Y.Kang,X.Liu,S.Zhang,W.Huang,S.Wang,ZnOnanorodgassensor forethanoldetection,Sensor.Actuat.B-Chem.162(2012)237–243,http://dx. doi.org/10.1016/j.snb.2011.12.073.
[6]F.Meng,S.Ge,Y.Jia,B.Sun,Y.Sun,C.Wang,H.Wu,Z.Jin,M.Li,Interlaced nanoflake-assembledflower-likehierarchicalZnOmicrospherespreparedby bisolventsandtheirsensingpropertiestoethanol,J.Alloy.Compd.632(2015) 645–650,http://dx.doi.org/10.1016/j.jallcom.2015.01.289.
[7]P.Wang,Y.Fu,B.Yu,Y.Zhao,L.Xing,X.Xue,Realizingroom-temperature self-poweredethanolsensingofZnOnanowirearraysbycombiningtheir piezoelectric,photoelectricandgassensingcharacteristics,J.Mater.Chem.A 3(2015)3529–3535,http://dx.doi.org/10.1039/C4TA06266C.
[8]X.J.Li,S.J.Chen,C.Y.Feng,Characterizationofsiliconnanoporouspillararray asroom-temperaturecapacitiveethanolgassensor,Sensor.Actuat.B-Chem. 123(2007)461–465,http://dx.doi.org/10.1016/j.snb.2006.09.021. [9]S.Zhang,P.Song,H.Yan,Z.Yang,Q.Wang,Asimplelarge-scalesynthesisof
mesoporousIn2O3forgassensingapplications,Appl.Surf.Sci.378(2016)
443–450,http://dx.doi.org/10.1016/j.apsusc.2016.04.019.
[14]T.T.LeDang,M.Tonezzer,PolycrystallineNiOnanowires:scalablegrowthand ethanolsensing,Proc.Eng.120(2015)427–434,http://dx.doi.org/10.1016/j. proeng.2015.08.658(Eurosensors2015).
[15]M.S.Hosseini,S.Zeinali,M.H.Sheikhi,Fabricationofcapacitivesensorbased onCu-BTC(MOF-199)nanoporousfilmfordetectionofethanolandmethanol vapors,Sensor.Actuat.B-Chem.230(2016)9–16,http://dx.doi.org/10.1016/j. snb.2016.02.008.
[16]A.Renitta,K.Vijayalakshmi,Anovelroomtemperatureethanolsensorbased oncatalyticFeactivatedporousWO3microspheres,Catal.Commun.73
(2016)58–62,http://dx.doi.org/10.1016/j.catcom.2015.10.014.
[17]Z.Zhu,C.-T.Kao,R.-J.Wu,AhighlysensitiveethanolsensorbasedonAg@TiO2
nanoparticlesatroomtemperature,Appl.Surf.Sci.320(2014)348–355, http://dx.doi.org/10.1016/j.apsusc.2014.09.108.
[18]X.L.Xu,Y.Chen,S.Y.Ma,W.Q.Li,Y.Z.Mao,S.H.Yan,T.Wang,Facilesynthesis ofSnO2mesoporoustubularnanostructurewithhighsensitivitytoethanol,
Mater.Lett.143(2015)55–59,http://dx.doi.org/10.1016/j.matlet.2014.12. 064.
[19]M.Bagheri,A.A.Khodadadi,A.R.Mahjoub,Y.Mortazavi,Gallia–ZnO nanohybridsensorswithdramaticallyhighersensitivitytoethanolin presenceofCO,methaneandVOCs,Sensor.Actuat.B-Chem223(2016) 576–585,http://dx.doi.org/10.1016/j.snb.2015.09.137.
[20]S.Luo,Y.Shen,Z.Wu,M.Cao,F.Gu,L.Wang,Enhancedethanolsensing performanceofmesoporousSn-dopedZnO,Mat.Sci.Semicon.Proc.41(2016) 535–543,http://dx.doi.org/10.1016/j.mssp.2015.10.001.
[21]M.NaderiNasrabadi,Y.Mortazavi,A.A.Khodadadi,Highlysensitiveand selectiveGd2O3-dopedSnO2ethanolsensorssynthesizedbyahigh
temperatureandpressuresolvothermalmethodinamicroreactor,Sensor. Actuat.B-Chem.230(2016)130–139,http://dx.doi.org/10.1016/j.snb.2016. 02.045.
[22]D.Zhu,Y.Fu,W.Zang,Y.Zhao,L.Xing,X.Xue,Room-temperature self-poweredethanolsensorbasedonthepiezo-surfacecouplingeffectof heterostructured␣-Fe2O3/ZnOnanowires,Mater.Lett.166(2016)288–291,
http://dx.doi.org/10.1016/j.matlet.2015.12.106.
[23]Y.Lin,P.Deng,Y.Nie,Y.Hu,L.Xing,Y.Zhang,X.Xue,Room-temperature self-poweredethanolsensingofaPd/ZnOnanoarraynanogeneratordrivenby humanfingermovement,Nanoscale6(2014)4604–4610,http://dx.doi.org/ 10.1039/C3NR06809A.
[24]B.-Y.Kim,J.S.Cho,J.-W.Yoon,C.W.Na,C.-S.Lee,J.H.Ahn,Y.C.Kang,J.-H.Lee, ExtremelysensitiveethanolsensorusingPt-dopedSnO2hollownanospheres
preparedbyKirkendalldiffusion,Sensor.Actuat.B-Chem.234(2016)(2016) 353–360,http://dx.doi.org/10.1016/j.snb.2016.05.002.
[25]Q.Wang,X.Li,F.Liu,Y.Sun,C.Wang,X.Li,P.Sun,J.Lin,G.Lu, Three-dimensionalflake-flowerCo/Snoxidecompositeanditsexcellent ethanolsensingproperties,Sensor.Actuat.B-Chem.230(2016)17–24,http:// dx.doi.org/10.1016/j.snb.2016.01.147.
[26]M.Penza,G.Cassano,P.Aversa,F.Antolini,A.Cusano,M.Consales,M. Giordano,L.Nicolais,Carbonnanotubes-coatedmulti-transducingsensorsfor VOCsdetection,Sens.ActuatorsB:Chem.111–112(2005)171–180,http://dx. doi.org/10.1016/j.snb.2005.06.055.
[27]M.Consales,A.Crescitelli,M.Penza,P.Aversa,P.DelliVeneri,M.Giordano,A. Cusano,SWCNTnano-compositeopticalsensorsforVOCandgastrace detection,Sensor.Actuat.B-Chem.138(2009)351–361,http://dx.doi.org/10. 1016/j.snb.2009.02.041.
[28]D.Seb"ok,I.Dékány,ZnO2nanohybridthinfilmsensorforthedetectionof
ethanolvapouratroomtemperatureusingreflectometricinterference spectroscopy,Sensor.Actuat.B-Chem.206(2015)435–442,http://dx.doi.org/ 10.1016/j.snb.2014.09.087.
[29]Q.Qi,T.Zhang,X.Zheng,L.Wan,Preparationandhumiditysensingproperties ofFe-dopedmesoporoussilicaSBA-15,Sensor.Actuat.B-Chem135(2008) 255–261,http://dx.doi.org/10.1016/j.snb.2008.08.036.
[30]Y.Liu,J.Chen,W.Li,D.Shen,Y.Zhao,M.Pal,H.Yu,B.Tu,D.Zhao,Carbon functionalizedmesoporoussilica-basedgassensorsforindoorvolatile organiccompounds,J.ColloidInterf.Sci.477(2016)54–63,http://dx.doi.org/ 10.1016/j.jcis.2016.05.040.
[31]D.Seb"ok,EditCsapó,NóraÁbrahám,ImreDékány,Reflectometric measurementofn-hexaneadsorptiononZnO2nanohybridfilmmodifiedby
hydrophobicgoldnanoparticles,Appl.Surf.Sci.333(2015)48–53,http://dx. doi.org/10.1016/j.apsusc.2015.01.150.
[32]G.Gauglitz,J.Krause-Bonte,H.Schlemmer,A.Matthes,Spectralinterference refractometrybydiodearrayspectrometry,Anal.Chem.60(1988) 2609–2612,http://dx.doi.org/10.1021/ac00174a015.
D.Seb ˝oketal./SensorsandActuatorsB243(2017)1205–1213 1213 [33]A.K.Krieg,G.Gauglitz,Anopticalsensorforthedetectionofhuman
pancreaticlipase,Sensor.Actuat.B-Chem.203(2014)663–669,http://dx.doi. org/10.1016/j.snb.2014.07.036.
[34]N.Leopold,S.Busche,G.Gauglitz,B.Lendl,IRabsorptionandreflectometric interferencespectroscopy(RIfS)combinedtoanewsensingapproachforgas analytesabsorbedintothinpolymerfilms,Spectrochim.ActaA:Mol.Biomol. Spectrosc.72(2009)994–999,http://dx.doi.org/10.1016/j.saa.2008.12.032. [35]M.Kasper,S.Busche,F.Dieterle,G.Belge,G.Gauglitz,Quantificationof
quaternarymixturesofalcohols:acomparisonofreflectometricinterference spectroscopyandsurfaceplasmonresonancespectroscopy,Meas.Sci. Technol.15(2004)540–548,http://dx.doi.org/10.1088/0957-0233/15/3/006. [36]M.Vollprecht,F.Dieterle,S.Busche,G.Gauglitz,K.-J.Eichhorn,B.Voit,
Quantificationofquaternarymixturesoflowalcoholsinwater: temporal-Resolvedmeasurementswithmicroporousandhyperbranched polymersensorsforreductionofsensornumber,Anal.Chem.77(2005) 5542–5550,http://dx.doi.org/10.1021/ac0504316.
[37]G.Decher,J.D.Hong,J.Schmitt,Buildupofultrathinmultilayerfilmsbya self-assemblyprocess:III.Consecutivelyalternatingadsorptionofanionicand cationicpolyelectrolytesonchargedsurfaces,ThinSolidFilms210/211(1992) 831–835,http://dx.doi.org/10.1016/0040-6090(92)90417-A.
[38]D.Seb"ok,T.Szabó,I.Dékány,Opticalpropertiesofzincperoxideandzinc oxidemultilayernanohybridfilms,Appl.Surf.Sci.255(2009)6953–6962, http://dx.doi.org/10.1016/j.apsusc.2009.03.020.
[39]G.Decher,J.B.Schlenoff,MultilayerThinFilms,Wiley-VCHVerlagGmbH& KGaA,Weinheim,2003,http://dx.doi.org/10.1002/3527600574. [40]A.Deák,I.Székely,E.Kálmán,Zs.Keresztes,A.L.Kovács,Z.Hórvölgyi,
NanostructuredsilicaLangmuir–Blodgettfilmswithantireflectiveproperties preparedonglasssubstrates,ThinSolidFilms484(2005)310–317,http://dx. doi.org/10.1016/j.tsf.2005.01.096.
[41]Á.Detrich,E.Hild,N.Nagy,E.Volentiru,Z.Hórvölgyi,Combined Langmuir–blodgettandsol-gelcoatings,ThinSolidFilms520(2012) 2537–2544,http://dx.doi.org/10.1016/j.tsf.2011.10.161.
[42]D.Zhao,Q.Huo,J.Feng,B.F.Chmelka,G.D.Stucky,Nonionictriblockandstar diblockcopolymerandoligomericsurfactantsynthesesofhighlyordered, hydrothermallystable,mesoporoussilicastructures,J.Am.Chem.Soc.120 (1998)6024–6036,http://dx.doi.org/10.1021/ja974025i.
[43]S.A.Bagshaw,Morphosynthesisofmacrocellularmesoporoussilicatefoams, Chem.Comm.(1999)767–768,http://dx.doi.org/10.1039/A901480B. [44]N.A.Kotov,I.Dekany,J.H.Fendler,Layer-by-layerself-assemblyof
polyelectrolyte-Semiconductornanoparticlecompositefilms,J.Phys.Chem. 99(1995)13065–13069,http://dx.doi.org/10.1021/j100035a005. [45]A.M.Youssef,T.Bujdosó,V.Hornok,Sz.Papp,A.F.A.Hakima,I.Dékány,
Structuralandthermalpropertiesofpolystyrenenanocompositescontaining hydrophilicandhydrophobiclayereddoublehydroxides,Appl.ClaySci.77-78 (2013)46–51,http://dx.doi.org/10.1016/j.clay.2013.03.011.
[46]N.Varga,M.Benk"o,D.Seb"ok,G.Bohus,L.Janovák,I.Dékány,Mesoporous silicacore–shellcompositefunctionalizedwithpolyelectrolytesfordrug delivery,Micropor.MesoporMat213(2015)134–141,http://dx.doi.org/10. 1016/j.micromeso.2015.02.008.
[47]H.-P.Loock,P.D.Wentzell,Detectionlimitsofchemicalsensors:applications andmisapplications,Sensor.Actuat.B-Chem.173(2012)157–163,http://dx. doi.org/10.1016/j.snb.2012.06.071.
Biographies
DánielSeb ˝ok(physicist)isaresearchfellowattheDepartmentofPhysical Chem-istryandMaterialsScienceattheUniversityofSzeged.HereceivedhisPh.D.degree inChemistryattheUniversityofSzegedin2012.Scientificfieldsofinterest: inves-tigationoftheinteractionofnoblemetalnanoparticlesandbiomoleculesbySmall AngleX-rayScattering(SAXS)andSurfacePlasmonResonance(SPR),developingof gas-andbiosensorsusingnanohybridthinfilms.
LászlóJanovákisanassistantprofessorattheDepartmentofPhysicalChemistry andMaterialsScienceattheUniversityofSzeged.HereceivedhisPh.D.degreein polymerchemistryattheUniversityofSzegedin2010.Scientificfieldsof inter-est:polymerbasedcompositematerialsforbiomedicalapplications,investigation ofsuperhydrophobicandphotocatalytichybridsurfaces.TeachingofColloid Chem-istryandMacromolecularChemistry.
DánielKovácsisanMScstudentofChemistryattheFacultyofScienceand Informat-icsoftheUniversityofSzeged.Scientificfieldsofinterest:synthesis,stabilization andindustrialapplicationofnanomaterials;preparationandcharacterizationof drugdeliverycarriers;sensors.
AndrásSápiisanAssistantProfessorofChemistryattheDepartmentofApplied andEnvironmentalChemistry,UniversityofSzeged.HereceivedhisPhDin2012in Chemistry.Dr.Sápihas>50scientificpublicationinthefieldofnanomaterialsand materialsciences.Hisresearchfocusesonsizecontrolledmetallicnanoparticles andmesoporousmetal-oxides,aswellasatomicandmolecularlevelinvestigation ofsuchmaterialsunderreactionconditionsinheterogeneouscatalysis.Heisan expertofsurfacescienceandcatalysis.
DorinaG.DobóisaPhDcandidateattheDepartmentofAppliedand Environ-mentalChemistryoftheUniversityofSzeged.MemberoftheMTA-SZTE“Lendület” PorousNanocompositesResearchGroupattheUniversityofSzeged.Scientificfields ofinterest:Preparation,characterizationandcatalyticapplicationofmesoporous oxidessynthesizedviathesoftandhardtemplatemethod.
ÁkosKukoveczisassociateprofessorofchemistryattheDepartmentofApplied andEnvironmentalChemistry,UnivesityofSzeged,Hungary.HereceivedhisPh.D. in2001.Hisresearchinterestsareinterfacephenomenainnanoporousmaterials, synthesisoflow-dimensionalmaterialsandsensors.Hismaininstrumentalskills areimagingmethodsandRamanspectroscopy.Heisalsointerestedinprocessplant safetyandcontractR&Dworkfortheindustry.HecurrentlyheadstheMTA-SZTE “Lendület”PorousNanocompositesResearchGroup.
ZoltánKónyawasborninHungaryin1971.HereceivedhisM.Sc.in1994, (Chem-istry,UniversityofSzeged,Hungary)andPh.D.in1998(Chemistry,Universityof Szeged,Hungary).Heisprofessorofchemistryandsince2010,heisheadofthe ChemistryInstituteoftheUniversityofSzeged,Hungary.Dr.Kónyahaspublished 250+papersinrefereedscientificjournalsandco-authored15bookchapters.He holds12nationalandinternationalpatents.Hisresearchinterestisthe devel-opmentofnewnanostructuredmaterialsandtheirapplicationtorealchemical, environmental,biologicalandbiomedicalobjects.
ImreDékányisfullprofessorofchemistryattheDepartmentofPhysical Chem-istryandMaterialsScience,andtheheadoftheresearchgroupontheDepartment ofMedicalChemistry,FacultyofMedicine,UniversityofSzeged.Heismemberof HungarianAcademyofSciencessince2001.Researchinterest:colloidandinterface chemistryandnanostructuredmaterials.MemberoftheeditorialboardofApplied ClayScience.Hehaspublishedover360papers,12bookchapters,heisinventorof over25patentapplications.Thetotalnumberofcitationofhispapersandbooksis 10000+andhisHindexis50.