• No results found

Observation on the Negative Pell Equation

N/A
N/A
Protected

Academic year: 2020

Share "Observation on the Negative Pell Equation"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

39

©IJRASET: All Rights are Reserved

Observation on the Negative Pell Equation

36

40

2

2

x

y

K. Meena1, S. Vidhyalakshmi2, J. Srilekha3*

1

Former VC, Bharathidasan University, Trichy-620 024, Tamil nadu, India.

2

Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil nadu, India.

3

M.Phil Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil nadu, India.

Abstract: The binary quadratic equation represented by the negative pellian y240x236is analyzed for its distinct integer

solutions. A few interesting relations among the solutions are given. Employing the solutions of the above hyperbola, we have obtained solutions of other choices of hyperbolas and parabolas. Also, the relations between the solutions and special figurate numbers are exhibited.

Keywords: Binary quadratic, Hyperbola, Parabola, Pell equation, Integer solutions and Figurate numbers.

I. INTRODUCTION

The subject of Diophantine equation is one of the areas in Number Theory that has attracted many Mathematicians since antiquity and it has a long history. Obviously, the Diophantine equation are rich in variety [1-3]. In particular, the binary quadratic diophantine equation of the form y2 Dx2 N

N 0,D 0andsquarefree

  

 is referred as the negative form of the pell equation

(or) related pell equation. It is worth to observe that the negative pell equation is not always solvable. For example, the equations 2 3 2 1

x

y , 2 7 2 4

x

y have no integer solutions whereas 2 65 2 1

x

y , 2 202 2 1

x

y have integer solutions. In this

context, one may refer [4-10] for a few negative pell equations with integer solutions. In this communication, the negative pell equation given by 2 40 2 36

x

y is considered and analysed for its integer solutions. A

few interesting relations among the solutions are given. Employing the solutions of the above hyperbola, we have obtained solutions of other choices of hyperbolas and parabolas. Also, the relations between the solutions and special figurate numbers are exhibited.

II. NOTATIONS

1)



  

  

 

2 2 1 1

,

m n n

tmn - Polygonal number of rank n with size m

2) pm n

n

 

m

n

m

n  1 2  5

6 1

- Pyramidal number of rank n with size m

III.METHODOFANALYSIS

The negative Pell equation representing hyperbola under consideration is 36

40 2 2

x

y (1)

whose smallest positive integer solution is 2 , 1 0

0 y

x

To obtain the other solutions of (1), consider the Pell equation

1 40 2

2

x

y

whose general solution is given by

n n n

n g y f

x

2 1 ~ , 10 4

1

~

where

1

1

40 3 19 40

3

19    

n n

(2)

40

©IJRASET: All Rights are Reserved

193 40

1

193 40

1 , 1,0,1,2...

   n

gn n n

Applying Brahmagupta lemma between

x0,y0

and

x~n,~yn

, the other integer solutions of (1) are given by

n n

n f g

x

10 2

1

2 1

1 

n n

n f g

y1  10

The recurrence relations satisfied by x and y are given by 0

38 2 1

3    

n n

n x x

x

0

38 2 1

3    

n n

n y y

y

Some numerical examples of x and y satisfying (1) are given in the Table: 1 below:

Table: 1 Numerical examples

n

1

n

x yn1

-1 1 2

0 25 158

1 949 6002

2 36037 227918

3 1368457 8654882

4 51965329 328657598

From the above table, we observe some interesting relations among the solutions which are presented below:

A. xn1 is always odd, yn1is always even.

B. Relations Among the Solutions 1) xn219xn13yn10

2) 27yn2171xn29xn10

3) 3yn3721xn219xn10

4) xn338xn2xn10

5) 19xn3721xn23yn10

6) xn319xn23yn20

7) 19xn3xn23yn30

8) xn3114yn1721xn10

9) xn36yn2xn10

10) 721xn3xn1114yn30

11) yn2120xn119yn10

12) yn34560xn1721yn10

13) 19yn3721yn2120xn10

14) 120xn219yn2yn10

15) yn3240xn2yn10

16) yn3120xn219yn20

17) 120xn3721yn219yn10

18) 721yn34560xn3yn10

19) 120xn319yn3yn20

(3)

41

©IJRASET: All Rights are Reserved

C. Each Of The Following Expressions Represents A Nasty Number

1)

79 54

9 2

3 2 2

2n xn  x

2)

3001 79 54

9 2

4 2 3

2n  xn  x

3)

3001 2052

171 1

4 2 2

2n xn  x

4)

20 18

3 2

2 2 2

2n yn  x

5)

500 342

57 2

3 2 2

2n yn  x

6)

18980 12978

2163 2

4 2 2

2n yn  x

7)

20 79 342

57 2

2 2 3

2n  yn  x

8)

500 79 18

3 2

3 2 3

2n  yn  x

9)

18980 79 342

57 2

4 2 3

2n  y n  x

10)

20 3001 12978

2163 2

2 2 4

2n  yn  x

11)

500 3001 342

57 2

3 2 4

2n  yn  x

12)

18980 3001 18

3

2

4 2 4

2n  yn  x

13)

25 108

9 1

2 2 3

2n  yn 

y

14)

949 4104

342 1

2 2 4

2n  yn  y

15)

25 949 108

9 1

3 2 4

2n  yn  y

D. Each Of The Following Expressions Represents A Cubical Integer

1)

79 3 3 3 4 237 1 3 2

27 1

  

  nnn

n x x x

x

2)

3001 3 4 79 3 5 9003 2 237 3

27 1

 

  nnn

n x x x

x

3)

3001 3 3 3 5 9003 1 3 3

1026 1

  

  nnn

n x x x

x

4)

20 3 3 3 3 60 1 3 1

9 1

  

  nnn

n y x y

x

5)

500 3 3 3 4 1500 1 3 2

171 1

  

  nnn

n y x y

x

6)

18980 3 3 3 5 56940 1 3 3

6489 1

  

  nnn

n y x y

(4)

42

©IJRASET: All Rights are Reserved

7)

20 3 4 79 3 3 60 2 237 1

171 1

 

  nnn

n y x y

x

8)

500 3 4 79 3 4 1500 2 237 2

9 1

 

  nnn

n y x y

x

9)

18980 3 4 79 3 5 56940 2 237 3

171 1

 

  nnn

n y x y

x

10)

20 3 5 3001 3 3 60 3 9003 1

6489 1

 

  nnn

n y x y

x

11)

500 3 5 3001 3 4 1500 3 9003 2

171 1

 

  nnn

n y x y

x

12)

18980 3 5 3001 3 5 56940 3 9003 3

9 1

 

  nnn

n y x y

x

13)

3 4 25 3 3 3 2 75 1

54 1

 

  nnn

n y y y

y

14)

3 5 949 3 3 3 3 2847 1

2052 1

 

  nnn

n y y y

y

15)

25 3 5 949 3 4 75 3 2847 2

54 1

 

  nnn

n y y y

y

E. Each Of The Following Expressions Represents A Bi-Quadratic Integer

1)

79 316 4 162

27 1 3 2 2 2 5 4 4

4n xn  xn  xn  x

2)

3001 79 12004 316 162

27 1 4 2 3 2 6 4 5

4n  xn  xn  xn  x

3)

3001 12004 4 6156

1026 1 4 2 2 2 6 4 4

4n xn  xn  xn  x

4)

20 80 4 54

9 1 2 2 2 2 4 4 4

4n yn  xn  yn  x

5)

500 2000 4 1026

171 1 3 2 2 2 5 4 4

4n y n  xn  yn  x

6)

18980 75920 4 38934

6489 1 4 2 2 2 6 4 4

4n yn  xn  y n  x

7)

20 79 80 316 1026

171 1 2 2 3 2 4 4 5

4n  yn  xn  yn  x

8)

500 79 2000 316 54

9 1 2 2 5 4 5

4n  yn  xn  yn  x

9)

18980 79 75920 316 1026

171 1 4 2 3 2 6 4 5

4n  yn  xn  yn  x

10)

20 3001 80 12004 38934

6489 1 2 2 4 2 4 4 6

4n  yn  xn  y n 

x

11)

500 3001 2000 12004 1026

171 1 3 2 4 2 5 4 6

4n  yn  xn  yn 

x

12)

18980 3001 75920 12004 54

9 1 4 2 4 2 6 4 6

4n  yn  xn  yn 

(5)

43

©IJRASET: All Rights are Reserved

13)

25 4 100 324

54 1 2 2 3 2 4 4 5

4n  yn  yn  yn  y

14)

949 4 3796 12312

2052 1 2 2 4 2 4 4 6

4n  y n  yn  yn  y

15)

25 949 100 3796 324

54 1 3 2 4 2 5 4 6

4n  yn  yn  yn  y

F. Each Of The Following Expressions Represents A Quintic Integer

1)

79 5 5 5 6 395 3 3 5 3 4 790 1 10 2

27 1     

  nnnnn

n x x x x x

x

2)

3001 5 6 79 5 7 15005 3 4 395 3 5 30010 2 790 3

27 1     

  nnnnn

n x x x x x

x

3)

3001 5 5 5 7 15005 3 3 5 3 5 30010 1 10 3

1026 1     

  nnnnn

n x x x x x

x

4)

20 5 5 5 5 100 3 3 5 3 3 200 1 10 1

9 1     

  nnnnn

n y x y x y

x

5)

500 5 5 5 6 2500 3 3 5 3 4 5000 1 10 2

171 1     

  nnnnn

n y x y x y

x

6)

18980 5 5 5 7 94900 3 3 5 3 5 189800 1 10 3

6489 1     

  nnnnn

n y x y x y

x

7)

20 5 6 79 5 5 100 3 4 395 3 3 200 2 790 1

171 1     

  nnnnn

n y x y x y

x

8)

500 5 6 79 5 6 2500 3 4 395 3 4 5000 2 790 2

9 1     

  nnnnn

n y x y x y

x

9)

18980 5 6 79 5 7 94900 3 4 395 3 5 189800 2 790 3

171 1     

  nnnnn

n y x y x y

x

10)

20 5 7 3001 5 5 100 3 5 15005 3 3 200 3 30010 1

6489 1     

  nnnnn

n y x y x y

x

11)

500 5 7 3001 5 6 2500 3 5 15005 3 4 5000 3 30010 2

171 1     

  nnnnn

n y x y x y

x

12)

18980 5 7 3001 5 7 94900 3 5 15005 3 5 189800 3 30010 3

9 1     

  nnnnn

n y x y x y

x

13)

5 6 25 5 5 5 3 4 125 3 3 10 2 250 1

54 1     

  nnnnn

n y y y y y

y

14)

5 7 949 5 5 5 3 5 4745 3 3 10 3 9490 1

2052 1     

  nnnnn

n y y y y y

y

15)

25 5 7 949 5 6 125 3 5 4745 3 4 250 3 9490 2

54 1     

  nnnnn

n y y y y y

(6)

44

©IJRASET: All Rights are Reserved

G. Remarkable Observations

1) Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbola which are presented in the Table: 2 below:

Table: 2 Hyperbolas S. No

Hyperbola

X,Y

1 2 10 2 2916

Y

X

79xn1xn2,xn225xn1

2 2 10 2 2916

Y

X

3001xn279xn3,25xn3949xn2

3 2 10 2 4210704

Y

X

3001xn1xn3,xn3949xn1

4 2 10 2 324

Y

X

20xn1yn1,yn12xn1

5 2 10 2 116964

Y

X

500xn1yn2,yn2158xn1

6 2 10 2 168428484

Y

X

18980xn1yn3,yn36002xn1

7 2 10 2 116964

Y

X

20xn279yn1,25yn12xn2

8 2 10 2 324

Y

X

500xn279yn2,25yn2158xn2

9 2 10 2 116964

Y

X

18980xn279yn3,25yn36002xn2

10 2 10 2 168428484

Y

X

20xn33001yn1,949yn12xn3

11 2 10 2 116964

Y

X

500xn33001yn2,949yn2158xn3

12 2 10 2 324

Y

X

18980xn33001yn3,949yn36002xn3

13 10 2 2 116640

 Y

X

yn225yn1,79yn1yn2

14 10 2 2 168428160

 Y

X

yn3949yn1,3001yn1yn3

15 10 2 2 116640

 Y

(7)

45

©IJRASET: All Rights are Reserved

2) Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of parabola which are presented in the Table: 3 below:

Table: 3 Parabolas

S. No Parabola

X,Y

1 27 10 2 2916

Y

X

79x2n2x2n354,xn225xn1

2 27 10 2 2916

Y

X

3001x2n379x2n454,25xn3949xn2

3 1026 10 2 4210704

Y

X

3001x2n2x2n42052,xn3949xn1

4 9 10 2 324

Y

X

20x2n2y2n218,yn12xn1

5 171 10 2 116964

Y

X

500x2n2y2n3342,yn2158xn1

6 6489 10 2 168428484

Y

X

18980x2n2y2n412978,yn36002xn1

7 171 10 2 116964

Y

X

20x2n379y2n2342,25yn12xn2

8 9 10 2 324

Y

X

500x2n379y2n318,25yn2158xn2

9 171 10 2 116964

Y

X

18980x2n379y2n4342,25yn36002xn2

10 6489 10 2 168428484

Y

X

20x2n43001y2n212978,949yn12xn3

11 171 10 2 116964

Y

X

500x2n43001y2n3342,949yn2158xn3

12 9 10 2 324

Y

X

18980x2n43001y2n418,949yn36002xn3

13 540 2 116640

 Y

X

y2n325y2n2108,79yn1yn2

14 20520 2 168428160

 Y

X

y2n4949y2n24104,3001yn1yn3

15 540 2 116640

 Y

X

25y2n4949y2n3108,3001yn279yn3

3) Relations between the solutions and special figurate numbers

a)

3, 3, 1

2

2 1 , 3 5 2

, 3

3 40 36

9 pyt xpxt yt xt y

b)

3, 3, 1

2

2

, 3 3 2

1 , 3 5

36

360

    

x x y y x

y t p t t t

p

c)

2

5 3,2 2

2

3, 3,2 2

2

, 3 4

1 40 36

36 pyt xpxt yt xt y

d)

3, 3,2 2

2

2

, 3 4

1 2

2 2 , 3 5

36

1440

    

x x y y x

y t p t t t

p

e)

3, 1 3,2 2

2

2

2 2 , 3 3 2

1 , 3 4

1  10   

  xxyxy

y t p t t t

(8)

46

©IJRASET: All Rights are Reserved

f)

3, 1 3,2 2

2

2 1 , 3 4

1 2

2 2 , 3 3

4

160

    

x x y y x

y t p t t t

p

g) Let {ns1}and{ms1}be sequences of positive integers defined by

1

2 1 }

{ns1xs1 , 1

1

2 1 }

{msys

Note that,

6

480t3,ns1 is a nasty number

2 160t3,ns1t6,ms1ms1

REFERENCES

[1] L.E. Dickson., History of Theory of numbers, Chelsea Publishing Company, volume-II, Newyork, 1952. [2] L.J. Mordell, Diophantine Equations, Academic Press, Newyork, 1969.

[3] S.J. Telang., Number Theory, Tata Mc Graw Hill Publishing Company Limited, New Delhi, 2000. [4] M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, and D.Kanaka, “On the Negative Pell Equation 2 15 2 6

  x

y ,” Scholars Journal of Physics, Mathematics and statistics, vol. 2, Issue-2A (Mar-May), pp 123-128, 2015.

[5] M.A. Gopalan, S. Vidhyalakshmi, T. R. Usharani, and M. Arulmozhi, “On the Negative Pell Equation 2 35 2 19

  x

y ,” International Journal of Research and Review, vol. 2, Issue-4 April 2015, pp 183-188.

[6] M.A. Gopalan, V. Geetha, S.Sumithira, “Observations on the Hyperbola 2 55 2 6

  x

y ,” International Research Journal of Engineering and Technology, vol. 2, Issue-4 July 2015, pp 1962-1964.

[7] K. Meena, M.A. Gopalan, T.Swetha, “On the Negative Pell Equation 2 40 2 4

  x

y ,” International Journal of Emerging Technologies in Engineering Research, vol. 5, Issue-1, January (2017), pp 6-11.

[8] K. Meena, S. Vidhyalakshmi and G. Dhanalakshmi, “On the Negative Pell Equation 2 5 2 4

  x

y ,” Asian Journal of Applied Science and Technology, vol. 1, Issue-7, August 2017, pp 98-103.

[9] Shreemathi Adiga, N. Anusheela and M.A. Gopalan, “On the Negative Pellian Equation 2 20 2 31

  x

y ,” International Journal of Pure and Applied Mathematics, vol. 119 No. 14, 2018, pp 199-204.

[10] Shreemathi Adiga, N. Anusheela and M.A. Gopalan, “Observations on the Positive Pell Equation 2 20

2 1

  x

References

Related documents

Reynolds NR, Testa MA, Marc LG, Chesney MA, Neidig JL, Smith SR, Vella S, Robbins GK: Factors influencing medication adherence beliefs and self-efficacy in persons naive

Overall, the table indicates that different measures of risk preferences have varying effects on the probability of taking up an Islamic microfinance loan, and it is not possible

Van Hoof, Performance of Mitsui NaA type zeolite membranes for the dehydration of organic solvents in comparison with commercial Polymeric pervaporation membranes, Separation

Multivariate analysis showed that elevated baseline tALP and LDH levels were associated with higher risk of death, compared with other factors, in placebo patients who did not receive

Methods: We examined the association between socio-economic indicators (income and education) and sodium, using two outcome variables: 1) sodium consumption in mg/day, and 2)

Nimba patra swaras Aschyotana is selected for the present clinical study. Nimba

Repeat biopsy strategy in patients with atypical small acinar proliferation or high grade prostatic intraepithelial neoplasia on initial prostate needle biopsy.. Effect

Methods This paper uses content analysis to identify types of content provided by airlines on their official Facebook pages and extent of services offered (customer service,