• No results found

On the diaphony of one class of one dimensional sequences

N/A
N/A
Protected

Academic year: 2020

Share "On the diaphony of one class of one dimensional sequences"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

VOL. 19 NO. (1996) 115-124

ON

THE DIAPHONY

OF ONE

CLASS

OF

ONE-DIMENSIONAL

SEQUENCES

VASSIL ST. GROZDANOV DepartmentofMathemancs

UniversityofBlagoevgrad

2700Blagoevgrad, Bulgaria

(ReceivedNovember7, 1991 and in revisedform

August

15, 1992)

ABSTRACT In the present paper, we consideraproblemof distribution ofsequences in the interval

[0,1),

the so-called ’Pr-sequences’ We obtain the best possible order

O(N-(logN) /’2)

for the diaphony of such

Pr-sequences

For the symmetric sequences obtained by symmetrization of

P-sequences,wegetalso thebest possibleorder

O(N-l(lo9

N)

1/.2)

of the quadratic discrepancy

KEYWORDSANDPHRASES Distributionofsequences, quadratic discrepancy andPr-sequences 1991AMS SUBJECT CLASSIFICATIONCODE 11B83

INTRODUCTION

Leta

(x,),:0

be an infinitesequenceinthe unit intervalE

[0,

1)

For everyreal number

xEE and every positive integerN we denote

AN(a, x)

the number ofterms x., 0

<

n

<

N-

1.

whichareless thanx

Thesequence iscalleduniformlydistributed inEiffor everyrealnumberxEEwehave limN_,AN(cr; x)N-1

x.

Thesystematic studyof thetheoryofuniformlydistributedsequenceswasinitiatedby Weyl A classical measure for the irregularity ofthe distribution of a sequence a in E is its quadratic discrepancy

TN

(or),

which is definedfor every positive integerNas

TN(O’)

(f

AN(a; x)/N-

x

12dx)

1/"

The irregularity ofdistributionwithrespect to the quadratic discrepancywasfirst studiedby Roth [2]

In 1976, Zinterhof(see [3,4])proposeda new measure fordistribution, whichhenamed diaphony Thediaphony

FN(a)

ofais definedforevery positive integerNas

2 h-9

N-1

(a;h)

FN(O-)

-’]h=l

SN

/2

where

SN(O

h)

’=0

N-1 exp(27rihx,) signify trigonometricsumofa

Wenotethatthe diaphony ofacanbewritten inthe form

FN(O-)

(N

-

N-1 where

g(x)

--7v2 (Zx

2x

+

1/3)

Itiswell known

(see

[5],p 115,

[4])

that both equalities
(2)

2 Using thewell-known theorem ofRoth

[2]

it can be proved (see Neiderreiter [7], p 158; Proinov

[8])

that for anyinfinitesequenceainE,theestimate

TN(a)

>

214-N-(logN)

/’2

(1.1)

holds for infinitely many integers N The exactness ofthe order of magnitude ofthis estimate was proved byProinov([9],[10], [11])

Proinov[8] provedthat for any sequenceainEthe estimate

FN(Cr)

>

68-1N-l(logN)

1/2 (1.2)

holds for infinitely manyN.

From (1.1) and (1.2) becomes clearly that the best possible order of diaphony and quadratic discrepancyofevery sequenceain

E

is

O(N-

(logN)

1/2

).

2. A SEQUENCE OF r-ADIC RATIONAL TYPE.

2.1 CONSTRUCTION OF SEQUENCE OF r-ADIC RATIONAL TYPE

Inthispartwegeneralize Sobol’s([12], [5],p 117, [13], p. 23)constructionofsequencesof binary rational type

Letr

>_

2 isfixedinteger. Weconsiderthe infinitematrix

(vs,3)

vm

v

(2.1)

where for every s, j 1,2,...,vs,3

{0,1,..-,

r-

1}.

We suppose that in every column, the quantityofvs,j, which aredifferentfromzerois apositiveintegernumber,i.e.,

vs,

0forjsufficiently

big Suchmatrixweshallcall guidingmatrix

Toevery column of thematrix(2 1)correspondsar-adic rationalnumbers

V

0,

v,

v,.

.v,j.

(s

1, 2.

(2.2)

The numbersdetermined in(2.2)arecalled guiding numbers. We signify

No

NU

{0),

withNthesetof natural integers.

A sequenceof r-adicrationaltype(or RP-sequence)is asequence

((i)),:0,

which isgenerated by theguidingmatrix

(v,j)

inthe following way: Ifinthe r-adic number system

i-8mem_ 1

thenin the r-adicnumber system where for j 1,2,

,

m

Wj

eV

VfVf

"V,

(2.3)

e

terms

and isthe operationofthe digit-by-digit addition modulorofelements of

Z

{0,

1,

,

r

1}.

A

RP-sequence

(o(i)),=0,

which isgenerated bytheguidingmatrix

(v,l)

canbe alsoconstruct:l by followingthe threementionedbelow rules

()

(0)

O.

(2) If/=

r(z e No),

thenqo(i)

Vs+l.

(3)

Ifr

<

<

r

s+l,

then

o(i)

e+

(r)*(i-

e+ r),

where

es+

ishigher significant digit in r-adicdevelopment of and

e+ (19(

rs

ys*+

1Vi*+

1"

"*

Vs+

1.

es+

terrr8

Obviously the operation hascommutativeandassociativeproperty.

We

shall prove thatthetwodefinitionsof the

PR-sequenes

areequivalent. Letussupposethat the firstdefinition is validfor

RP-sequence.

(1)

If 0, thenobviously

(i)

0.
(3)

(3) Let us assume that r <

<

r+1 and

(%+1%-..e)r

Since the operator is commutative andassociative we have

(i)

O,

((1 V1)*"

"(ca

V))*(%+1

Vs+I).

Since

Vs+l

(r

)

and %+

(es

e

el)r

then

(i-).

Finally

(i)=

%+l(r’)’(i

e,+

).

The three roles in the second definition for

RP-sequenceeproved.

Reversely,let the second deflation for

PR-sequence

is validd isgiven positive integer. Then there

ests

uquely positive integersthatr

S <

r

+1.

We shall provedeflation byinduction ons. Ifs 0,thenI

<

rand

(i)

iv()’(0)

0,ivy.

Wemakeinductivesupposition that forsomes Nand

eve

integer i,r-1

S

<

r deflation holds. Letus assumethatr

S

<

r+a and

(e+%

el)

Fromrole3 wehave

If we denote j=i-%+l r

,

then j=

(e e_...el)

d

r-l

j

<

r

.

Then by inductive supposition

(j) 0,

(elY,)"

"(e,).

By

role 2,

(r

)

+1

dwehave

(i)

0,

(el)*

*(%)*(%++).

Deflation holds for

eve

positiveinteger

.

In

thefollonglena we

ve

a

prope

of the nctions

.

LE

2.1.

Let

(vo)

isan

bitr

iding matrix, d

((i)),0

is

RP-sequenee,

wehis generated by

(v,s).

Let v, m, nbe integer numberssuchthatv

No,

0 n

<

r dm

O(mod

r").

Thenwehave

(

+

)

()’().

Theproofof the lenais obvious.

For

eve

integera

Z

wedefine the

oy

integer, wehis a lutionof the equation

a

+

O(mod r).

If =0,12. "or, where, for r=1,2,. .,t

oZ,

then we dee 0,12-"

"t.

2.2.

SEQNCES

OF r-IC TION

TE,

CH P-SEQNCES.

The

theo

of the

P-mquenees

was first studied by Faure

([14];[15])

d

gener

by Yeideneiter

([ 16];[17]).

Ar-adie

element

inte is inte

t,

[(-

1)/,j/),

inweh I

S

j

S

r

,

foryimegerm. Let N r

.

We shl 1 thenet

X

(z0,

z,

.,

zu_)

be anetof

e

P

(or

P-e),

if

eve

r-adie

element

inte

l,s,

hating

lenh

1/N

ntn

onepoint ofthenet

X.

A

r-adie section of the sequence

X

(z),0

isa set oftesz,, th numbers i, mtisng the inequities

kr

< (

+

1)r

,

for

eve

integers k and

,

such that k 0, 1, 1, 2,

Thesequence

(z,)io

iseledasequenceof

te

P

(or P-suenee)

if

eve

r-adie sectionis a

P-net.

(4)

I W21 U31 U71

0 1 V32 V./2

(v,.3)

0 0 1 v33

0 0 0 1

Then the corresponding

RP-sequence

is

Pr-sequence

PROOF. We choose arbitraryr-adic sectionofthe

RP-sequence

(o(i)),0,

thelength ofwhichis r’. Wewritethe numbers i,belongingtothis section inthe r-adic number system:

cucu_

"cm+lemem-1 "el, (2 4)

whereckarefixedandekarearbitraryr-adicnumbers

Wechoose now anarbitraryr-adic intervall, withlength r-’- Inther-adic system this interval is determinedbythe inequality

O a a2 a,

<

x

<

O a a2 "am+0, 1,

rn-zero8 whereal,

,

a,arer-adicnumbers

We shall prove, thatfor everychoiceof the numbersckand akamong the numbersi, in theform

(2.4)

thereexistsexactlyonei, forwhich

o(i)

E l. Inther-adicnumber systemwewrite

y)(i)

O,g,,1L.2

g,.3 From (2.3)wehave

g,,3

elV,3

ernVn,3Cm+lVn+l,3

where the sense

ofekvk,

isthe sameasin

(2.3).

Thecondition

o(i)

E isequivalenttothe following conditions

g,o=a,

forl_<j_<m. Weget that foreach j, 1

<

j

<

rn

g,../

(elVlo.

emVm,3)

(Crn+lVm+l,3"

.*C#V#,3)

fromwhich weget

ev’,,.

*e=vm,

aj(cm+v:.+,,

....

c.v.,,)

(1

<

j

<

m)

Letuscall

f

thefight-sideof

(2.5)

for1

_<

j

_<

m. Havingin mindthat fors 1, 2,

,

vs,s

1and in case j

>

s,

v,,

0, the system

(2.5)

become

ev;oe3+lV+l,...

*emv,,

L(1

_<

j

< m).

In

this system the unknowns el,e2, ",

ern

aresuccessively so determined thatit has onlyone

solution.

The theorem isproved.

Inthefollowinglemmaweshallshowsomeproperty of

Pr-sequences.

LEMMA

2.2. Let N

r"

where u E

No.

For every guiding matrix

(v,o)

in which

v,,,

1and

v,,

0 for j

>

s(s

1, 2, and for the

RP-sequence

(o(i)),__0,

which isproduct of

(v,,j)

we have

{o(i):

0

<

<

r"}

{fiN:

0

_<

j

<

N}

(2.6)

PROOF. Weshall make theproof byinduction on u. Ifu 0andu 1, thenwemake directly examination.

We make inductive supposition, that for some u N the equality

(2 6)

is true and for j 0,1, .,r-1 we considerthe multitudes

A3

{o(i)’jr

<

<

(j

+

1)r"}.

Then obviously

A

U:

A

(2.7)

where

A

{o(i):

0

_<

<

r+l}.

Weconsiderthat j 0.

By

the inductivesupposition
(5)

Letus now considerthat1

<

j<r 1. Weshallprove the following equality

A

{m/r

"+L0

<

m

<

r

+’,

m=_j

(rood

r)}.

(2.9)

Letj, 1

<

j

<

r 1is fixedinteger andconsiderthat jr"

<

<

(j

+

1)r

". Letusrepresent inthe formi=jr"+k,whereO<_ k<r

.

Thenby Lemma2 wehave Itisobviousthat

Letusput

)(i)

(jr")*o(k)

(2.10)

(j

rv)

Y;+l*+l

*Vv+l

(2.11)

j-

erms

(jr

v)

0,Wv+I,lWv+I,2" "Wv+I,v+I.

From (2 l)isclear,thatwv+l,.+l j. Letk hasr-adicdevelopmentk k.k_l

kl.

Then

()

0,(kY)’.

.’(kV)

o(k)

0,

aoe

.a, where

a

{0,1,

.,r-

1},s=

1,2,-

,)

(2.12)

From (2.10), (2.1 l)d

(2.12)

weget

(i)

0,

(aw,+l,1)

(aw+l,)j O,bb2. bj (2.13)

en0k<r

,

then0

(bib2.

.b)<r

dom(2.13)

wegetthatforljr-1

A

{(i):

jr

<

(j

+

1)r

"}

(m/r"+LO

m

<

r"+,m

j

(rood

r)}

The inequalities

(2.9)

areproved.

By

induction on thelenaisproved.

LE2.3 Let

((i)),o

bea

P-sequence.

Then for

eve

No

holds the equity

{(m

+

j)"m

O(mod r"),

0 j

<

r

}

{(m)

+

p(j)(mod

1)’m

O(mod r),

0

N

j

<

r

}

(2.14)

PROOF. Let us considerthat m kr

,

for some positive integer k. The equNity

(2.14)

is equiventtotheequity

{(m

+

j):m

O(mod r"),

0 j

<

r

}

r-1-1

t=o

{(m

+

j)’m

O(mod r"),lr

j

<

(l

+

1)r}

(2.15)

First,weshN1 prove that for

eve

fixedl,0 r-1ests uNquelyl"0 l"

<

r

"-,

such that {V(+j):=

,t

j

<

(t

+

1)

t

{(m)

+(j)(mod

1):m

kr",l’r

j

< (l"

+

1)r}.

(2.16)

Letk

(kk_l

k).

Thenwehave

v()

0,

r.

gn+ where for1

N

n

+

u

g

h=l

khVh+,,, (rood r).

Let0

g

<

r

-

be fix integer d

(/-1

l).

Then lr

(/-1

ll 0).

en

j is suchimeger thatlr j

< (l

+

1)r,

wehavej

(l_

lllo)r

where l_, ,1 e fixintegersd

l0

tes

rdifferent

vNues

inthet

{0,

1, r

1}.

t (j) 0,

a

.a, where

-1

(rood r)

a

l0

+

h=l

e

Vh+l, -1

(d r)

l

+

h=eh

Vh+l,e

av-1

1-2

A-

l-i

v,

-1

(rood r)

av

Iv-l.

Itisobviousthat andaltakesrdifferentvaluesintheset

{0,1,

r

1}.

(6)

where

(rn

+

j)

(0,

gTg

gg,,,+,

g,,,"+,,) *(

O,

a,a2

O, b]

b2

b,,,9,,+

b

gm +

a (rood r)

b-I

gv-1

+

av-1

(rnod r)

b2

g

+

a2

(rnod

r)

h

?

+

(.od )

(2.

7)

Since 0

_<

l"

<

r

"-1,

weshall search l’ in the form l"

(1"-1

/l")r,

wherell’,

.,

1",-1 are unknown quantities. Then l’r

(1’,_1

11" 0)r.

When l’ r

<

<

(l

+

1)r

then

(/’,-1

10"),

for 0

< 10 <

r.

Letusdenote

(i)

0,cl c2 c,where -1

(rnod r)

Cl

l0

-t-

’]h=l

lh

Vh+l,1

-

(rood r)

c2

ll

+

Eh=2

lh

Vh+l,2

Thenwehave

Cu-1

1"-2

Jc

l’u-1

Vu,u-

(rnod r)

Cu ,-1.

o(m)

+

o(i)(rnod

1)

O,

g

g".

gv-lrn g2

,q+lm

g,+nm

-

O, C C2" C,-1C

0, d

ld

du-ldu

gu+l "g+n where51, 62,

,

5u-1

arethestep-by-stepcarriesandelse

du

g’

+

cu (rood r)

du-

gu -Jr-

5u-

--

Cu-

(rood r)

d

g’ +52

+c2

(rood r)

dl

gr

+

51

._

(1

(rnod r)

(2.18)

For thedemonstrationof theequality

(2.16)

we makeequalthenumbers, constructedin

(2.17)

and

(2.1

$), andweget

l’u-1

=-

lu-1 (rood r)

l’u-2

+

l’u-1

Vv,u-1

+

5u-1

=--

lu-2

+

lu-1

Vu,u-1

(rood r)

u-1 -1

(rnod

r)

ll

+ ]’h=2

lh

73h+1,2

+

52

ll

--

Eh=2

lh

’Uh+l,2

-

-

(rood r).

10

--Eh=l

lh

’Oh+l,1

-

51

----l0

-Eh=l

lh

Vh+l,1

Since 0

<

lu-1, I’,,-1

<

r, then equation

lu-1

lu-1 (rood r)

has the only solution

1’-1

lu-1.

Consecutivelywe solvethe leftoverequations and getuniquely integer numberl’=

(l’u-

l’),

suchthat 0

<

I"

<

r

-1.

Since

l0

takesrdifferentvaluesintheset

{0,

1, r-

1},

then and

10"

takesrdifferent valuesin theset

{0,1,

r-

1}

and l’r

< < (l

+

1)r.

Finally,weestablishabijectionbetween thesetsfromthetwo sidesof the equation

(2.16).

Let.p

and q besuchthat 0

<

p,q

<

r

s,

p q and

p"

and

q’

arethenumbers, satisfying the equality

(2.16).

Weshallprovethat

p"

q’.

Letusadmit that

p"

q’

c. Thenwehave

{o(rn

+

j)"m=_0

(rnod r),

pr

<_

j

<

(p

+

1)r}

(7)

and

{o(m

+

j)"m=_0

(rood

r),qr

<

j

<

(q

+

1)r}

{(m)

+

qo(i)

(rood 1)"m

=_0

(rood

r),ar

<

< (a

+

1)r}.

Thenwehave

{o(m

+

j)’m=_0

(rood r"),

pr

<

j

< (p

+

1)r}

{qo(m

+j)"m=0

(rood r"),qr <

j

<

(q

+

1)r}.

This is acontradiction,sincethefunctionpis aninjection;sothe equation(2.16)isproved. From(2.15)and(2.16)we get

rv-1

{o(m

+

j)"m=_0

(rood

r),O

<

j

<

r

}

J,.=o

-

{p(m)

+

qo(i)

(rood

1)"m

0

(rood

r"),

l’r

<

< (l"

+

1)r}

{(m)

+(j)

(rood

1)"m

0

(rood

r),O <

j

<

r"}.

The lemmaisproved.

3. AN ESTIMATION FROM ABOVE FOR

THE

DIAPHONY OF

Pr-SEQUENCES.

THEOREM3.1. Letintheguidingmatrix

(v,)

every

v,,,

1and for j

>

severy

v,,

0and let a

(o(i)),__

obethe

P-sequence

which isproduced bythe

(v,).

Then foreverypositive integer Nwe have

Fg(cr)

<_

c(r)g-l(log((r

1)g

+

1))

1/2,

where theconstant

c(r)

isgiven by

c(r)

7r((r

1)/3

log

r)

1/.

(3.1)

The proof of this theoremisbasedon a non-trivial estimatefor the trigonometric sum ofanarbitrary

P,

sequence.

3.1. AN ESTIMATION OF

THE

TRIGONOMETRICSlIMOF

ARBITRARY

Pr-SEQUENCE. Let

X

,),,=0

is arbitrary sequence in interval E.A trigonometric sum,

SN(X:h),

of the sequence

X,

where his anintegeristhe quantity

SN(X;h)

-=0

N-1 exp

(27rihx).

LEMMA3.1. Let N

P

+

Q,

whereP and

Q

arearbitraryintegers. Then forevery integerh and arbitrarysequence

X

(x,),__

o wehave

SN

(X;h)

<

SP

(X;h)

/

Sp (X;h) l,

where

se

(x; h)

z_.,,=p exp

(27r/x,).

Theproofoflemmais obvious.

LEMMA3.2. Let N ar

,

wherea :>1andn

>

0are integers. Thenforeveryinteger hwehave

SN

(X; h)

<

E,=la

S(,_l)r,r-

(X; h)

Theproofof lemmaisbasedofLemma3.1and is donebyinduction ona.

Letabeanarbitraryinteger andq apositiveinteger. Wedefinethe function

q(a)

by

1,lfa=0(rnodq)

()

0.ifa0(mod q) Itiswell known that foreveryintegeraand every natural qwehave

q-1

E=o

exp(2riax/q)

q

(a)

LEMMA3.3. Let N :>1beaninteger and

g=’v__0ar

,ae{0,1,.

-,r-1}(j=0,1,.

-)

(3.2)

beits r-adic representation.

Letin theguidingmatrix

(v,)

every

v,

1and forj

>

s every

vs,

0andcr

(o(n)),__

0be the

Pr-sequence

which isproductof

(v,).

Thenfor everyintegerhwehave

SN

(a;

h)

<

Ej:0

aj

r,

(h)

(8)

We shall prove that for every integer h and for every sequence X in interval E we have the estimation

[SN

(g; h)

<

:=0

Em=ll

Sire-l/r,

(S; h)[

(3.3)

where we have the supposition thatwhen

a

0, theinside sum is 0.

Let hbe aninteger. For

eve

N 1

ests

anintegern, such that N

<

r

.

Weshlprove the lena by theinduction onn

Ifn 1, then the estimation(3.3)istribal.

We suppose,that

(3.2)

istefor

eve

integer

N,

1 N

<

r

,

wherenissome integer.

Let now N such that r

N<r

+.

By

herewe have, that in(3.2)

a=0

forj>n Let

N

P

+

Q

where

P

ar

and

Q

a.

By

Lena3.1,Lena3.2and the induction suppositionweget

SN

(X;

h)

S:

(X;

h)

+

S

(X;

h)]

E=I

S:(m_):

(X; h)

a

E:0

E:

S(m_)

(x; h)

suchthat

(3.3)

isproved IfQ 0,then

(3 3)

isgotby Lena3.2.

Letnow j,0 j nbe

arbitra

fixed number and consider that 1 m

a.

Ifm 1, then by Lemma2.2for thetrigonometricsum

S

(a;

h)

wehave

s(;

h)=

,

(h)

(3.4)

(a;

h),

by Lena2.4, we have Letnow 2 m

a.

Thenfor thetrigonometricsum

S(m_)

(a;

h)

-x

k=0

-

exp

Sm_),

.:_),ezp

(2h(n))

(2ih(((m

))

d-1

+

()))

(ih((m

)))

E:0

zp

(ih(k)).

(a;

h)

we

et

Thus for themodule of the trigonometric sum

s_),

(; h)

,

(h).

(3.5)

From

(3.3), (3.4)

d

(3.5)

weget The lemma isproved. 3.2. PROOF OF THEOREM3.1.

SN

(a;

h)

S

Ej:0

aj

r

6r,

(h).

Let

(vs,)

is anarbitraryguiding matrix, such thatonprincipal diagonal there stand ones, and over him zerosanda

(,#,(n)),__

0is

Pr-sequence,

which isbredbythematrix

(vs.).

WechooseN

>

1arbitrary integer and let hasr-adicrepresentationintheform

N

’],,

aa

rn,

(aj

_

{I,-

-,r-

I},

j 1,2,-

,k),

(3.6)

where

O

<

n

<

r2

<

<

nk.

areintegernumbers.

From Lemma

3.3forevery integerhwehave

Sw

(a; h)

<_

Ejk=1

ajr

,

5:,

(h) <

(r-

1)E3=1

r

,

5:,

(h).

By

thelastinequalityfor thediaphony

Fv(a)

ofawehave

(YFv(a))

2’h_-i

h-2

SN

a;

h)

g

:(

1)

E.:

-2(r

1)2

Eu:l

Eh=l

5:,

(h)6r-v (h).

If the matrix aj,

(1

j,

k)

is

setfic

then wehave

Byhered

(3.7)

weget

r

n+nv

h-2

(gf

())

a(-

)2

:

E:

E:

2(-

)

",

Eh:

h-2

:,(h).

Forj d such that 1 j k, wehave

(3.7)

(3.8)

(9)

forevery integerh. Beside this wehave

By

(3.$),

(3.9)

and

(3.10)

wehave

(NFu(a))

<_

(2 (r-

1)/3)

E:I

E:,

r"-"’-

(2/3)(

r

1)

2k

Forthe suminlast equityholds,that From (3.11)d

(3.12)

wehave

(NVu(a))

(/3)(r

-

X)

From (3.6)weget that Thuswediscover

k-1

N

>_

=r,

>_

’]=o

r

(r

k-

1)/(r-

1).

(3.11)

(3.12)

(3.13)

k

< (lo9((r- 1)N

+

1))/log

r

(3.14)

From

(3.13)

and

(3.14)

wehave

FN(a)

_<

7r((r

1)/3

log

r)

1/2N-1

(log((r-

1)N

+

1))

1/2.

The Theorem 3.1 isproved.

In the case, where theguidingmatrix

(v,)

is aunitmatrix

I,

thesequencewhich is bred by

I

is calledVanderCorput-Halton’s sequence. In 1935 it was firstintroduced by

Van

der

Corput [18]

and generalizedin 1960byHalton

19].

Inthiscase theoperation turns out tobeasimple addition.

By

o

(i)(i

0,1, wesignify thegeneraltermof theVanderCorput-Halton-sequence. Forr 2the sequence ofgeneralterms

o

2

(i)(i

0,1, iscalledVander

Corput-scquenc.

By

Theorem3.1we canget thefollowingcorollaries.

COROLLARY 3.1. Leta

(o()),=0

be theVan derCorput-Halton-sequenc. Then for every positive integer

N,

wehave

FN(a)

<_

c(r)

N

-

(log((r- 1)N

+

1))

1/2,

where the constant

c(r)

isdeterminedbythe equality

(3.1).

COROLLARY3.2. Leta

((p(i))i__0

be theVander

Corput-sextuenc.

Then forevery N

>_

Iwe have

FN(a) <

aN

-

(log

N)

U2.

COROLLARY3.3. Leta

(o(i)),0

bearbitrary binary

P-sequence.

Then

ti--u,

(UFu(o))/ (o N)

in

<_

/

(o

2)in=

3,7773....

We notethat the Corollary3.1 and Corollary 3.2 are announced without proof byProinov and Grozdanov

[20]

andproved byProinovand Grozdanov

[21 ].

4. ON QUADRATIC

DISCREPANCY

OF

THE

SYMMETRIC

SEQUENCE

PRODUCED

BY

THE

ARBITRARY

P-SEQUENCE.

Inthissection,wegiven anappficationof Theorem 3.1 totheproblem of findinginfinitesequences in

E,

withthebestpossible order ofmagnitudeforthequadraticdiscrepancy.

We

need thenotionof symmetric sequence

(see

[11]). A

SeXluence a

(x,,),=0

in

E

is called symmetricofforevery integern

>

0wehavex2,,

+

x2,+ 1.

A

symmetricsequencea

(b,),=0

in

E

is said tobeproducedbyaninfinitesequencea

(a,,),__

0, iffor every integern

>_

0 weeitherhave

o

b2, or

a

b2,+1. Obviously, every infinite sequence in

E

produce at least one synunetric sequence.

By

Sobol

([5],

p. 117) is dear that the exact order ofquadratic discrepancy ofP2-sequeneeis

O(N

-

lo9 N).

(10)

By

thisandTheorem3 follows

THEOREM4 Let

be anarbitrary symmetric sequenceinE,whichisproduced byan arbitrary

Pr-sequence

Then foreveryintegerN

_>

2 we have

T.-(’’

<

c(r)N-t

(log(r

1)N))

/2

+

N

-1,

where

c(r)

is definedbytheequality(3 1) FromTheorem4 for thecaser 2 we have

lirn,w_,o

NT,

("

)/

(to9

N)/2

<_

1/(log

2)

1/2 1,201..., forevery symmetricsequence

produced bytheP2-sequence

We note that Faure [22] proved that for the symmetric sequence

’,

produced by the Van der

Corput-sequence,

theconstantlimN_,

(NTx(’)/(Io9

N)

1/2)

isbetween 0,298 and 0,321 REFERENCES

1. WEYL,

H,

Uberdiegleichverteilungvonzahlenmod.eins, Mat.Ann.77

(1916),

313-352 2. ROTH,

K.F.,

Onirregularities of distribution, Mathematika (1954),73-79.

3. ZINTERHOF, P., Uber einigeabschatzungenbeiderbei derapproximationyonfunktionen mitgleichverteilungsmethoden, Sitzungsber.Osterr.Akad.Wiss.Math-Naturwiss.Kl 185 (1976),121-132.

4. ZINTERHOF, P.

&

STEGBUCHNER,

H.,

Trigonometrischeapproximationmit gleichverteilungsmethoden, StudiaSciMath.Hungar 13

(1978),

273-289.

5

SOBOL,

M,

MultidimentionalQuadratureFormulas and

Haar

Function.Izdat "Nauka",

Moscow,

1969

6.

KUIPERS, L.,

Simpleproofofatheorem ofJK Koksma,NieuwTijdsch.Wisk. 55

(1967),

108-111

7.

NEIDERREITER,

H., Application of diophantine approximationtonumericalintegration, inDiophantine Approximationand itsApplication, C.F.Osgoot,Ed., 129-199. 8. PROINOV,

P D.,

Onirregularities

of

distribution,

C.R.

Acad.BulgarSci.39, No 9(1986),

31-34.

9. PROINOV,

P.D.,

Pointsofconstanttypeandupperbound for themeam-square discrepancy ofaclassofsequences, CR Acad.BulgarSci. 35

(1982),

753-755. 10. PROINOV,

P.D,

Estimation ofL discrepancyofaclass ofinfinitesequences,

C.R. BulgarSei. 36(1983),37-40.

11. PROINOV,

P.D.,

On

theL discrepancy ofsomeinfinitesequences,Serdica11 (1985),3-12. 12. SOBOL,

I.M.,

Onthe distribution of pointsin acubeand approximatecalculationof

integrals, J.Approx.Math &Math Phys. 7,No.4(1967),784-802.

13. SOBOL, I.M., Apoint/iniform distribdtioninmultididientionalcube,Izdat "Znani", Moscow1985

14.

FAURE,

H.,

Discrepances de suitesassociees a unsysteme de numeration

(en

dimention un),Bull. Soc.Math.France 109

(1981),

143-182.

15.

FAURE, H.,

Diserepancedesuites associees a unsysteme de numeration

(en

dimention

s),

Aeta

Arith.,XII (1982),337-351.

16.

NEIDERREITER, H.,

Pointsetsandsequenceswithsmall discrepancy, Mh. Math. 104

(1987),

273-337.

17.

NEIDERREITER, H,

Low-discrepancy and low-dispersionsequences, J.NumberTheory30 (1988),51-70.

$. VANDER CORPUT,JG, Verteilundsfunktionen,ProcKon.Ned. Akad. Wetensch.38 (1935),813-821.

19. HALTON,

J.H.,

Onthe efficiencyof certainquasi-randomsequencesofpointsinevaluating multi-dimensionalintegrals,Numer Math.2

(1960),

84-90.

20.

PROINOV,

P.D

&

GROZDANOV, V ST., Symmetrization of theVanderCorput-Halton sequence, C.R Acad.BulgarSci.40,No.8(1987),5-8.

21.

PROINOV,

P.D.

&

GROZDANOV, V

ST.,

Onthe diaphony of theVanderCorput-Halton sequence, J.NumberTheory30

(1988),

94-104

References

Related documents

education courses and conclude this instructional alternative is in the best interests of student learning, it is imperative to hire state certified physical education teachers,

Madeleine’s “belief” that she is Carlotta Valdez, her death and rebirth as Judy (and then Madeleine again) and Scottie’s mental rebirth after his breakdown.. All of these

This result is partially a consequence of lower confidence when rating the friend and canonical individual as well as smaller mean absolute distances between those two individuals

Interval Exchange Transformations, Rauzy Classes, the Teichm¨ uller Geodesic Flow, Symbolic Dynamics and Low-Complexity

For instance, North America and Europe, both being mature markets, are the most consolidated markets where the top three distributors hold 30 to 40% and 15 to 20% of the

The ethno botanical efficacy of various parts like leaf, fruit, stem, flower and root of ethanol and ethyl acetate extracts against various clinically

No studies to our knowledge have examined all three health measures (MVPA, sedentary behavior, components of sleep quality) using accelerometers to 1) compare health behaviors

The effect of attitudes toward surveys on the probability of not provid- ing income information, of refusing to answer other questions and not being judged perfectly willing to