• No results found

Understanding Selectivity in Reversed Phase Chromatography A Simplified Look at Column Selection

N/A
N/A
Protected

Academic year: 2021

Share "Understanding Selectivity in Reversed Phase Chromatography A Simplified Look at Column Selection"

Copied!
23
0
0

Loading.... (view fulltext now)

Full text

(1)

Understanding Selectivity in Reversed 

Phase Chromatography –

A Simplified Look at Column Selection

Dr. Frank Dorman,

Pennsylvania State University

Ty Kahler, Randy Romesberg, Vernon Bartlett, Mike Wittrig,

Bruce Albright, Rick Lake

(2)

Outline

Defining Selectivity

Defining Reversed Phase Separation Mechanisms

Characterizing Retention Profiles

Expanding Selectivity Range in RPC to Simplify 

Column Selection

(3)

How we do define selectivity?

k

1

k

2

k

1

k

2

Time

k

1

k

2

k

1

k

2

Time

α

=

Selectivity

is the 

difference in retention 

of one molecular band 

relative to another

Retention

is the 

molecular band elution 

relative to time

k

2

k

1

(4)

Determining Retention Profiles

For a “Crude”

Simplification…

We can define selectivity as the difference between 

retention (solubility) profiles of solutes relative to the 

chemical environment (stationary and mobile phase 

compositions)

k

1

k

2

Time

(5)

Determining Retention Profiles

For a “Crude”

Simplification…

We can define selectivity as the difference between 

retention (solubility) profiles of solutes relative to the 

chemical environment (stationary and mobile phase 

compositions)

k

2

k

1

Time

(6)

More Polar Mobile Phase

Less Polar Stationary Phase

Less Polar Stationary Phase

Silica

Silica

Hydrophilic Hydrophobic

A separation based mainly on differences

between the solubility of the components in

the mobile and stationary phases

-

-

molecules

molecules

partition at different rates

partition at different rates

Reversed Phase – Bonded Phase Chromatography

Higher solubility

in stationary

phase

Higher solubility

in mobile phase

(7)

Ion Suppression for RPC on Alkyl Based Phases

pH Scale

14

Basic

1

Acidic

pKa = 9.7

pKa = 3.5

Acid Base Equilibrium

HA

A- + H+

BH+

B + H+

protonated deprotonated ionized ionized Poo r  Symmet ry Poo r  Symmet ry

t

R

t

R

(8)

Mobile Phase Selection for C18

pH Scale

14

Basic

1

Acidic

pKa = 9.7

pKa = 3.5

Acid Base Equilibrium

HA

A- + H+

BH+

B + H+

protonated deprotonated ionized ionized Poo r  Symmet ry Poo r  Symmet ry

t

R

t

R

Ion suppression (RP-IS) retention

profiles as listed above only hold true for

alkyl phases, when applying modified

techniques, such as Ion-pairing, or

alternative stationary phases, often this

is not true.

(9)

Factors in a Liquid Chromatography Separation

H H

Three Equilibria:

In LC, a solute interacts with the 

mobile phase, stationary phase 

and support

“Thin”

layer of 

bonded phase 

(measured in Å)

(10)

Common RPC Interactions

Molecular

Interaction 

Retention 

Profile

Significance to Reversed Phase Chromatography

Dispersion 

Hydrophobic

Significant driver for RPC and exists to some extent in all organic 

molecules

• Major retention mechanism for alkyl phases (ie, C18).  

Retention is proportionate to the hydrophobicity

of the 

molecule,

Charge Transfer 

(π‐π

Interaction)

Aromatic

Commonly seen in aromatic, unsaturated or aromatics 

substituted with electron withdrawing groups

• Greatly enhanced with methanolic

mobile phase

Hydrogen Bonding

Acidic 

Solutes act as a proton donor with a proton accepting 

functionality embedded in the stationary phase

•Commonly observed as an increase in acidic solute retention 

Dipole‐

Dipole 

Interaction 

Basic

• Often referred to as electrostatic interactions

• Commonly observed as an increase in acidic solute retention

(11)

Common Reversed Phase Stationary Phase Ligands

Dispersive

Pi-Pi Interactions

Electrostatic /

Dipole

H Bonding

Non

Polar

Polar

C

N

Si

Si

(12)

Hydrophobicity (H) – measure of hydrophobic retention

Steric Resistance (S) – resistance to penetration of molecules into

stationary phase (not shape selectivity)

Column hydrogen-bond acidity (A)- measure of free ionized silanols (Proton

donating)

Column hydrogen-bond basicity (B) – measure of free silanol/siloxanes

(Proton accepting)

Column cation-exchange activity (C) – ionized silanols – charge measure (pH

dependant)

Journal of Chromatography.A 1000 (2003) 757-778, J.Gilroy, J. Dolan, L Snyder

( ) (

'

H

-

'

S

*

) ( ) ( ) ( )

'

A

'

B

'

C

k

k

log

α

log

EB

κ

α

β

σ

η

+

+

+

=

Characterizing Selectivity in RPC

The Hydrophobic Subtraction Model

(13)

C18 Comparison

0 4 8 12 16 20 0 2 4 6 8 10 12 14 k' Silica k ' (U lt ra II C 1 8 ) Ultra Allure Pinnacle DB Pinnacle II Viva Linear (Ultra) Linear (Allure) Linear (Pinnacle II)

HSM Probes Comparing Ultra II to other Restek C18

Phases

Silica H S* A B C C-7 F(s) F(s) - C Ultra II C18 1.041 0.021 -0.037 -0.015 0.264 0.181 0.0 0.0 Ultra C18 1.051 0.033 -0.032 -0.023 0.057 -0.003 17.2 1.6 Pinnacle DB C18 1.014 0.025 -0.033 -0.005 0.364 0.280 8.4 1.6 Pinnacle II C18 1.038 0.019 -0.030 0.003 0.445 0.349 15.2 2.6 Viva C18 0.980 0.016 -0.076 0.013 0.359 0.305 9.0 4.4 Allure C18 1.131 0.052 0.046 -0.049 -0.037 0.020 25.8 6.3

Monomeric

C18 

columns of differing 

surface area and 

silanol

activity

K

 of

 Alt

ernate

 C18

K of Ultra II C18

(14)

Defining Orthogonal Stationary Phases

Ultra II - Alkyl Phases v C18

C4 - R

2

= 0.977

C8 - R

2

= 0.993

C1 - R

2

= 0.960

0.000

2.000

4.000

6.000

8.000

10.000

0.000

4.000

8.000

12.000

k' C18

k'

A

lkyl

Phase

C8

C4

C1

(15)

Defining Orthogonal Stationary Phases

Ultra II - Orthogonal Phases v C18

PE - R

2

= 0.819

PFPP - R

2

= 0.673

Biphenyl - R

2

= 0.847

0.000

2.000

4.000

6.000

8.000

10.000

0.000

4.000

C18

8.000

12.000

A

lkyl P

h

as

e

(16)

Finding Column Similarity (“Equivalency”)

Selectivity Function

Has been previously used to define column similarity

Can also be used as a guideline for column dissimilarity

(17)

Finding Dissimilar Stationary Phases

Terms Calculated from the Hydrophobic Subtraction Model

Stationary  Phase Type

Hydropho‐

bicity HinderanceSteric Hydrogen Bond 

Acidity  Hydrogen  Bond  Basicity Cation Exchange  Activity  Selectivity  Function Rank of  Dissimilarity H S* A B C Fs C18 (control) 1.041 0.021 ‐0.037 ‐0.015 0.264 0 0 C1 0.659 ‐0.089 ‐0.396 0.056 0.162 20.9 7 C4 0.806 ‐0.031 ‐0.323 0.066 0.093 21.1 6 C8 0.855 0.003 ‐0.221 0.011 0.177 12.6 8 Aqueous C18 0.784 ‐0.154 0.321 0.015 0.468 27.2 5 Cyano 0.457 ‐0.072 ‐0.828 0.021 0.181 27.9 4

Biphenyl

0.652

‐0.198

‐0.275

0.047

0.434

28.9

3

PFP Propyl

0.674

‐0.084

‐0.303

‐0.006

0.769

44.2

2

IBD

0.674

‐0.043

‐0.022

0.225

‐0.257

55.8

1

Defines Orthogonal

(18)

Ultra II C18 0 2 4 6 8 10 Hydro phob ic Arom atics Acids Bases Ultra II Aqueous C18 0 2 4 6 8 10 Hydr opho bic Arom atics Acids Bas es Ultra II IBD 0 2 4 6 8 10 Hydr opho bic Aroma tics Acids Base s Restek Phase: C18 Stationary Phase  Category: C18 (L1) LigandType: Densely bonded and  fully endcapped octyldecylsilane Restek Phase: Aqueous C18 Stationary Phase  Category: Modified C18 (L1) LigandType: Proprietary polar  modified and  functionally bonded  C18 Restek Phase: IDB Stationary Phase  Category: Polar Embedded  Alkyl (L68) Ligand Type: Proprietary polar  functional  embedded alkyl 

Characterizing Retention Profiles

Balanced

Polar Embedded P

(19)

Characterizing Retention Profiles

Ultra II C18 0 2 4 6 8 10 Hydro phob ic Arom atics Acids Bases Restek Phase: C18 Stationary Phase  Category: C18 (L1) LigandType: Densely bonded and  fully endcapped octyldecylsilane Restek Phase: Biphenyl Stationary Phase  Category: Phenyl (L11) LigandType: Unique Biphenyl  Restek Phase: PFP Propyl Stationary Phase  Category: Proprietary end‐ capped  pentafluorophenyl propyl(L43) Ligand Type: Fluorphenyl Ultra II PFP Propyl 0 2 4 6 8 10 Hydr ophobic Aroma tics Acids Base s Ultra II Biphenyl 0 2 4 6 8 10 Hydr oph obic Arom atics Acids Base s

(20)

The Value of Selectivity

Correlation of Orthogonal Phase Selectivity Relative to C18

(21)

Common Reversed Phase Column Categories for

Extending Selectivity Range

General

Purpose

Polar Embedded P P

Balanced

retention

Slight Shape

Selectivity

Increased

retention for

acids

Symmetry for

Bases

Increased

retention for

protonated

bases

Increased

retention

hydrophilic

aromatics

Selectivity for

conjugated

compounds

(22)

Summary

Selectivity can be seen as differential retention or 

solubility

Hydrophobic Subtraction Model is a great treatment 

for defining a selectivity model

Expanding the model can match molecular interaction 

to phase type to produce a definitive guide for 

stationery phase selection

(23)

Acknowledgements

Dr. Lloyd Snyder 

LC Resources

References

Related documents

After the template is computed, the following post- processing analyses are carried out: i) removing con- founders such as size differences between subjects prior to extracting

After conducting research on air quality of Tehran and the significant role that taxis play in it and gathering data associated with it, a model presented and it

Citron, Mainstreaming Privacy Torts , supra note 7, at [9] (describing permanence of information posted online); Lipton, We, the Paparazzi , supra note 4, at 977 (describing

Supplemental EE can improve body weight gain and nutrient digestibilities without affecting nutrient intake in Pelibuey lambs, but the results of feed conversion efficiency and

(Plan a kick off party to introduce the new technology, schedule staff orientations on all shifts to provide information and allow the staff to ask questions, schedule.

Challenges in handwritten characters recognition lie in the variation and distortion of offline handwritten An approach using Artificial Neural Network is considered for

The third pyxis, No. 4), is of the pointed variety common in early Geometric times, unknown in Protogeometric. The shape was made perhaps in imitation of the egg, and it must