• No results found

Selected directional wave spectra for use in the assessment of wave energy convertor performance

N/A
N/A
Protected

Academic year: 2020

Share "Selected directional wave spectra for use in the assessment of wave energy convertor performance"

Copied!
28
0
0

Loading.... (view fulltext now)

Full text

(1)

I N T E R N A L D O C U M E N T I Z

I

SELECTED DIRECTIONAL WAVE SPECTRA

FOR USE IN THE ASSESSMENT OF

WAVE ENERGY CONVERTOR PERFORMANCE

Internal Document 131

J A CRABB

[This document should not be cited in a published bibliography, and is

supplied for the use of the recipient only].

(2)

INSTITUTE OF OCEANOGRAPHIC SCIENCES

Wormley, Godalming,

Surrey GU8 5UB

(042-879-4141)

(Director: Dr. A. S. Laughton)

Bidston Observatory,

Birkenhead,

Merseyside L43 7RA

(051-653-8633)

(Assistant Director: Dr. D. E. Cartwright)

Crossway,

Taunton,

Somerset TA1 2DW

(0823-86211)

(3)

SELECTED DIRECTIONAL WAVE SPECTRA

FOR USE IN THE ASSESSMENT OF

WAVE ENERGY CONVERTOR PERFORMANCE

Internal Document 131

J A CRABB

May 1981

This document should not be cited in

any other paper or report except as

'personal communication' and it is for

the use of the recipient only.

Institute of Oceanographic Sciences

Crossway

(4)

INTRODUCTION

In response to requests for a small number of directional wave spectra

to be offered for use in device tank test programmes, an attempt has

been made to select a smaller subset from the 399 South Uist synthesized

directional spectra. (WESC (79) DA90, WESC (80)

DA 111).

To this end, five parameters summarizing the main properties of each of

the 399 were calculated. It was found that the individual parameters

covered a wide range of values and combined in individual spectra to

produce a wide diversity of spectral types. It has consequently proved

impossible to derive a significantly smaller set which adequately covers

the range of each of the five parameters in realistics combination with

each of the other four.

Since this direct attempt to reproduce the statistics of the set of 399

in a more manageable form was not successful two further approaches,

which represent compromises on the original intention, were pursued.

These have resulted in two overlapping subsets of approximately 40

spectra each.

THE DESCRIPTIVE PARAMETERS

The parameters by which each spectrum is described were chosen for

their simplicity and ease of interpretation, they are described below;

Energy Period

(TE)

Defined as the ratio

/Mo, where

is

the nth moment of the one dimensional variance

spectrum E(f)

Mn =

^2 r

:2 r

f". E(f). df

f \

•1 J

f^ = 0.0444 Hz, fg = 0

.6401 Hz

Power (P)

total intergrated power between f^ and

calculated according to the full (depth

(5)

Frequency Width (FW)

the frequency interval within which 80%

of the power is found; ie excludes the

two 10% portions of the power at the highest

and lowest frequencies

Direction Width (DW)

the angular interval within which 80%

of the power in the 80% frequency interval

is found; ie excludes the two 10% portions

of the power found in the angular intervals

immediately North and South of due East (90°)

Peak Direction (DP)

the direction associated with the most

powerful spectral component.

CLASSIFICATION OF SPECTRA-GENERAL

Values of each of the five parameters were calculated for each spectrum

and the spectra were sorted into classes according to the values of the

three parameters DW, TE and FW. Within each of these classes the spectra

were subdivided into classes of power. The spectra were not further

subdivided by DP.

At this point it was apparent that the range of spectral types was too

great to be adequately represented in a subset of some 40 spectra. Even

by effectively excluding one of the parameters (DP) and using moderately

broad class widths for the remainder, some 165 occupied classes resulted

requiring a minimum of one spectrum to represent each.

The only practical way round this difficulty appeared to lie in setting

a number of limited objectives and attempting to select spectra to

satisfy these separately. The objectives defined were:

1. To produce a set of approximately 40 spectra covering as wide a

range as possible of the three parameters DW, TE and FW,whilst deliberately

restricting the ranges of P and DP as described later.

2. To produce a set of approximately 40 spectra covering as wide a

range as possible of the four parameters DW, TE, FW and P associated

with those spectra which contribute the bulk of the energy arriving

(6)

The process whereby these spectra were selected is detailed in the

following section and further amplified in the appendix.

It is hoped that the first set will allow device performance figures

already established as functions of the non—directional parameters

Hs and TE to be extended to encompass a realistic range of spectral

'shapes' in both frequency and direction, and that the second set will

allow a direct estimate of the annual productivity of each device

to be made.

It has proved possible, by making the necessary compromises, to arrange

a substantial overlap between the two sets, enabling both objectives

to be realized with a total of 63 spectra.

CLASSIFICATION OF SPECTRA-DETAILED

SET 1

The 399 spectra were sorted according to the values of the three chosen

parameters into the following classes:

DW - four classes

CLASS NO

1

2

3

4

DEGREES

30

60

90

>120

FIV - four classes

CLASS NO

1

2

3

4

Hz

<0.0294

0.0295 -

0.0588 -

>0.0882

0.0587

0.0881

TE - five classes

CLASS NO

1

2

3

4

5

(7)

For each range of DW all those spectra jointly occupying a given class

of FW and TE were listed along with the values of P and DP associated

with each. The spectra so listed are the occupants of one cell of a

frequency histogram in the three dimensions DW, FW and TE. The average

power of all the spectra in each occupied cell was calculated. One

spectrum was then selected to represent each cell, subject to the

additional constraints that

1. it should have a DP values of either 240° or 270° (75% of all

the spectra fall in this range)

2. it should have a power close to the mean power for the cell.

A total of 38 spectra resulted from this procedure. The weight to be

attached to each is determined by the population of the cell which it

represents.

The three dimensional histogram is set out in Table 1. This presentation

is expanded in Table 2, where the occupants of each of the 38 classes

are listed by serial number with the values of each of the five parameters.

The classes are numbered in the order in which they are encountered,

reading left to right and down the page, in Table 1. The spectra selected

for both Set 1 and Set 2 are underlined.

The spectra of Set 1 are listed separately by serial number in Table 3 along

with their relative

weights.

SET 2

Each cell of the DW, TE, FW histogram was further subdivided into classes

of power 10 kW/m wide; as previously mentioned this resulted in a total

of 165 occupied classes. This number was reduced to 107 by regrouping

the classes as follows:

Power - nine classes

CLASS NO

1

2

3

4

5

6

7

8

9

(8)

A further reduction was effected by restricting consideration to those

conditions under which the majority of the total annual energy is

transported to the site. The distribution of total energy with Hs and

TE, Figure 1, marked with approximate power contours, was inspected

and those sea states which contribute relatively little to the total

energy were identified and excluded.

The following categories of sea state are consequently not represented

in Set 2 (the percentage of the total annual energy thereby excluded

is marked against each category).

Excluded classes are those with:

Power

<

10 kW/m

(excludes 2.4% of total energy)

Power

>

300 kW/m

(

"

8.5% "

"

" )

TE

<

7 seconds

(

"

0.7% "

"

" )

TE

>

12.5 seconds

(

"

0.8% "

"

" )

as well as spectra with unusual combinations of P, FW, DW and TE

(ie classes in the four dimensional histogram occupied by one spectrum

only). A further 11.1% of the total energy was associated with such

spectra.

By this means it was possible to reduce the number of occupied classes

to 46. The spectrum selected to represent each had a power as close as

possible to the mean power of the class and a DP value of either

240° or 270°. The 46 spectra selected represent 267 of the original

399 synthesized spectra and, as shown above, these spectra account

for 76.5% of the total energy in the set and thus, by projection,

of the total energy arriving at the site. When each of the 46 spectra

is weighed according to the number in the class which it represents,

the set has an average power of 55.2 kW/m.

It is envisaged that the use of this set will allow the annual

productivity of a device to be estimated. The weighted average power

output of a device run against this set expressed as a fraction of

the 55.2 kW/m available, is a direct estimate of the device efficiency

(9)

of the total annual energy represented may be retrieved. The ability

of the device to capture power in those conditions excluded from the set

and which account for the remaining 23.5% of the annual energy must

be estimated separately. This may be effected by considering the device

performance as established against Sets 1 and 2 in conjunction with the

statistics of the excluded sea states presented in Table 4.

The spectra of Set 2 are listed by serial number and relative weight in

Table 5.

CONCLUSION

The starting point for the present work was the set of 399 directional

wave spectra which are themselves estimates of the probable directional

wave conditions at South Uist. It was originally intended that these

spectra would serve in the early stages of the Wave Energy Programme

in view of the lack of any other more reliable data. It had been

expected that they would, sooner rather than later, be superseded

by measured directional data. There is still no immediate prospect of

this occurring and it appears probable that a crucial evaluation of

individual devices will be undertaken on the basis of the spectra

described here. There must be reservations about proceding on this

basis.

Given, however, that there is no other reasonable way forward it is

encouraging to note that in those respects where it has been possible to

test the representative nature of the 399, no serious shortcoming has

come to light (WESC (80) DA101)(WESC (80) DA105). Furthermore, although

the 399 were seen as a temporary expedient, no concious compromise

on precision was made in the method of their synthesis.

Definite compromises have however been made in the attempts, described

here, to further condense the information which they contain. The results

presented here have been produced in response to strong pressures arising

solely out of practical considerations, and their presentation does not

imply that the estimated range of wave conditions at South Uist is sufficiently

(10)

Whilst the spectra listed here have been selected by reasonable and

well-defined criteria, and as such cover a fairly wide range of

conditions against which it is reasonable to check device performance

-particularly for comparative purposes - no attempt has been made to

cover those conditions which might result in extreme responses from

particular devices. The systematic investigation of device performance

in 'extreme' conditions must be outside this test set, and it should be

borne in mind that the 399 themselves cannot cover the whole range

(11)

APPENDIX

The 399 spectra of the selected set are taken to be representative

of the 2920 spectra which might be recorded in an average year.

Each spectrum of the selected set therefore represents approximately 7

spectra in the hypothetical whole year set or, alternatively, each

spectrum is representative of conditions which would be experienced

for V 3 9 9 of the year, ie 21.95 hours.

The distribution of the selected set properties is thus a coarser

representation of the supposed annual distribution.

If the ith spectrum has a power Pi, then the average power of the

selected set is.

R

= L: I

a

311

314

(1)

The result of this calculation is 47.8 kW/m and this is taken to be

the mean power which would be measured over the average year.

The total energy arriving at the site per metre of wavefront is

therefore estimated as

E^ = 47.8 X 365 X 24

= 418,728 kWh/m

(2)

Now consider the selection of a smaller number of spectra (Set 2)

for the purpose of estimating device productivity. As explained

in the text a number of spectra were excluded at the outset leaving

267 which then represent the range of conditions supposed to occur

for ^^^/399

of the year. The average power of this set

267

P - 1 , - 1

I z

i

R

Zb7

2 6 7

(12)

was 54.5 kW/m. The total energy in one year associated with such

conditions is then

Ep = 54.5 X 267 ^ 365 * 24

399

= 319,476 kWh/m

(4)

= 0.763 X

(5)

As previously described the

267 spectra were divided into classes

according to the values of DW, TE, FW and P associated with each.

One spectrum was chosen to represent the

spectra in the jth class

The mean power of the spectra in the jth class is

2 . ^

0

I T

where

P t , j

is the power of the Lth spectrum in the jth c l a s s .

The chosen spectrum has a power, Pj, as close as possible to

A total of 46 classes were represented in this way.

The weighted average power of the set of 46 (Set 2) is

P - ^ Pj ^ "J ^ j^.

(7)

using (6) and (3)

R

J^i

z

=

S'4-S"kW/m

J-'

(13)

It is envisaged that the output power of a device in all 46 selected

spectra will be determined. If the output power for the jth spectrum

is Poj, the weighted average output power for the set is

4-6

a

£ R

J='

oj ^ ry

44

Hi

'J

J " '

and the overall efficiency of the device in this range of conditions is

Po

P„

The productivity of the device during the ^^^/399 of the year in

which these conditions prevail is thus estimated to be

Eo = ^

X 0.763 X

kWh/m

This is one element of the final productivity figure. The productivity

of a device under conditions excluded from the set needs to be determined

separately and the resulting energy added to Eo. Approximately half

of the excluded power has, however, been excluded on the grounds of

being associated with very high or very low power sea states, and the rest

of the excluded power is associated with a wide range of spectral

types. It may thus, as a first approximation, be permissible to assume

that the device efficiency under these conditions is substantially

the same as that established for Set 2, and that the annual productivity

is simply

(14)

CO

JZ

15

14

13 H

12

1 1 —

1 0

-9 —

8 —

1

6

5

4 —

3

-2 —

1 —

0

3 9 9 U A L I D O B S E R U A T I O N S

T O T A L ENERGY (KUH/M) = 5 0 6 6 6 .

20 19

12 12

12 19 21 11 12 12 10

18 16 n 11 15 12 15

300fth//,T|

10 kw/m

0

I 1 I 1 I

1

2

3

M

' 1 I 1

I 1 ' I ' I I I 1 I ' 1 I I ' I 1

6

1

8

9

10

11

12

13

14

15

16

11

18

19

20

' I ' I ' I

T E

( S )

DISTRIBUTION OF TOTAL MEASURED WAVE ENERGY

WITH

Hs

AND T

E (PPT)

(15)

FW

CLASS NUMBER

TE

1

2

3

4

pi

w

1

3

1

g

2

3

15

4

8

7

4

O]

CO

§

4

5

9

FW

CLASS NUMBER

TE

1

2

3

4

ptS

w

1

2

28

2

41

2

5

a

3

56

12

1

w

i

4

5

30

18

2

FW

CLASS NUMBER

TE

FW

1

2

3

4

n

1

2

12

2

15

2

2

:z: 3

20

6

w

(C

a

4

5

18

2

FW

CLASS NUMBER

TE

1

2

3

4

1

1

1

1

2

1

2

5

26

4

%

3

20

4

CO

i

4

8

CO

i

5

1

DW CLASS 1

DW CLASS 2

DW CLASS 3

DW CLASS 4

Distribution of the 399 synthesized directional spectra with

the three parameters DW, FW and TE.

Numbers tabulated are total number of spectra in each class.

(16)

CLASS N O .

FW TE DW D M A X P O W E R SPEC

( H z ) (s lecs) ( d e g s ) ( d e g s ) ( k W / m ) N O .

0. 0 5 8 6 5 8 7 0 0 30. 270. 0. 1 8 4 8 0 E 01 28.

0, 0 4 8 8 5. 1 6 0 0 30. 270. 0. 2 0 0 2 0 E 01 29.

0. 0 4 8 8 6, 0 2 0 0 30. 240. 0. 9 9 8 9 0 E 01 143.

0. 0 6 8 4 5. 5 0 0 0 30. 240.. 0. 3 3 0 2 0 E 01 82.

0 0 2 9 3 7. 9 5 0 0 30. 270. 0. 1 1 9 2 0 E 0 2 100.

0. 0 2 9 3 7. 1 6 0 0 30. 240, 0. 1 2 4 5 0 E 0 2 122.

0. 0 2 9 3 7. 3 0 0 0 30. 330. 0. 2 2 0 5 0 E 0 2 205.

0. 0 2 9 3 8. 0 0 0 0 30. 2 4 a 0. 2 7 2 lOE 0 2 258.

0. 0 4 8 8 7. 7 6 0 0 30. 270. 0. 1 1 1 9 0 E 01 10.

0 0391 6. 6 3 0 0 30. 270. 0. 1 8 2 7 0 E 01 13.

0. 0391 7. 2 8 0 0 30. 270. 0. 5 0 6 0 0 E 01 55.

0. 0391 7 6 1 0 0 30. 270. 0. 8 1 8 9 0 E 01 63.

0. 0 5 8 6 6. 7 0 0 0 30. 2 4 0 0. l b 9 8 0 E 0 2 138

0. 0391 6 5 6 0 0 30. 240. 0. 1 1 6 7 0 E 0 2 139.

0. 0 4 8 8 6. 1400 30. 240. 0. 1 0 5 7 0 E 0 2 142.

0. 0 6 8 4 7. 8 7 0 0 30. 240. 0. 1 3 8 4 0 E 01 6.

0. 0 6 8 4 7. 0 1 0 0 30. 240. 0. 3 5 2 4 0 E 01 14.

0, 0 6 8 4 6. 8 7 0 0 30. 240. 0. 2 1 4 3 0 E 01 16.

0. 0781 6 0 5 0 0 30. 240. 0. 5 9 9 6 0 E 01 66.

0. 0 2 9 3 9. 6 0 0 0 30. 270. 0. 5 9 7 lOE 01 57.

0. 0 1 9 5 9. 7 8 0 0 30. 270. 0. 1 6 8 7 0 E 0 2 91

0. 0 2 9 3 9. 0 6 0 0 30. 270. 0. 1 2 6 0 0 E 0 2 99.

0. 0 1 9 5 8. 2 5 0 0 30. 270. 0. 1 9 1 6 0 E 0 2 177.

0. 0 2 9 3 8, 5 0 0 0 30. 330. 0. 2 5 7 l O E 0 2 175

0. 0 2 9 3 8. 3 9 0 0 30. 240. 0. 2.3630E 0 2 184.

0. 0 2 9 3 9. 4 1 0 0 30. 240. 0. 2 1 4 1 0 E 0 2 195.

0, 0 2 9 3 8. 3 5 0 0 30. 270. 0. 3 6 6 4 0 E 0 2 228.

0. 0 1 9 5 9. 2 2 0 0 30. 270. 0. 3 6 1 6 0 E 0 2 229.

0. 0 2 9 3 8. 8 7 0 0 30. 240. 0. 4 8 9 2 0 E 0 2 304.

0. 0 1 9 5 9. 6 4 0 0 30. 240. 0 6 5 0 4 0 E 0 2 297.

0. 0 1 9 5 8. 6 7 0 0 30. 270. 0. 3 5 1 5 0 E 0 2 353,

0. 0 2 9 3 9. 3 0 0 0 30. 330. 0. 1 0 9 8 0 E 0 3 365.

0. 0 1 9 5 9. 7 1 0 0 30. 240. 0. 1 1 3 4 0 E 0 3 366.

0. 0 2 9 3 9. 8 3 0 0 30. 240. 0. 1 3 4 0 0 E 0 3 368.

0 0 3 9 1 9. 5 9 0 0 30. 240. 0. 1 7 0 4 0 E 0 2 109.

0. 0 4 8 8 8. 3 0 0 0 30. 330. 0. 1 7 4 6 0 E 0 2 115.

0. 0 3 9 1 8. 5 9 0 0 30. 270. 0. 2 5 9 2 0 E 0 2 161.

0. 0 3 9 1 8. 6 3 0 0 30. 240. 0. 2 3 3 9 0 E 0 2 163.

0. 0 3 9 1 8. 0 5 0 0 30. 270. 0. 2 6 3 3 0 E 0 2 183.

0. 0 3 9 1 8. 9 5 0 0 30. 330. 0. 2 1 0 2 0 E 0 2 186.

0. 0 3 9 1 8. 1 6 0 0 30. 270. 0 . 2 0 6 4 0 E 0 2 192.

0. 0391 9. 1 7 0 0 30. 330. 0. 6 5 6 5 0 E 0 2 328.

CLASS A V G E P O W E R

0. 4 6 1 3 0 E 01

0. 3 3 0 2 0 E 01

0. 1 8 4 0 S E 0 2

0, 7 0 5 9 3 E 01

0. 3 2 6 1 7 E 01

0. 5 0 2 9 7 E 0 2

0. 2 7 1 8 1 E 0 2

(17)

O >

<

OS

U3

to 3

J ^

(N

O o o

Ui ui ui

CO o o

s CO ~0

N o CO

O o (N

4)

d d o

N 0 Uj

1

Cd O

Ou Z

OC S

3 3

C U ^

t N N 'H 10 t O

w|o N W 4" O

wlw

N m m m

"

<l 00

X #

o - o

3 00

Q 0) TJ

Ed O

H « N N O O

8 1 : : 4- M

w N N m m

o o o o o

Ui UJ UJ Ui Ui

o o o o o

o 00 00 in

i# .m m m

w m N o in N M ^ W

o o o o o o o

3 N

U*vi

N N;

o o m m

8 8

m m o *-«

00 « (fk 0*

§ s

d 6

o o o o o

N ^ *f <9- N

M N N N N

o o o o o

m m m m m

o o o o o o o o o o o CD V) CO in

CO -O CO 0^

d d d 6

m n m in in

(X (K (X (X

o o o o o

d d d d d

o ^ 00 m CO

m CO o o

UJ Ui o o 4" Ok

Ok fx

»

N ^ CN

d d

K g

5 8

th N

M m

o o

UJ UJ

is

fx M CO »

d d

N N

O O CO CO

o o in CO

»H »H

m m

00

CO n

o o

o o o o

O 04 r \ rx: N N)

o o ^ o

0 o ^

0-01 00

00 CO 00 d in 00 CO N CO N d N (X ^ N m CM N CO CO 4" CO o o O 0«v M O N 00 00 *r 4"

o

M N N cw 04 N N N N CN N N

O O O O O O O O O O O O O O O O O O

U J U J U i U J U i U i U i U J U J u J U i u J U i u J U j U J U J U i o o o o o o o o o o o o o o o o o o

CDC^mNMOSCO'tOCS^OCOOmOOO

4'mNcom*H^o(^coc^^^4"a)<;N4'0

h.NC0wNNinNC4OON-0^»(^in00

CO 4" m

d d d d d d d d d d d d d d d d d d

o o o o o o o o o o o o o o o o o o o

s N»^NNNC0^N^N*Hrv«^OO^ N

M eiC^NXNCNCONCSNNNNCMCOCOC^ N

o O O O O O O O O O O O O O O O O O O

^ •«0>0'»0"0^'^"^'*0'0'0'0'0'^'0>0>0*0*0

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

^oo^'^*'0'0*-<<?-LO<j'N*t«tmo<o>0'-«

M^w^MCOOOOOOO^MOOOO^Ok*"!

^ mcococomcococomnroncococoncoco

o o o o o o o o o o o o o o o o o o o

dddddddddddddddddd

N CN N N

O O O O O

UJ Ui Ui UJ Ui

O O O O O

^ <0 «0 N

O CO O

-

• N 00 ^

N N N N N

N N N o o o

Ui Ui UI

2 § N

8 g R

N CO m

N C4

O O w Ui o o (K (M O *

CO «t

CO m

O O O O O O O O O O

O O O O O O O O O O

NCONCMr^NCNNCMM

O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O

ooiniotinNN-^coN

m^oco^^^rmooxo

rvKNNK<>NodNod

cocococococococococr

NNf^NC^NNC^NCs

O O O O O O O O O O d o d d d d d o d c

c

o

o > >

CM

®

X ) CO I

(18)

CLASS N O .

12

1 3

FW IE DW D H A X P O W E R SPEC

(Hz) ( s e e s ) ( d e g s ) ( d e g s ) ( k W / m ) N O .

0, 0 5 8 6 7. 7 6 0 0 60. 270. 0. 2 7 2 0 0 E 01 15,

0. 0 3 9 1 8. 0 3 0 0 60. 300. 0, 6 6 1 4 0 E 01 35.

0. 0 3 9 1 7. 6 4 0 0 60. 240. 0, 6 1 9 3 0 E 01 40.

0. 0 4 8 8 6. 8 8 0 0 60. 210. 0, 4 2 8 5 0 E 01 46.

0. 0 3 9 1 7. 2 1 0 0 60. 210. 0, 6 7 4 7 0 E 01 48.

0. 0 3 9 1 6. 9 0 0 0 60. 270. 0, 5 8 7 l O E 01 54.

0. 0 4 8 8 7. 7 5 0 0 60. 240. 0, 841 lOE 01 56.

0. 0 3 9 1 7. 5 5 0 0 60. 270. 0 5 8 0 4 0 E 01 58.

0. 0 4 8 8 6. 7 0 0 0 60. 240. 0, 7 0 5 9 0 E 01 68.

0. 0 3 9 1 7. 9 2 0 0 60. 270. 0. 6 8 8 9 0 E 01 69.

0. 0 4 8 8 6 5 0 0 0 60. 270. 0. 8 6 1 4 0 E 01 145.

0. 0 3 9 1 7. 9 8 0 0 60. 240. 0. 1 6 8 5 0 E 0 2 110.

0. 0391 7. 9 2 0 0 60. 270. 0. 1 5 5 7 0 E 0 2 111.

0. 0 4 8 8 7. 4 0 0 0 60. 240. 0. 1 3 2 1 0 E 0 2 114.

0. 0 5 8 6 7. 2 6 0 0 6 0 270. 0. 1 4 8 0 0 E 0 2 126.

0. 0 5 8 6 6. 3 0 0 0 6 0 270. 0. 1 2 6 7 0 E 0 2 129.

0. 0 3 9 1 7. 0 2 0 0 60. 240. 0. 1 1 7 6 0 E 0 2 136.

0. 0 3 9 1 6. 9 2 0 0 60. 240. 0. 1 3 3 5 0 E 0 2 140.

0. 0 4 8 8 6 7 7 0 0 60. 240. 0. 1 0 8 9 0 E 0 2 144.

0. 0 4 8 8 7. 6 5 0 0 60. 240. 0. 1 7 6 7 0 E 0 2 194.

0 0 4 8 8 7. 4 5 0 0 60. 240. 0. 1 7 9 1 0 E 0 2 199.

0. 0391 6. 6 0 0 0 60. 180. 0. 1 7 7 7 0 E 0 2 209.

0. 0 4 8 8 6. 8 9 0 0 6 0 270. 0. 1 5 6 5 0 E 0 2 213.

0. 0 5 8 6 7. 2 7 0 0 60. 270. 0. 2 0 8 4 0 E 0 2 201

0 0 3 9 1 7. 7 8 0 0 6 0 2 4 0 0. 2 1 0 2 0 E 0 2 206.

0. 0 3 9 1 7, 2 2 0 0 6 0 270. 0. 2 2 8 8 0 E 0 2 208.

0. 0 3 9 1 7. 3 0 0 0 60. 3 3 0 0. 2 5 8 0 0 E 0 2 257.

0. 0 3 9 1 7. 4 8 0 0 60. 270. 0. 2 9 4 6 0 E 0 2 .259.

0. 0 4 8 8 7. 7 2 0 0 60. 270. 0. 2 9 1 2 0 E 0 2 260.

0. 0391 7. 1 0 0 0 6 0 240. 0. 2 4 4 9 0 E 0 2 261.

0. 0 4 8 8 7. 4 0 0 0 60. 270. 0. 2 7 3 8 0 E 0 2 2 7 5

0. 0 3 9 1 7. 1500 60. 270. 0. 2 6 0 lOE 0 2 283.

0. 0 3 9 1 7. 6 2 0 0 60. 240. 0. 3 0 0 6 0 E 0 2 2 6 3

0. 0 3 9 1 7. 6 9 0 0 60. 270. 0. 3 0 9 3 0 E 0 2 265.

0 0 4 8 8 7. 3 0 0 0 60. 300. 0. 3 6 7 3 0 E 0 2 320.

0. 0 3 9 1 7, 8 6 0 0 60. 240. 0. 4 9 5 7 0 E 0 2 311.

0, 0391 7. 6 0 0 0 60, 240. 0, 4 8 7 8 0 E 0 2 312.

0. 0 3 9 1 7. 7 5 0 0 60, 300. 0, 4 8 8 0 0 E 0 2 314.

0. 0 3 9 1 7. 6 4 0 0 60, 330. 0, 4 5 6 0 0 E 0 2 315.

0. 0 5 8 6 7. 1 1 0 0 60, 270. 0, 4 0 2 3 0 E 0 2 319.

0. 0 3 9 1 7. 7 9 0 0 60, 240. 6, 6 1 3 8 0 ^

oi

330.

0. 0 6 8 4 6. 4 5 0 0 60. 270. 0, 6 1 3 9 0 E 0 0 4.

0. 0 6 8 4 6. 0 5 0 0 60. 270, 0. 1 1 9 0 0 E 0 2 147.

0. 0 6 8 4 6. 6 1 0 0 60. 300. 0. 1 5 0 0 0 E 0 2 214,

0. 0 6 8 4 6. 9 1 0 0 60. 270, 0, 2 9 4 7 0 E 0 2 277.

0. 0 8 7 9 6. 9 7 0 0 60. 240. 0, 2 2 8 6 0 E 0 2 278.

CLASS A V G E POWER

0. 2 1 1 3 1 E 0 2

0. 1 5 9 6 9 E 02

(19)

o >

p p p p

o o o o

W N N

O "0 "C

w w w w

@ ^

XI O CO W

VI 01 M vj

O O O O

O O O O

ps

Qx

o o o o

N) h) N W

4& ^ O

o o o o

p p p p p p p p p p p p p p p p p

o o o o o o o o o o o o o o o o o

WM»-N)K)Mrv)hOM*-N)ls)K)

M M W W W W W W W W W W W U I W W W

o o o o

I-*

\0

N N

^

K)

o o o

w w w

^ )0 p ^

GO ^ M 0)

O W 00 W

8 8 8 8

O O 0^ O

o o o o

K) W N N

N O

*

o o o o

o o o o

^0 o

2 K

w s

m m

S

w

w w w w

si O ^ ^

CD

CD

W W W W

^ W O

o OJ

I -

VI

o p p p p p p p p p

o o o o o o o o o o

ho K) •- w ^ N) r o

^ r o

"O V) ^ ^ "O

^ c o

CO W Ul

to

Ul CO

to

Ul U1 OJ

OOf»QOOOOO(hUIUIO^"^WWN

*O^WV)K)K)xlUIN)OC004»

O O O O O O O O O O O O O

o o o o o o o o o o o o o

o o p p p p p p p p p p p

W M N N N W N N N N W W K )

SlNlJiNjVjNlNiNlJiNlNjOvJ

o o o o o o p p p p p p o

00

p ^0 p m

00

m p -0 p p p

•tk

w

o

01

w SI

01

si

CO w w

Sj

CJl

w w

00

o o w w si

w

si 00 o V)

00

sj

o o o o o o o o o o o o o o o o o g o

o o o o o o o o o o o o o o o o o o o

o o o o o o o o o p p p p

(h W M

O

I—

^ >0 00

NO O

m m m

o o o

N N N

8 8

m ^

88

m m

o o

W K)

4k ^ ^

00 W

t-8 t-8 §

m m m

o o o

w w w

8 $

w w

w w w

w to o

O si

XI o O

o o o

m m m

o o o

w w w

N W W W N W N W W N N N N

\ooooooov)^cowoLn^

WO^WOOOH»CDON|NlJi»-tfl|

o o o o o o o p o p

^^ONI-^VJVJ^SIi

o o o o o o o p p o

w w w w w

Xj o

to

h) M

V) *

to

00

W t-

»-o »-o »-o »-o »-o

m rn M M Fi

o o o o o

K) W W W W

8 8 8

w (h

8

o o

m m m

o o o

w w w

W W| W 00

w o

CI o

R g

8 8

W W W W ^ ^ ^ ^

^kWWW^OOOOQOOR

^•-OUICOWC^OOONI

o p o o o o o p p p p p p p p p p p p p p p p p p

o o o o o o o o o o o o o o o o o o o o o o o o o

W ^ ^ W W H ^ W ^ ^ W ^ W W W ^ ^ W ^ W W W N i ^ O W N * ^ ^

%0 --.O •••0 "O ' O -O ^0 ••0 -O •'O ^0 ^ >0 ^ "O >0 >0 >0 >0 ^0 >0 >0

to (.1 to to cn to cn to 01 to CO to cn cj tn (0 to CO to (Ji 00 CO CO tn tJi

o o o o o o o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o o o o o o

w w

w .>

O 00

H* O

m m

o o

w w

w w

0 en

»- Nl

01 si

m m

8 8

w w w

S 00 ^

^ w ^

8 8 $

m m m

o o o

w w w

\0 H* ^ ^

w ^

w

o o o ' o

m m m m

o o o o

w w w w

^ >0 4k CO

W ^ M "C

tn Nl

o

o o o o o

m m m m m

o o o o o

w w w w w

^ O O 00 CJl s

CO o si si o g

x| HA ^ O ^ O

W to W tfl o ^

O O O O O O

m m rn m m m

X M

N €

» H

m w

w w w w w w w w w w w w w w w w w w w w

to w w

w WW

a.o

si

o

sj

o w

si Sj sj si *

o

si si SI

m z

o o

p

o o o o o o o o o o o o o o o o o o o

o

o

p p 00 > 09 X

o o o o o o o o o o o o o o o o o o o p p p p p p

« w*.

>0

si»-O si»-Osi»-O

m mm

O O O O O O O O O

H» I-*

(20)

CLASS N O .

15

16

17

18

FW TE DW D H A X P O W E R SPEC

( H z ) (B e c s ) ( d e g s ) (degs ) ( k W / m ) N O .

0. 0 3 9 1 9. 4 6 0 0 60. 270. 0. 5 5 5 3 0 E 0 0 2.

0. 0 4 8 8 8. 1 4 0 0 60. 240. 0. 7 2 4 0 0 E 01 33.

0. 0 3 9 1 9. 0 6 0 0 60. 240. 0. 9 6 0 1 0 E 01 42.

0. 0 4 8 8 8. 2 5 0 0 60. 240. 0. 6 0 3 9 0 E 01 72.

0. 0391 9. 9 3 0 0 60. 270. 0. 1 3 4 8 0 E 0 2 93.

0. 0 4 8 8 8. 6 9 0 0 6 0 270. 0. 1 2 9 8 0 E 0 2 103.

0. 0 5 8 6 8. 0 7 0 0 6 0 2 4 0 0. 1 4 8 1 0 E 0 2 108.

0. 0 4 8 8 8 4 3 0 0 6 0 2 4 0 0. 2 9 4 lOE 0 2 240.

0. 0391 8. 4 1 0 0 60. 270. 0, 3 7 3 4 0 E 0 2 249.

0. 0391 8. 4 7 0 0 6 0 2 4 0 0, 3 1 9 1 0 E 0 2 250.

0. 0 3 9 1 8 4 5 0 0 60. 240. 0, 4 1 5 4 0 E 0 2 243.

0. 0 3 9 1 8. 4 6 0 0 60. 2 4 0 0, 6 9 0 0 0 E 0 2 327.

0. 0 6 8 4 S. 0 5 0 0 60, . 240. 0, 3 9 4 2 0 E 01 7.

0. 0 1 9 5 10. 2 8 0 0 60. 270, 0, 1 2 2 7 0 E 0 2 31

0. 0 2 9 3 10. 2 4 0 0 6 0 210. 0, 1 1 4 7 0 E 0 2 45,

0 0 2 9 3 10. 1 5 0 0 60. 210, 0, 2 2 8 2 0 E 0 2 106

0 0 1 9 5 11. 3 1 0 0 60. 270, 0, 2 7 2 4 0 E 0 2 150,

0. 0 1 9 5 to. 2 6 0 0 6 0 240, 0, 2 4 3 9 0 E 0 2 ..JJA-,

0. 0 2 9 3 11. 0 9 0 0 60. 210, 0 2 6 1 3 0 E 0 2 164,

0 0 2 9 3 10. 6 0 0 0 60. 270, 0, 2 6 9 5 0 E 0 2 172,

0. 0 1 9 5 10 7 3 0 0 60. 270. 0, 2 7 3 9 0 E 0 2 197.

0. 0 2 9 3 10. 2 9 0 0 6 0 270, 0, 3 2 1 5 0 E 0 2 165.

0 0 1 9 5 11. 4 6 0 0 60. 270, 0, 3 1 8 6 0 E 0 2 167.

.0. 0 1 9 5 10. 1 7 0 0 6 0 2 7 0 0, 3 9 8 0 0 E 0 2 223,

0 0 1 9 5 10. 1900 60. 210. 0, 3 8 2 7 0 E 0 2 236,

0. 0 0 9 8 10. 8 3 0 0 6 0 270, 0, 4 4 9 7 0 E 0 2 222,

0. 0 1 9 5 11. 2 1 0 0 60. 270, 0. 5 4 4 3 0 E 0 2 220.

0. 0 1 9 5 11. 1200 60. 240, 0. 5 0 4 3 0 E 0 2 232.

0. 0 1 9 5 10. 8 5 0 0 60. 240, 0, 5 7 1 2 0 E 0 2 303,

0. 0 1 9 5 10. 2 6 0 0 60. 270, 0, 5 1 8 7 0 E 0 2 309,

0, 0 1 9 5 11. 0 3 0 0 6 0 270, 0. 7 6 3 9 0 E 0 2 289,

0. 0 2 9 3 11. 8 2 0 0 6 0 270, 0, 8 5 0 2 0 E 0 2 321.

0, 0 2 9 3 10. 3 6 0 0 60. 240, 0. 8 0 6 8 0 E 0 2 324.

0. 0 1 9 5 11, 9 0 0 0 6 0 270. 0. 9 5 2 8 0 E 0 2 322,

0. 0 0 9 8 10. 0 8 0 0 6 0 240. 0. 9 3 5 8 0 E 0 2 341,

0. 0 1 9 5 10. 0 8 0 0 60. 300. 0. 9 6 4 0 0 E 0 2 3 4 i

0. 0 1 9 5 10. 5 4 0 0 60. 240. 0. 1 0 8 6 0 E 0 3 339.

0. 0 1 9 5 11. 1 4 0 0 60. 270. 0, 1 1 9 6 0 E 0 3 338.

0. 0 2 9 3 10. 1 1 0 0 60. 240. 0, 1 1 1 9 0 E 0 3 340.

0. 0 2 9 3 10. 7 4 0 0 60. 300. 0. 1 1 4 9 0 E 0 3 343.

0. 0 2 9 3 11. 7 7 0 0 6 0 270. 0, 1 9 3 0 0 E 0 3 371.

0. 0 2 9 3 10. 3 4 0 0 60. 240. 0. 1 9 6 8 0 E 0 3 386.

0. 0 2 9 3 10. 9 4 0 0 60. 240. 0. 2 8 0 6 0 E 0 3 393,

0. 0 3 9 1 10 8 9 0 0 60. 240. 0. 2 7 5 4 0 E 0 2 152.

0. 0391 10. 8 4 0 0 60. 270. 0. 1 3 5 4 0 E 0 3 364.

CLASS A V G E POWER

0. 2 2 8 2 5 E 0 2

0. 3 9 4 2 0 E 01

0. 7 4 4 lOE 0 2

0. 8 1 4 7 0 E 0 2

(21)

CLASS N O .

1 9

2 0

21

22

2 3

FW TE DW D M A X P O W E R SPEC

(Hz) ( s e e s ) ( d e g s ) ( d e g s ) ( k W / m ) N O .

0. 0 0 9 8 12, 4 2 0 0 60. 270. 0. 1 6 6 1 0 E 01 1.

0. 0 1 9 5 12. 9 8 0 0 60. 270. 0. 2 8 4 7 0 E 0 2 87.

0. 0 1 9 5

12.

4 2 0 0 60. 270. 0. 3 4 6 8 0 E 0 2 148.

0, 0 1 9 5 12. 1 9 0 0 60. 270. 0. 40.1 O O E 0 2 149.

0. 0 1 9 5 13. 0 0 0 0 60. 270. 0. 4 8 4 3 0 E 0 2 235.

0. 0 1 9 5 12. 4 7 0 0 60. 270. 0. 4 6 2 8 0 E 0 2 242.

0. 0 1 9 5 14. 0 2 0 0 60. 270. 0. 5 § 9 7 b E 0 2

0. 0 1 9 5 13. 3 2 0 0 60. 270. 0. 6 6 6 8 0 E 0 2 219.

0. 0 0 9 8 12 5 4 0 0 60. 270. 0. 7 7 0 6 0 E 0 2 290.

0. 0 1 9 5 12 3 7 0 0 60. 270. 0. 7 0 8 2 0 E 0 2 295.

0. 0 1 9 5 12. 3 1 0 0 60, 270. 0. 8 3 6 9 0 E 0 2 286.

0. 0 1 9 5 13. 7 5 0 0 60. 270. 0. S 6 0 3 0 E 0 2 287.

0. 0 1 9 5

12.

6 4 0 0 60, 270. 0. 8 2 9 5 0 E 0 2 291.

0. 0 2 9 3 12. 0 9 0 0 6 0 240. 0. 9 1 0 8 0 E 0 2 323,

0. 0 1 9 5 12. 4 2 0 0 60, 240. 0. 1 1 5 3 0 E 0 3 335,

0. 0 2 9 3

12.

1 2 0 0 6 0 270. 0. 13460E 0 3 336,

0. 0 1 9 5

12.

4 3 0 0 60, 300. 0. 1 5 2 8 0 E 0 3 358,

0. 0 0 9 3 15. 3 7 0 0 6 0 240. 0. 2 0 3 2 0 E 0 3 356,

0. 0 5 8 6 5. 5 7 0 0 90. 210. 0. 2 7 0 0 0 E 01 2 6

0. 0 4 8 8 5. 9 8 0 0 90. 300. 0 6 5 3 l O E 01 70,

0 0 9 7 7 4. 4 4 0 0 90. 210. 0, 1 6 0 0 0 E 01 30,

0 1 1 7 2 4. 4 2 0 0 9 0 210. 0, 4 2 5 9 0 E 01 85,

0. 0 1 9 5 6. 3 2 0 0 90. 210, 0, 3 0 9 7 0 E 01 27,

0. 0 1 9 5 7. 7 0 0 0 90, 240, 0, 7 0 0 5 0 E 01 37,

0. 0 2 9 3 7. 7 0 0 0 90, 2 4 0 0, 6 5 0 2 0 E 01 • 41,

0. 0 1 9 5 7. 3 8 0 0 9 0 2 4 0 0. 6 6 8 2 0 E 01 44,

0. 0 2 9 3 7. 1 7 0 0 90, 240, 0, 4 7 6 4 0 E 01 60,

0. 0 2 9 3 7. 0 7 0 0 90, 270, 0, 8 7 8 6 0 E 01 121,

0, 0 2 9 3 7. 6 4 0 0 90, 270, 0, 1 3 3 0 0 E 0 2 127,

0. 0 2 9 3 7. 9 8 0 0 90, 240, 0, 1 7 9 0 0 E 0 2 180.

0. 0 2 9 3 6. 9 3 0 0 90, 300, 0, 1 8 6 2 0 E 0 2 211.

0. 0 2 9 3 6. 2 1 0 0 90, 210, 0. 1 6 0 9 0 E 0 2 215.

0. 0 2 9 3 7. 9 6 0 0 90. 330. 0. 2 6 2 9 0 E 0 2 181.

0. 0 1 9 5 8. 0 3 0 0 90. 300. 0. 2 2 1 O O E 0 2 182.

0. 0 4 8 8 7. 0 0 0 0 90. 240. 0. 1 2 8 2 0 E 01 22.

0. 0 3 9 1 6. 6 2 0 0 90. 300. 0. 1 5 6 1 0 E 01 24.

0. 0 4 8 8 7. 1 1 0 0 90. 210. 0. 9 8 1 9 0 E 0 0 25.

0. 0 3 9 1 7. 5 9 0 0 90. 0. 0. 7 4 8 2 0 E 01 50.

0. 0 3 9 1 7. 3 0 0 0 90. 210. 0. 4 1 1 7 0 E 01 59.

0. 0 3 9 1 6. 2 3 0 0 90. 300. 0. 4 8 7 8 0 E 01 76.

0. 0 3 9 1 6. 0 8 0 0 90. 300. 0. 6 1 3 2 0 E 01 77.

0. 0 5 8 6 6. 1 3 0 0 90. 240. 0. 3 9 0 5 0 E 01 84.

0. 0 4 8 8 6. 0 4 0 0 90. 210. 0. 1 5 8 1 0 E 0 2 216.

0. 0 3 9 1 7. 5 3 0 0 90. 330. 0. 2 3 7 4 0 E 0 2 193.

0. 0 5 8 6 7. 3 2 0 0 90. 270. 0. 2 0 8 0 0 E 0 2 204.

0. 0 3 9 1 7. 3 4 0 0 90. 270. 0. 2 6 7 l O E 0 2 255.

0. 0 3 9 1 7. 7 7 0 0 90. 210. 0. 2 6 5 3 0 E 0 2 273.

0. 0 3 9 1 6. 6 7 0 0 90. 210. 0. 2 8 5 3 0 E 0 2 274.

0. 0 5 8 6 6. 2 4 0 0 90. 270. 0. 2 4 3 8 0 E 0 2 280.

CLASS A V G E POWER

0. 7 9 0 4 5 E 0 2

0 4 6 1 5 5 E 01

0, 2 9 2 9 5 E 01

0. 1 2 5 9 5 E 0 2

0 . 1 3 1 2 3 E 0 2

(22)

CLASS N O .

2 4

2 5

26

2 7

FW TE DU D M A X P O W E R SPEC

( H z ) ( s e e s ) ( d e g s ) ( d e g s ) (kW/m: ) N O .

0. 0 6 8 4 7. 0 8 0 0 90. 240. 0. 8 5 6 9 0 E 0 0 3.

0. 0 6 8 4 6. 4 3 0 0 90. 270. 0. 2 2 1 5 0 E 0 2 285.

0. 0 1 9 5 8. 9 3 0 0 90. 270. 0. 1 9 t l O E 01 18,

0, 0 2 9 3 9. 0 7 0 0 90. 270. 0. 1 8 1 8 0 E 0 2 95.

0. 0 2 9 3 8. 6 6 0 0 90. 270. 0. 1 6 5 0 0 E 0 2 97.

0. 0 2 9 3 10. 0 1 0 0 90, 210. 0. 1 6 2 9 0 E 0 2 107.

0. 0 2 9 3 8. 7 0 0 0 9 0 3 0 0 0, 2 7 4 4 0 E 0 2 158.

0. 0 1 9 5 9. 7 4 0 0 90. 210. 0, 2 3 1 0 0 E 0 2 166.

0. 0 2 9 3 8. 4 5 0 0 90. 300. 0, 2 7 9 6 0 E 0 2 169.

0. 0 1 9 5 9 6 8 0 0 90. 210. 0, 2 3 7 2 0 E 0 2 170.

0. 0 2 9 3 9 1 0 0 0 90. 270. 0. 2 7 1 4 0 E 0 2 173.

0 0 2 9 3 8. 1 1 0 0 90. 270. 0. 2 0 6 0 0 E 0 2 200.

0. 0 1 9 5 8. 8 0 0 0 90. 300. 0. 3 4 2 lOE 0 2 234.

0. 0 2 9 3 9. 3 3 0 0 90. 270. 0 4 6 1 1 0 E 0 2 233.

0. 0 1 9 5 9. 2 9 0 0 90. 270. 0. 4 3 4 6 0 E 0 2 238.

0. 0 2 9 3 9. 1 6 0 0 90. 270, 0. 4 1 0 8 0 E 0 2 239,

0. 0 2 9 3 8. 9 1 0 0 90. 240, 0, 4 4 5 0 0 E 0 2 299,

0. 0 2 9 3 8. 6 1 0 0 9 0 300, 0 4 9 9 3 0 E 0 2 3 0 5

0, 0 2 9 3 8. 0 4 0 0 90. 0, 0, 5 5 1 2 0 E 0 2 333,

0. 0 2 9 3 9, 0 6 0 0 90. 240. 0, 6 0 7 2 0 E 0 2 294.

0. 0 2 9 3 8. 7 4 0 0 90. 2 7 0 0, 6 3 3 9 0 E 0 2 329,

0 0 1 9 5 9. 9 4 0 0 9 0 300, 0, 1 6 2 6 0 E 0 3 374,

0. 0391 8 1500 90. 240. 0, 2 5 5 4 0 E 01 11,

0. 0391 8. 7 0 0 0 90. 270. 0. 1 9 3 6 0 E 0 2 176

0. 0391 8. 3 5 0 0 90. 270. 0. 4 8 9 0 0 E 0 2 308,

0. 0 3 9 1 9. 8 2 0 0 90. 240. 0. 6 7 7 0 0 E 0 2 326,

0, 0 4 8 8 8. 0 8 0 0 90. 240, 0. 6 9 4 5 0 E 0 2 355,

0. 0 3 9 1 8. 3 2 0 0 90. 270, 0. 1 1 0 2 0 E 0 3 369,

0. 0 2 9 3 11. 0 1 0 0 90. 210, 0. 2 3 8 2 0 E 0 2 92,

0. 0 0 9 8 11. 8 6 0 0 90. 210, 0. 3 7 1 5 0 E 0 2 151,

0. 0 2 9 3 11. 3 7 0 0 9 0 270. 0. 1 2 1 4 0 E 0 3 337,

0. 0 2 9 3 10. 6 9 0 0 90. 300. 0. 1 3 6 4 0 E 0 3 361.

0. 0 2 9 3 10. 4 6 0 0 90. 240. 0, 1 3 4 2 0 E 0 3 363.

0. 0 1 9 5 11. 9 5 0 0 90. 270. 0. 1 4 1 3 0 E 0 3 357.

0. 0 2 9 3

10. 6000

90. 210. 0. 1 4 8 & 0 E 0 3 362.

0. 0 1 9 5 10. 9 3 0 0 90. 270. 0. 1 5 2 8 0 E 0 3 359.

0. 0 1 9 5 10. 0 5 0 0 90. 300. 0. 1 6 3 8 0 E 0 3 372.

0. 0 2 9 3 11. 0 4 0 0 90. 240. 0. 1 8 2 6 0 E

03

373.

0. 0 2 9 3 10. 9 1 0 0 90. 270. 0. 1 8 7 6 0 E 0 3 383.

0. 0 1 9 5 10. 8 8 0 0 90. 270. 0. 1 9 7 1 0 E 0 3 385.

0. 0 2 9 3 10. 3 3 0 0 90. 270. 0. 1 9 7 8 0 E 0 3 387.

0. 0 1 9 5 11. 0 3 0 0 90. 270. 0. 2 2 6 4 0 E

03

389.

0. 0 2 9 3 10. 4 7 0 0 9 0 240. 0. 2 4 5 0 0 E 0 3 391.

0. 0 2 9 3 10. 7 8 0 0 90. 240. 0. 2 8 7 lOE 0 3 394.

0. 0 2 9 3 10. 7 6 0 0 90. 240. 0. 2 9 9 7 0 E 0 3 396.

0. 0 1 9 5 11. 5 6 0 0 90. 210. 0. 4 4 8 6 0 E 0 3 399.

C L A S S A V G E POWER

0. 1 1 5 0 3 E 0 2

0 4 0 1 9 8 E 0 2

0. 5 3 0 2 7 E 0 2

0. 1 8 5 0 8 E 0 3

(23)

CLASS N O .

28

29

30

31

32

FW TE OW D H A X P O W E R SPEC CLASS A V G E

( H z ) ( s e e s ) ( d e g s ) ( d e g s ) ( k W / m ) N O . POWER

0. 0 2 9 3 12. 8 7 0 0 90. 270. 0 2 2 3 9 0 E 0 3 381.

0. 0 2 9 3 12. 6 6 0 0 90. 270. 0. 2 4 5 2 0 E 0 3 3 8 l 0. 2 3 4 5 5 E 0 3

0. 0 4 8 8 5. 0 8 0 0 120. 270. 0. 3 5 1 2 0 E 01. 86. 0. 3 5 1 2 0 E 01

0. 0 7 8 1 5. 6 9 0 0 120. 270. 0. 5 3 2 0 0 E 01 75. 0. 5 3 2 0 0 E 01

0. 1 2 7 0 5. 2 3 0 0 150. 270. 0. 3 7 6 3 0 E 01 80.

0. 1 1 7 2 4. 7 0 0 0 210. 210. 0. 3 2 3 5 0 E 01 83. 0. 3 4 9 9 0 E 01

0. 0 2 9 3 7. 1200 120. 270. 0. 6 9 1 9 0 E 01 47.

0. 0 2 9 3 7. 0 2 0 0 120. 0. 0. 7 4 6 9 0 E 01 53.

0. 0 2 9 3 7. 0 8 0 0 120. 300. 0 1 4 8 2 0 E 0 2 196.

0. 0 2 9 3 7. 2 7 0 0 120. 240. 0. 2 9 2 3 0 E 0 2 268.

O 0 2 9 3 7 5 1 0 0 120. 3 3 0 0 4 3 5 3 0 E 0 2 3 1 7 0. 2 0 3 9 4 E 0 2

33

0. 0 3 9 1 7. 7 1 0 0 120. 270. 0. 1 7 6 8 0 E 01 20.

0. 0 3 9 1 7. 4 0 0 0 120. 270. 0. 2 6 6 7 0 E 01 21.

0. 0391 6. 8 4 0 0 120. 2 7 0 0. 5 8 5 8 0 E 01 51.

0. 0 4 8 8 6. 7 6 0 0 120. 270. 0. 6 8 0 7 0 E 01 6 5

0. 0 4 8 8 6. 9 8 0 0 120. 270. 0. 4 9 3 3 0 E 01 67.

0. 0 4 8 8 6. 3 0 0 0 120. 270. 0. 7 3 4 7 0 E 01 74.

0. 0391 6. 2 0 0 0 120. 270. 0. 4 0 3 lOE 01 79.

0, 0 4 8 8 7. 4 0 0 0 120 270, 0. 9 4 4 7 0 E 01 119.

0. 0 4 8 8 7 1700 120. 270. 0 9 3 6 5 0 E 01 132,

0. 0391 6. 3 9 0 0 120 0. 0. 8 0 7 0 0 E 01 134.

0. 0 5 8 6 6. 4 2 0 0 150. 270. 0. 1 0 8 7 0 E 0 2 131.

0 0 4 8 8 6 6 7 0 0 120. 270. 0. 1 0 8 2 0 E 0 2 133.

0. 0 3 9 1 7. 2 1 0 0 120. 2 7 0 0. 2 2 1 6 0 E 0 2 218,

0. 0 4 8 8 7. 1100 120. 270. 0. 2 4 3 7 0 E 0 2 262,

0. 0391 7. 1800 120. 240. 0 2 7 7 6 0 E 0 2 266.

0. 0391 6. 9 5 0 0 120. 270. 0. 2 5 9 3 0 E 0 2 270.

0. 0 4 8 8 7. 2 3 0 0 120. 270. 0. 2 5 0 6 0 E 0 2 271.

0. 0 5 8 6 6. 5 9 0 0 120. 240. 0. 2 6 5 3 0 E 0 2 272.

0. 0 3 9 1 6 4 8 0 0 120. 270. 0. 2 0 9 1 0 E 0 2 284.

0. 0 4 8 8 7. 7 5 0 0 150. 0. 0. 3 2 8 3 0 E 0 2 253.

0. 0 3 9 1 7. 8 2 0 0 180. 330. 0. 3 3 3 9 0 E 0 2 256.

0. 0 3 9 1 7. 0 0 0 0 120. 240. 0. 3 2 6 7 0 E 0 2 279.

0. 0 5 8 6 7. 2 0 0 0 120. 270. 0. 3 6 2 8 0 E 0 2 318.

0. 0 5 8 6 7. 6 4 0 0 120. 210. 0. 4 6 0 7 0 E 0 2 313.

0. 0 4 8 8 7. 5 2 0 0 120. 330. 0. 4 9 7 4 0 E 0 2 334.

0. 0 5 8 6 7. 6 1 0 0 120. 210. 0. 5 8 1 5 0 E 0 2 332. 0. 2 0 9 1 7 E 0 2

(24)

CLASS N O .

34

35

36

37

38

FW TE DW D M A X P O W E R SPEC

(Hz) ( s e e s ) ( d e g s ) (degs ) ( k W / m ) N O .

0. 0781 7. 3 4 0 0 120. 270. 0. 1 2 5 0 0 E 0 2 125.

0. 0 7 8 1 6. 2 7 0 0 120. 210. 0, 1 7 1 3 0 E 0 2 217.

0. 0 6 8 4 6. 4 6 0 0 120. 270. 0. 2 0 7 5 0 E 0 2 212.

0. 0 6 8 4 ' 7. 4 9 0 0 180. 300. 0. 3 7 9 7 0 E 0 2 316.

0. 0 2 9 3 8. 7 5 0 0 120. 270. 0. 2 0 2 6 0 E 01 5.

0. 0 1 9 5 8. 6 8 0 0 120. 270. 0. 1 5 5 0 0 E 01 12.

0. 0 2 9 3 9. 3 4 0 0 120. 270. 0. 9 6 3 0 0 E 01 43.

0. 0 2 9 3 9. 6 3 0 0 120 270. 0. 1 3 0 7 0 E 0 2 88.

0. 0 1 9 5 9, 7 5 0 0 120. 270. 0. 1 3 7 4 0 E 0 2 89,

0. 0 1 9 5 9. 2 0 0 0 120. 300. 6. 1 7 3 5 0 E 0 2 " 96.

0. 0 2 9 3 8. 0 9 0 0 120. 300. 0. 2 4 4 4 0 E 0 2 179.

0. 0 2 9 3 8. 8 1 0 0 120. 240. 0. 3 1 1 6 0 E 0 2 230.

0. 0 1 9 5 8. 7 8 0 0 120. 270. 0. 3 4 9 lOE 0 2 241.

0. 0 2 9 3 8. 1 7 0 0 120. 270. 0 3 9 9 2 0 E 0 2 310.

0. 0 2 9 3 8. 6 7 0 0 120. 210. 0. 4 3 1 7 0 E 0 2 296.

0. 0 2 9 3 8. 7 8 0 0 210. 270. 0. 8 5 2 7 0 E 0 2 347.

0. 0 2 9 3 S. 3 6 0 0 120. 210. 0. S 3 8 4 0 E 0 2 351.

0. 0 2 9 3 8. 9 3 0 0 120. 300. 0. 9 6 7 9 0 E 0 2 350.

0. 0 1 9 5 9. 4 9 0 0 120. 270. 0. 9 6 7 3 0 E 0 2 352.

0. 0 2 9 3 8. 3 3 0 0 120 180. 0. 1 2 1 5 0 E 0 3 379.

0. 0 2 9 3 8. 7 8 0 0 120. 210, 0. 1 2 9 0 0 E 0 3 380.

0. 0 1 9 5 9. 5 3 0 0 120. 300. 0. 1 3 4 3 0 E 0 3 376.

0. 0 2 9 3 8. 9 8 0 0 210. 270. 0. 1 3 6 8 0 E 0 3 377.

0. 0 2 9 3 9. 4 9 0 0 120. 300. 0. 1 5 9 0 0 2 0 3 '

0. 0 4 8 8 8. 2 9 0 0 120. 270. 0. 1 4 6 5 0 E 01 9.

0, 0391 8. 2 0 0 0 120. 330. 0. 2 1 2 8 0 E 0 2 190.

0. 0391 9. 0 9 0 0 120. 240. 0. 4 8 8 7 0 E 0 2 293.

0. 0391 8. 0 7 0 0 120. 330. 0. 7 0 3 8 0 E 0 2 354.

0. 0 1 9 5 10. 1 2 0 0 120. 270. 0. 2 4 4 9 0 E 01 17.

0. 0 0 9 8 11. 9 2 0 0 120. 240. 0. 8 3 2 0 0 E 01 49.

0. 0 1 9 5 10 7 5 0 0 120. 270. 0. 1 0 4 0 0 E 0 2 32.

0. 0 2 9 3 10. 6 4 0 0 120. 270. 0 2 3 7 2 0 E 0 3 390.

0. 0 1 9 5 11. 2 6 0 0 150. 270. 0. 2 6 3 3 0 E 0 3 388.

0. 0 0 9 3 11. 7 7 0 0 120. 240. 0. 2 8 4 6 0 E 0 3 3 9 2 .

0. 0 2 9 3 10. 9 9 0 0 120. 240. 0. 3 1 7 3 0 E 0 3 395.

0. 0 2 9 3 11. 7 7 0 0 120. 240. 0. 4 5 6 9 0 E 0 3 398.

0. 0 1 9 5 12. 1 1 0 0 120. 270. 0. 4 0 1 8 0 E 0 3 397.

C L A S S A V G E P O W E R

0. 2 2 0 8 8 E 0 2

0. 6 3 7 1 0 E 0 2

0. 3 5 4 9 9 E 0 2

0. 1 9 7 5 6 E 0 3

0. 4 0 1 8 0 E 0 3

(25)

SPECTRUM SERIAL

NUMBER

NUMBER OF SPECTRA

IN CLASS

SPECTRUM SERIAL

NUMBER OF SPECTRA

NUMBER

IN CLASS

29

82

1 2 2 *

63

14

228*

168*

360*

137

81

2 1 0 *

2 0 1 *

278

244*

1 0 8 *

7

324*

364

291*

3

1

4

7

4

15

8

9

2

2

28

41

5

56

12

1

30

2

18

70

30

1 8 0 *

2 8 0 *

285

238*

355*

359*

381*

86

75

80

2 6 8 *

2 1 8 *

2 1 2 *

347*

190

388*

397

2

2

12

15

2

20

6

18

2

1

1

2

5

26

4

20

4

8

1

TOTAL

399

THE SPECTRA COMPRISING SET 1

(Spectra marked with * are common to Set 2)

(26)

STATISTICS OF SEA STATES EXCLUDED FROM SET 2

NUMBER OF

SPECTRA

EXCLUDED

3

1

4

4

2

2

4

11

1

1

4

9

4

CLASS NUMBER IN

EACH PARAMETER

D W

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

FW

2

3

2

3

1

1

1

2

1

1

1

2

3

1

2

2

3

3

1

2

2

3

1

2

2

1

1

1

1

1

TE

1

1

2

2

3

3

3

3

4

4

4

2

2

2

2

2

3

3

3

3

4

4

4

5

5

5

5

5

4

5

4

4

5

8

1

1

1

1

4

1

2

1

1

4

1

8

2

7

1

2

4

6

8

NUMBER OF

SPECTRA

EXCLUDED

2

2

6

8

10

2

2

1

References

Related documents

The research described on this form will be conducted by Amelia Fontein, a senior in the Environmental Studies program at the University of Vermont, for her Honors College senior

» Create custom rosters to work away from the office, or at non- UA tournaments.... On your

These disadvantage can be eliminated by indirect type of dryer which is used for drying product as application of solar energy Solar drying is the most common method for preserving

&gt; Publicise Williamsons support where possible via local media, social media and your beneficiaries &gt; After the event / activity return an evaluation form detailing

If guaranteed income from Social Security and a pension (if available) do not cover future basic living expenses, an income annuity can make up the shortfall.. Having a guaranteed

We show (Figures 6 and 8) that, if the initial imbalance is not exaggeratedly large and hence the effect of the human capital mechanism is still positive, the impact of the

It was stimulated by the building of a brand new University teaching hospital in Coventry, and the increasing recognition of Warwick Medical School as a centre of excellence

TISA participants agreed at the TISA negotiations meeting on 20 September 2013 that initial offers should be submitted between 4 and 30 November 2013. Norway hereby submits its