• No results found

Combustion Solved Problems

N/A
N/A
Protected

Academic year: 2021

Share "Combustion Solved Problems"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

1.

1. A fve-cyliA fve-cylindernder, our, our-str-stroke cycoke cycle SI engine has a comprle SI engine has a compressiession ratio rc = 11:1,on ratio rc = 11:1, o

orre e ! ! = = "."."#"#cmcm, , ststrrokoke e S S = = ".".$# $# cmcm, , anand d coconnnnecectiting ng rorod d lelengngth th % % == 11.&

11.&&cm. 'ylinder inlet &cm. 'ylinder inlet condconditionitions s are ()*' are ()*' and and +#k+#ka. a. %he intake valve%he intake valve closes at 1*a!' and the spark plug is

closes at 1*a!' and the spark plug is fred at/1:"*%'.fred at/1:"*%'.

'alculate: 0a %emperature and pressure in the cylinder at ignition, assuming 'alculate: 0a %emperature and pressure in the cylinder at ignition, assuming 2tto cycle analysis 0i.e., assume the intake valve closes at !' 2tto cycle analysis 0i.e., assume the intake valve closes at !' and ignition is at %'. 34,

and ignition is at %'. 34, ka5ka5

0 67ective compression ratio 0i.e., actual compression o the air-uel 0 67ective compression ratio 0i.e., actual compression o the air-uel

mi8ture eore ignition. mi8ture eore ignition.

0c Actual temperature and pressure in the cylinder at ignition. 34, 0c Actual temperature and pressure in the cylinder at ignition. 34,

ka5 ka5 Solution:

Solution:

00aa %%## = % = %110r0rcck-1k-1 = 0))( 4011 = 0))( 4011&.)"&.)" = $$9 4 = "&" = $$9 4 = "&" °°''

## =  = 110r0rcckk = 0+# ka011 = 0+# ka0111.)"1.)" = #)# ka = #)# ka

0

0 'ranksha'rankshat o7set = a = S# = "t o7set = a = S# = ".$# # = #.9( cm.$# # = #.9( cm ; = ra =

; = ra = 11.&#.9( = ).9"11.&#.9( = ).9"

'rank angle <hen intake valve closes and actual compression starts 'rank angle <hen intake valve closes and actual compression starts

θ

θ = 19& = 19&°°  1  1°° = ##1 = ##1°°

'rank angle <hen ignition occurs

'rank angle <hen ignition occurs θθ = )" = )"°°

comustion chamer volume <hen intake valve closes comustion chamer volume <hen intake valve closes >

>I>'I>'>>cc = 1  ?0r = 1  ?0rcc @ 1 3;  1 - cos @ 1 3;  1 - cosθθ - 0; - 0;## @ sin @ sin##θθ1#1#55

>

>I>'I>'>>cc = 1  ?011-1 0).9"  01 @ cos0##1 = 1  ?011-1 0).9"  01 @ cos0##1°° @ 30).9" @ 30).9"## @ sin @ sin##0##10##1°°551#1#B B ==

1&.&" 1&.&"

'omustion chamer volume <hen ignition occurs 'omustion chamer volume <hen ignition occurs >

>igig>>cc = 1  ?011-1 0).9" 01 @ cos0)" = 1  ?011-1 0).9" 01 @ cos0)"°° @ 30).9" @ 30).9"##  @ sin  @ sin##0)"0)"°°551#1#B B ==

1.#1 1.#1

67ective compression ratio 67ective compression ratio >

>I>'I>'>>igig = 0> = 0>I>'I>'>>cc  0>  0>igig>>cc = 01&.&"  01.#1 = 9.#9 = 01&.&"  01.#1 = 9.#9

00cc %%## = 0))( 4 09.#9 = 0))( 4 09.#91.)"-11.)"-1 = $& 4 = )1 = $& 4 = )1 °°''

(2)

#. A ).(-liter, >( SI engine is designed to have a ma8imum speed o $&&& ;C.  %here are t<o intake valves per cylinder, and valve lit eDuals one-ourth valve diameter. !ore and stroke are related as S = 1.&( !. esign temperature o the air-uel mi8ture entering the cylinders is (&*'.

'alculate: 0a Ideal theoretical valve diameter. 3cm5

0 Ca8imum Eo< velocity through intake valve. 3msec5 0c o the valve diameters and ore siFe seem compatileG Solution:

Hor 1 cylinder

>d = ).(( = &.(  = &.&&&( m) = 0J01.&(!)

! = &.&9+$ m = 9.+$ cm

S = 01.&(09.+$ cm = +."& cm 0a Sonic velocity at inlet conditions

' = 3k;%51# = 301.&0#9$ Kkg.40)))451# = )(( msec

Average piston velocity at ma8imum speed

0Lpma8 = #SM = 0# stokescycle0&.&+"& mstroke0$&&&(& revsec = ##.1$

msec

Area or the # valves

Ai = '!#30Lpma8c15 = 01.+09.+$ cm#0##.1$ msec0)(( msec = (.) cm#

Hor 1 valve

A1 = (.)# = ).1$ cm# = Jdvl = Jdv0dv = 0Jdv#

dv = #.&1 cm

0 Ca8imum Eo< velocity <ill e sonic >ma8 = c= )(( msec

0c Nith proper design valves could e ft into comustion chamer <ith diOculty

). A si8-cylinder, our-stroke cycle SI engine <ith multipoint uel inPection has a displacement o # liters and a volumetric eOciency o 9$Q at )&&& ;C, and operates on ethyl alcohol <ith an eDuivalence ratio o 1.&(. 6ach cylinder

(3)

has one port inPector <hich delivers uel at a rate o &.&# kgsec. %he engine also has an au8iliary inPector upstream in the intake maniold <hich delivers uel at a rate o &.&&) kgsec to change the air-uel ratio and give a richer mi8ture <hen needed. Nhen in use, the au8iliary inPector operates continuously and supplies all cylinders.

'alculate: 0a %ime o one inPection pulse or one cylinder or one cycle. 3sec5

0 AH i the au8iliary inPector is not eing used. 0c AH i the au8iliary inPector is eing used. Solution:

actual AH ratio

0AHact = 0AHstoichR = +.&  1.&( = 9.+

Hor 1 cylinder >d = 0#.   ( = &.  = &.&&& m)

0a mass o air into one cylinder or one cycle

ma = a>dTv = 01.191 kgm) 0&.&&& m) 0&.9$ = &.&&&11 kg

mass o uel into 1 cylinder or 1 cycle

m  = ma0AHa = 0&.&&&11 kg  9.+ = &.&&&&9 kg

time o inPection = 0&.&&&&9 kg  0&.&# kgsec = &.&&## sec 0 Actual AH rom aove 0AHa = 9.+

0c Nhen au8iliary inPector is used at )&&& ;C  %ime o 1 cycle

 % = 0# revcycle0)&&&(& revsec = &.& seccycle Cass o uel rom port inPector or 1 cylinder or 1 cycle m  = &.&&&&9 kg

mass o uel rom au8iliary inPector or 1 cylinder or 1 cycle m  = 0&.&&) kgsec0&.& sec0( cylinders = &.&&&&#& kg

1 cylinder or 1 cycle

AH = mam  = &.&&&11  0&.&&&&9  &.&&&&#& = (.&1

. A (.#-liter, >9, our-stroke cycle SI engine is designed to have a ma8imum speed o ("&& ;C. At this speed, volumetric eOciency is 99Q. %he engine is eDuipped <ith a our-arrel caruretor, each arrel having a discharge

(4)

coeOcient o ' t = &.+". %he uel used is gasoline at AH = 1":1 0density o  gasoline g = $"& kgm).

'alculate: 0a Cinimum throat diameter needed in each caruretor venturi. 3cm5

0 Huel capillary tue diameter needed or each venturi throat i  tue discharge coeOcient ' c = &.9" and the capillary tue height di7erential is small. 3mm5

Solution:

air Eo< rate needed at ma8 speed ´

ma= ρ

aV d N ηv/n  = 01.1910&.&&(#0("&&(&0&.99# = &.)+ kgsec

Hor each o  arrels ´

ma  = 0&.)+ kgsec = &.&9$) kgsec

0a throat area o 1 arrel

0 m´a ma8 = #)(." 'IU3At5 = &.9$) = 0#)(."0&.+"3At5

At = &.&&&)99( m# = ).99( cm#= 0Jdt#

dt= #.## cm

0 uel Eo< rate needed or 1 arrel ´

m  = m´

a 0AH = 0&.&9$) kgsec1" = &.&&"9# kgsec

pressure in caruretor throat

t = 0&."#9)& = 0&."#9)01&1 ka = "). ka

pressure di7erential in uel capillary

t =a = & @ t = 1&1 -"). = $.( ka

uel capillary tue Eo< area ´

m  = '

cAc3# ∆t51#

0.00582kg/sec¿

 0&.9"Ac30#0$"& kgm)0$.( kMm#01 kg-mM-sec#51#

Ac = &.&&&&&&91 m# = &.91 mm# = 0Jdc#

(5)

". A >9 engine <ith $."-cm ores is redesigned rom t<o valves per cylinder to our valves per cylinder. %he old design had one inlet valve o ) mm diameter and one e8haust valve o #+ mm diameter per cylinder. %his is replaced <ith t<o inlet valves o #$ mm diameter and t<o e8haust valves o  #) mm diameter. Ca8imum valve lit eDuals ##Q o the valve diameter or all valves.

'alculate: 0a Increase o inlet Eo< area per cylinder <hen the valves are ully open.3cm#5

0 Vive advantages and disadvantages o the ne< system. Solution:

0a <ith 1 intake valve

0At1 = Jdvl = J0). cm 30&.##0).5 = $.++ cm#

Nith t<o intake valves

0At# = 0# valves J 0#.$ cm 30&.##0#.$ cm5 = 1&.&9 cm#

Increase in Eo< area

A = 01&.&9 cm# @ 0$.++ cm# = #.&+ cm#

0 Advantages: Vreater intake valve Eo< area <hich improves volumetric eOciency.

Vreater e8haust valve Eo< area <hich allo<s or a shorter e8haust lo<do<n process.

Vreater Ee8iility in intake e allo<ing variation in valve timing and lit et<een the t<o valves.

isadvantages: Meed or greater numer andor more comple8 camshats. Wigher cost in manuacturing.

References

Related documents

Cohen YC, Djulbegovic B, Shamai-Lubovitz O, Mozes B (2000) The bleeding risk and natural history of idiopathic thrombocytopenic purpura in patients with persistent low platelet

Source: Industry Sources, Ernst&amp; Young Analysis.. Select Players

Risk evaluation shall be carried out to determine if risk reduction is required. If risk reduction is required, then appropriate risk reduction measures shall be selected and

Balki and Sayin (2014) studied the performance, combustion characteristic and harmful exhaust emission values of a single-cylinder, air-cooled, four-stroke, SI engine fuelled

Since then, the Task Force has been working on identifying emerging specialty roles, through performing literature reviews and collaboratively preparing a series

We included RCTs that met the following criteria: enrolment of pa- tients with primary or common causes of secondary hyperaldosteronism (heart failure or left ventricular

CHARTERED WEALTH MANAGER ® (CWM ® ) is a Wealth Management Certification that comprehensively deals with all aspects of wealth management like Investment Strategies, Life

This study was conducted to determine if there is a significant relationship between the four year implementation of a Positive Behavior Intervention and Support (SWPBIS) model