• No results found

Rb6Nb4S24 4O0 6

N/A
N/A
Protected

Academic year: 2020

Share "Rb6Nb4S24 4O0 6"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

inorganic papers

i4

Stoll and Bensch Nb4O0.60Rb6S24.40 DOI: 10.1107/S1600536802023437 Acta Cryst.(2003). E59, i4±i6

Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

Rb

6

Nb

4

S

24.4

O

0.6

Petra Stoll and Wolfgang Bensch*

Institut fuÈr Anorganische Chemie, Christian-Albrechts-UniversitaÈt Kiel, Olshausenstraûe 40, D-24098 Kiel, Germany

Correspondence e-mail: wbensch@ac.uni-kiel.de

Key indicators Single-crystal X-ray study T= 293 K

Mean(S±S) = 0.002 AÊ Disorder in main residue Rfactor = 0.031 wRfactor = 0.077

Data-to-parameter ratio = 22.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The new rubidium niobium sul®de, Rb6Nb4S24.4O0.6, consists

of discrete [Nb4S24.4O0.6]6ÿ anions and Rb+ cations. Every

Nb5+ion is in a sevenfold coordination by sul®de ions in a

strongly distorted pentagonal bipyramid, forming a Nb2S11

unit. Two of these units are interconnected by an S3fragment,

yielding the complete anion. The anions are stacked parallel to the crystallographicbaxis and are separated by the Rb+ions.

Comment

In recent years, our interest was focused on investigations in theA/M/Qsystem (withA= alkali metal;M= Nb, Ta;Q= O, S, Se). In many compounds, the M2Q11 unit is the general

structural motif (Benschet al., 1999). TheseM2Q11units occur

as monomeric units or are connected, either directly orvia

additional chalcogenide ligands, to form dimers or polymers. In a preliminary report (Krauseet al., 2000), the main features of Rb6Nb4S25 were given. Here we report the details of the

synthesis and characterization of this new ternary niobium polysul®de. Each Nb5+ ion is in a sevenfold coordination,

forming a strongly distorted pentagonal bipyramid (see Fig. 1). Neglecting the O atom, the coordination mode of the resulting [Nb4S25]6ÿ anion can be described as [(Nb2(2-2,1-S2)3

-(2-S

2)(S)2)2(2-1,1-S5)]6ÿ. Each Nb atom has a short bond

to the axial S2ÿ of 2.172 (2) AÊ (Nb1ÐS1) or 2.2150 (15) AÊ (Nb2ÐS10). Five NbÐS separations are found, in the range 2.5±2.6 AÊ [2.4587 (15), 2.4567 (15), 2.4416 (13), 2.4578 (14) and 2.5859 (15) AÊ for Nb1ÐS, and 2.4951 (15), 2.4637 (15), 2.4382 (14) and 2.4647 (14) AÊ for Nb2ÐS]. In a positiontrans

to the short NbÐS bonds, long interatomic NbÐS distances of 2.9380 (15) AÊ (Nb1ÐS8) and 2.8605 (15) AÊ (Nb2ÐS5) are observed, to an S atom of an 2-S

22ÿ anion attached to the

neighboring Nb atom. As expected, the longer NbÐS distance (Nb1ÐS8) istransto the shorter terminal NbÐS bond (Nb1Ð S1). Re®ned as sulfur, S1 showed larger anisotropic displacement parameters than the other S atoms. In the IR

Received 17 December 2002 Accepted 20 December 2002 Online 10 January 2003

Figure 1

The dimeric [Nb4S25]6ÿanion in Rb6Nb4S25. Ellipsoids are drawn at the

(2)

spectrum, a weak NbÐO absorption band was observed. Hence, during the structure re®nement it was assumed that S1 is partially substituted by oxygen. The re®ned site-occupation factors for S1/O were 0.7/0.3, yielding the ®nal composition Rb6Nb4S24.4O0.6. The partial substitution of S1 by O may be

responsible for the slight disorder of the Rb3 atom (see below). It is noted that the title compound is not isostructural with the potassium niobium compound K6Nb4S25(Bensch &

DuÈrichen, 1996a), but is isostructural with Rb6Ta4S25(Stollet

al., 2000). The main difference between the anions in both structures is a different conformation around the S3 unit. It

can be assumed that the difference is induced by the larger Rb+cation. The SÐS distances in the S

22ÿanions are between

2.0475 (19) and 2.0912 (19) AÊ (average 2.073 AÊ) and are typical for SÐS single bonds. The two Nb atoms are displaced from the pentagonal planes composed of S atoms, towards the terminal S atom, by 0.5702 AÊ (Nb1) and 0.4949 AÊ (Nb2). The dihedral angle between these planes is 49.9. The NbÐNb distance is 3.574 (2) AÊ, which is too long for any metal-to-metal interaction [radius: 0.69 AÊ for Nb5+ (CN7)] (Shannon,

1976). All values agree well with those reported for Rb6Ta4S25

(Stoll et al., 2000) andA6Nb4S22 (A = K, Rb, Cs; Bensch &

DuÈrichen, 1996b; Stoll et al., 2002). The three crystal-lographically independent rubidium cations are in an irregular sulfur environment. Using a cutoff of 4 AÊ, the mean RbÐS distances are 3.534 for Rb1 (CN9), 3.545 for Rb2 (CN12) and 3.553 AÊ for Rb3 (CN 10). These values are in good agreement with the sum of the ionic radii [1.84 AÊ for S2ÿand 1.66 AÊ for Rb1+ (CN10)] (Shannon, 1976). Rb3 is slightly disordered,

in¯uencing particularly the displacement parameters of S1 (see Fig. 1). During re®nement the sum of the site-occupation factor of Rb3 and Rb30 was ®xed at 1.00. We note that the Rb30ÐS1 distance is rather short, but can be explained on the basis of the partial substitution of S1 by O (see above).

Fitting the [Nb4S24.4O0.6]6ÿanion of the title compound to

the [Ta4S25]6ÿ anion of the isotypic Rb6Ta4S25 compound

(Stoll et al., 2000), a mean deviation of only 0.0239 AÊ is obtained, demonstrating that the geometry of the anion is only

slightly in¯uenced by replacing niobium with tantalum and by the small amount of oxygen. The thermal behavior of Rb6Nb4S24.4O0.6was investigated using differential scanning

calorimetry (DSC). As for Rb6Ta4S25(Stollet al., 2000), the

compound decomposes to form the sulfur-poorer compound Rb6Nb4S22 (Bensch & DuÈrichen, 1996b) at temperatures

above 743 K.

Experimental

The compound Rb6Nb4S24.4O0.6 was prepared by the reaction of

Rb2S3, Nb and S in the ratio 2:1:12. Rb2S3 was prepared from

stoichiometric amounts of Rb and S in liquid ammonia under an argon atmosphere. The starting materials were thoroughly mixed in a dry box and sealed into a Pyrex-glass ampoule, which was evacuated to 10ÿ3Pa. The ampoule was heated at 673 K for 4 d, cooled down to

373 K at 3 K hÿ1and then to room temperature at 12 K hÿ1. The

resulting melt was washed with dry dimethylformamide and the residue was dried in vacuo. It consists of orange±red polyhedra, which are slightly contaminated with a yellow powder that has thus far not been identi®ed. The crystals are stable in air for several weeks. In the IR spectra of Rb6Nb4S24.4O0.6 the vibrations of the short

NbÐS bonds occur at 477.3 and 460.5 cmÿ1. These values are

comparable with those of K6Nb4S25 (Bensch & DuÈrichen, 1996a),

which are found at 478.0 and 459.0 cmÿ1. In the transformed UV-vis

re¯ectance spectrum, the band gap was determined as 1.98 eV, in agreement with the observed color of Rb6Nb4S24.4O0.6.

Crystal data

Nb4O0.6Rb6S24.4 Mr= 1676.32

Monoclinic,C2=c a= 36.868 (7) AÊ b= 8.1185 (16) AÊ c= 12.515 (3) AÊ = 98.36 (3) V= 3706.1 (13) AÊ3 Z= 4

Dx= 3.004 Mg mÿ3

MoKradiation Cell parameters from 7956

re¯ections = 3±27.2

= 10.42 mmÿ1 T= 293 (2) K

Polyhedron, red±orange 0.130.100.09 mm

Data collection

Stoe Imaging Plate Diffraction System diffractometer 'scans

Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998) Tmin= 0.187,Tmax= 0.327 15576 measured re¯ections

3889 independent re¯ections 3296 re¯ections withI> 2(I) Rint= 0.064

max= 26.9 h=ÿ46!46 k=ÿ10!10 l=ÿ15!15

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.031 wR(F2) = 0.077 S= 1.05 3889 re¯ections 173 parameters

w= 1/[2(F

o2) + (0.039P)2

+ 14.4654P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 2.23 e AÊÿ3

min=ÿ1.79 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.00047 (5)

Figure 2

Crystal structure of Rb6Nb4S25, viewed parallel to the crystallographicb

(3)

inorganic papers

i6

Stoll and Bensch Nb4O0.60Rb6S24.40 Acta Cryst.(2003). E59, i4±i6

Table 1

Selected geometric parameters (AÊ).

Nb1ÐO1 1.71 (2)

Nb1ÐS1 2.198 (2)

Nb1ÐS4 2.4419 (12)

Nb1ÐS3 2.4568 (13)

Nb1ÐS5 2.4585 (12)

Nb1ÐS2 2.4587 (13)

Nb1ÐS6 2.5862 (13)

Nb1ÐS8 2.9386 (14)

Nb2ÐS10 2.2149 (13)

Nb2ÐS8 2.4386 (12)

Nb2ÐS7 2.4635 (13)

Nb2ÐS9 2.4650 (12)

Nb2ÐS6 2.4951 (13)

Nb2ÐS11 2.5275 (13)

Nb2ÐS5 2.8600 (13)

Rb1ÐS7i 3.4355 (15)

Rb1ÐS11ii 3.4614 (15)

Rb1ÐS12 3.467 (2)

Rb1ÐS10i 3.4978 (14)

Rb1ÐS10ii 3.5148 (15)

Rb1ÐS6i 3.5717 (14)

Rb1ÐS9 3.590 (2)

Rb1ÐS10 3.5948 (15)

Rb1ÐS11iii 3.6682 (14)

Rb2ÐS1 3.294 (2)

Rb2ÐS7 3.322 (2)

Rb2ÐO1 3.34 (2)

Rb2ÐS8iv 3.3583 (13)

Rb2ÐS9v 3.4031 (13)

Rb2ÐS4v 3.4144 (15)

Rb2ÐS12v 3.426 (2)

Rb2ÐS3iv 3.435 (2)

Rb2ÐS5v 3.4758 (13)

Rb2ÐS10iv 3.6703 (15)

Rb2ÐS6 3.8539 (15)

Rb2ÐS6iv 3.9109 (15)

Rb3ÐS1vi 3.346 (2)

Rb3ÐO1 3.45 (2)

Rb3ÐS4 3.457 (2)

Rb3ÐS2vi 3.472 (2)

Rb3ÐS4v 3.474 (2)

Rb3ÐS3vii 3.481 (2)

Rb3ÐS1 3.505 (3)

Rb3ÐS8v 3.505 (2)

Rb3ÐO1vi 3.54 (2)

Rb3ÐS9v 3.658 (2)

Rb3ÐS2v 3.749 (2)

Rb3ÐS5 3.885 (2)

Rb30ÐS1vi 2.885 (6) Rb30ÐO1vi 3.10 (2) Rb30ÐS2vi 3.379 (8)

Rb30ÐS4 3.407 (8)

Rb30ÐS3vii 3.460 (8)

Rb30ÐO1 3.50 (2)

Rb30ÐS1 3.546 (9)

Rb30ÐS4v 3.799 (7)

Rb30ÐS2v 3.887 (8)

Rb30ÐS8v 3.942 (6)

Rb30ÐNb1vi 3.959 (7)

S2ÐS3 2.072 (2)

S4ÐS5 2.091 (2)

S6ÐS7 2.081 (2)

S8ÐS9 2.066 (2)

S11ÐS12 2.082 (2)

S12ÐS13 2.048 (2)

Symmetry codes: (i) x;2ÿy;1

2‡z; (ii) 1ÿx;y;32ÿz; (iii) x;1ÿy;12‡z; (iv) x;2ÿy;zÿ1

2; (v)x;1ÿy;zÿ12; (vi)12ÿx;yÿ12;12ÿz; (vii)x;yÿ1;z.

Data collection:IPDS Program Package(Stoe & Cie, 1998); cell re®nement:IPDS Program Package; data reduction:IPDS Program Package; program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:XPinSHELXTL(Bruker, 1998); software used to prepare material for publication:CIFTABinSHELXTL.

Financial support by the state of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

References

Bensch, W. & DuÈrichen, P. (1996a).Eur. J. Solid State Inorg. Chem.33, 1233± 1240.

Bensch, W. & DuÈrichen, P. (1996b).Z. Anorg. Allg. Chem.622, 1963±1967. Bensch, W., DuÈrichen, P. & NaÈther, C. (1999).Solid State Sci.1, 85±108. Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison,

Wisconsin, USA..

Krause, O., NaÈther, C. & Bensch, W. (2000).Z. Kristallogr. Suppl.17, 113. Shannon, R. D. (1976).Acta Crystallogr.A32, 751±767.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of GoÈttingen, Germany.

Stoll, P., NaÈther, C. & Bensch, W. (2002).Z. Anorg. Allg. Chem.628, 2489± 2494.

Stoll, P., NaÈther, C., Jeû, I. & Bensch, W. (2000).Solid State Sci.2, 563±568. Stoe & Cie (1998).IPDS Program Package(Version 2.89) andX-SHAPE

(4)

supporting information

Acta Cryst. (2003). E59, i4–i6 [doi:10.1107/S1600536802023437]

Rb

6

Nb

4

S

24.4

O

0.6

Petra Stoll and Wolfgang Bensch

S1. Comment

In recent years, our interest was focused onto investigations in the A/M/Q system (with A = alkaline metal; M = Nb, Ta; Q = O, S, Se). In many compounds, the M2Q11 unit is the general structural motif (Bensch et al., 1999). These M2Q11 units

occur as monomeric units or are connected either directly or via additional chalcogenide ligands to form dimers or

polymers. In a preliminary report (Krause et al., 2000), the main features of Rb6Nb4S25 were given. Here we report the

details of the synthesis and characterization of this new ternary niobium polysulfide. Each Nb5+ ion is in a sevenfold

coordination forming a strongly distorted pentagonal bipyramid (see Fig. 1). Neglecting the O atom the coordination

mode of the resulting [Nb4S25]6− anion can be described as [(Nb2(µ2-η2,η1-S2)3(η2-S2)(S)2)2(µ2– η1,η1-S5)]6−. Each Nb atom

has a short bond to the axial S2− of 2.172 (2) Å (Nb1—S1) and 2.2150 (15) Å (Nb2—S10). Five Nb—S separations are

found scattering around 2.4 Å [2.4587 (15), 2.4567 (15), 2.4416 (13), 2.4578 (14) and 2.5859 (15) %A for Nb1—S, and

2.4951 (15), 2.4637 (15), 2.4382 (14) and 2.4647 (14) Å for Nb2—S]. In a trans position to the short Nb—S bonds, long

interatomic Nb—S distances of 2.9380 (15) Å (Nb1—S8) and 2.8605 (15) Å (Nb2—S5) are observed to a S atom of a η2

-S22− anion attached to the neighbored Nb atom. As expected, the longer Nb—S distance (Nb1—S8) is in trans position to

the shorter terminal Nb—S bond (Nb1—S1). Atom S1 showed larger anisotropic displacement parameters than the other

S atoms. In the IR spectrum, a weak Nb—O absorption band was observed. Hence, during the structure refinement it was

assumed that S1 is partially occupied by oxygen. The refined site-occupation factors for S1/O was 0.7/0.3, yielding the

final composition Rb6Nb4S24.4O0.6. The partial substitution of S1 by O may be responsible for the slight disorder of the

Rb3 atom (see below). It is noted that the title compound is not isostructural to the potassium niobium compound

K6Nb4S25 (Bensch & Dürichen, 1996a), but is isostructural with Rb6Ta4S25 (Stoll et al., 2000). The main difference

between the anions in both structures is a different conformation around the S3 unit. It can be assumed that the difference

is induced by the larger Rb+ cation. The S—S distances in the S

22− anions are between 2.0475 (19) and 2.0912 (19) Å

(average 2.073 Å) and are typical for S—S single bonds. The two Nb atoms are displaced from the pentagonal planes

composed of S atoms towards the terminal S atom by 0.5702 Å (Nb1) and 0.4949 Å (Nb2). Between these planes an

angle of 49.9° is found. The Nb—Nb distance amounts to 3.574 (2) Å which is too long for any metal-to-metal

interaction [radius: 0.69 Å for Nb5+ (CN7)] (Shannon, 1976). All values agree well with those reported for Rb

6Ta4S25

(Stoll et al., 2000) and A6Nb4S22 (A = K, Rb, Cs; Bensch & Dürichen, 1996b; Stoll et al., 2002). The three

crystallographically independent rubidium cations are in an irregular sulfur environment. Using a cutoff of 4%A the mean

Rb—S distances are 3.534 for Rb1 (CN9), 3.545 for Rb2 (CN12) and 3.553 Å for Rb3 (CN 10). These values are in good

agreement with the sum of the ionic radii [1.84 Å for S2− and 1.66 Å for Rb1+ (CN10)] (Shannon, 1976). Rb3 is slightly

disordered which influences particularly the displacement parameters of S1 (see Fig. 1). During refinement the sum of the

site-occupation factor of Rb3 and Rb3′ was fixed to 1.00. We note that the RB3′—S1 distance is rather short, but can be

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, i4–i6

Fitting the [Nb4S24.4O0.6]6− anion of the title compound onto the [Ta4S25]6− anion of the isotypic Rb6Ta4S25 compound

(Stoll et al., 2000), a mean deviation of only 0.0239 Å is obtained, demonstrating that the geometry of the anion is only slightly influenced by replacing niobium with tantalum and by the small amount of oxygen. The thermal behavior of

Rb6Nb4S24.4O0.6 was investigated using differential scanning calorimetry (DSC). Analogous to Rb6Ta4S25 (Stoll et al.,

2000), the compound decomposes to form the sulfur-poorer compound Rb6Nb4S22 (Bensch & Dürichen, 1996b) at above

743 K.

S2. Experimental

The compound Rb6Nb4S24.4O0.6 was prepared by the reaction of Rb2S3, Nb and S in the ratio 2:1:12. Rb2S3 was prepared

from stoichiometric amounts of Rb and S in liquid ammonia under an argon atmosphere. The starting materials were

thoroughly mixed in a dry box and sealed into a Pyrex-glass ampoule, which was evacuated to 10−3 Pa. The ampoule was

heated at 673 K for 4 d, cooled down to 373 K at 3 K h−1 and then to room temperature at 12 K h−1. The resulting melt

was washed with dry dimethylformamide and the residue was dried in vacuo. It consists of orange–red polyhedra which

are slightly contaminated with a yellow powder that has thus far not been identified. The crystals are stable in air for

several weeks.

In the MIR spectra of Rb6Nb4S24.4O0.6 the vibrations of the short Nb—S bonds occur at 477.3 and 460.5 cm−1. These

values are comparable with those of K6Nb4S25 (Bensch & Dürichen, 1996a) which are found at 478.0 and 459.0 cm−1. In

the transformed UV-vis reflectance spectrum, the band gap was determined to be 1.98 eV being in agreement with the

[image:5.610.129.488.363.470.2]

observed color of Rb6Nb4S24.4O0.6.

Figure 1

The dimeric [Nb4S25]6− anion in Rb6Nb4S25. Ellipsoids are drawn at the 50% probability level. The dashed lines represent

(6)
[image:6.610.132.482.73.287.2]

Figure 2

Crystal structure of Rb6Nb4S25 viewed parallel to the crystallographic b axis. The O atoms are not displayed.

Rubidium-niobium-sulfide-oxide

Crystal data

Nb4O0.60Rb6S24.40

Mr = 1676.32

Monoclinic, C2/c a = 36.868 (7) Å

b = 8.1185 (16) Å

c = 12.515 (3) Å

β = 98.36 (3)°

V = 3706.1 (13) Å3

Z = 4

F(000) = 3125

Dx = 3.004 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 7956 reflections

θ = 3–27.2°

µ = 10.42 mm−1

T = 293 K

Polyhedra, red–orange 0.13 × 0.10 × 0.09 mm

Data collection

Stoe Imaging Plate Diffraction System diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ scans

Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998)

Tmin = 0.187, Tmax = 0.327

15576 measured reflections 3889 independent reflections 3296 reflections with I > 2σ(I)

Rint = 0.064

θmax = 26.9°, θmin = 2.6°

h = −46→46

k = −10→10

l = −15→15

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.031

wR(F2) = 0.077

S = 1.05 3889 reflections 173 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

w = 1/[σ2(F

o2) + (0.039P)2 + 14.4654P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, i4–i6

Δρmin = −1.79 e Å−3 Extinction correction: SHELXL97,

Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.00047 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Nb1 0.322280 (11) 0.81020 (5) 0.41301 (3) 0.00807 (11)

Nb2 0.412692 (11) 0.80707 (5) 0.56174 (3) 0.00710 (11)

Rb1 0.465279 (14) 0.80358 (6) 0.89973 (4) 0.01875 (13)

Rb2 0.37457 (2) 0.72140 (6) 0.13896 (4) 0.02191 (13)

Rb3 0.28952 (3) 0.3603 (2) 0.23800 (12) 0.0201 (2) 0.83

Rb3′ 0.2774 (2) 0.3648 (10) 0.2498 (6) 0.0234 (13) 0.17

S1 0.29866 (6) 0.7901 (3) 0.2418 (2) 0.0151 (4) 0.70

O1 0.3053 (5) 0.776 (2) 0.2800 (14) 0.026 (5)* 0.30

S2 0.27125 (3) 0.91977 (14) 0.49803 (10) 0.0140 (2)

S3 0.30780 (4) 1.09511 (14) 0.45776 (11) 0.0175 (3)

S4 0.31440 (3) 0.53773 (13) 0.48903 (9) 0.0109 (2)

S5 0.36520 (3) 0.57691 (14) 0.43761 (9) 0.0112 (2)

S6 0.38255 (3) 0.96915 (15) 0.40401 (9) 0.0144 (2)

S7 0.42486 (4) 0.8145 (2) 0.37338 (10) 0.0190 (3)

S8 0.35683 (3) 0.87277 (13) 0.63600 (9) 0.0084 (2)

S9 0.38673 (3) 0.68049 (13) 0.71287 (9) 0.0101 (2)

S10 0.45191 (3) 0.99429 (15) 0.63773 (9) 0.0146 (2)

S11 0.45600 (3) 0.5656 (2) 0.56259 (11) 0.0174 (3)

S12 0.45596 (4) 0.4776 (2) 0.71882 (12) 0.0210 (3)

S13 0.5000 0.3224 (2) 0.7500 0.0244 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Nb1 0.0090 (2) 0.0084 (2) 0.0056 (2) −0.00232 (14) −0.00291 (15) 0.00181 (14)

Nb2 0.0086 (2) 0.0070 (2) 0.0051 (2) −0.00118 (14) −0.00094 (14) −0.00104 (13)

Rb1 0.0163 (2) 0.0199 (3) 0.0194 (2) 0.0038 (2) 0.0004 (2) −0.0024 (2)

Rb2 0.0290 (3) 0.0077 (2) 0.0234 (3) 0.0007 (2) −0.0150 (2) −0.0010 (2)

Rb3 0.0190 (7) 0.0301 (4) 0.0102 (4) −0.0009 (5) −0.0013 (5) −0.0002 (3)

Rb4 0.020 (3) 0.034 (2) 0.013 (2) −0.007 (3) −0.007 (2) 0.004 (2)

S1 0.0124 (9) 0.0241 (10) 0.0080 (9) −0.0030 (7) −0.0016 (8) 0.0016 (8)

(8)

S3 0.0185 (6) 0.0064 (5) 0.0245 (6) −0.0008 (4) −0.0078 (5) 0.0033 (5)

S4 0.0137 (6) 0.0071 (5) 0.0111 (5) −0.0022 (4) −0.0008 (4) 0.0001 (4)

S5 0.0119 (5) 0.0126 (5) 0.0084 (5) 0.0012 (4) −0.0008 (4) −0.0040 (4)

S6 0.0153 (6) 0.0172 (6) 0.0093 (5) −0.0074 (5) −0.0036 (4) 0.0057 (4)

S7 0.0170 (6) 0.0317 (7) 0.0092 (5) −0.0084 (5) 0.0045 (5) −0.0047 (5)

S8 0.0102 (5) 0.0063 (5) 0.0080 (5) 0.0012 (4) −0.0012 (4) −0.0012 (4)

S9 0.0144 (6) 0.0071 (5) 0.0082 (5) 0.0001 (4) −0.0008 (4) 0.0019 (4)

S10 0.0141 (6) 0.0149 (6) 0.0139 (6) −0.0044 (4) −0.0013 (5) −0.0038 (4)

S11 0.0132 (6) 0.0156 (6) 0.0229 (6) 0.0033 (4) 0.0007 (5) −0.0072 (5)

S12 0.0117 (6) 0.0149 (6) 0.0358 (7) 0.0037 (5) 0.0012 (5) 0.0070 (5)

S13 0.0105 (8) 0.0063 (8) 0.0521 (13) 0.000 −0.0096 (8) 0.000

Geometric parameters (Å, º)

Nb1—O1 1.71 (2) Rb3—S5 3.885 (2)

Nb1—S1 2.198 (2) Rb3′—S1vii 2.885 (6)

Nb1—S4 2.4419 (12) Rb3′—O1vii 3.10 (2)

Nb1—S3 2.4568 (13) Rb3′—S2vii 3.379 (8)

Nb1—S5 2.4585 (12) Rb3′—S4 3.407 (8)

Nb1—S2 2.4587 (13) Rb3′—S3viii 3.460 (8)

Nb1—S6 2.5862 (13) Rb3′—O1 3.50 (2)

Nb1—S8 2.9386 (14) Rb3′—S1 3.546 (9)

Nb1—Rb3′i 3.959 (7) Rb3′—S4vi 3.799 (7)

Nb1—Rb2 4.2336 (13) Rb3′—S2vi 3.887 (8)

Nb1—Rb3i 4.297 (2) Rb3′—S8vi 3.942 (6)

Nb1—Rb3 4.339 (2) Rb3′—Nb1vii 3.959 (7)

Nb2—S10 2.2149 (13) S1—Rb3′i 2.885 (6)

Nb2—S8 2.4386 (12) S1—Rb3i 3.346 (2)

Nb2—S7 2.4635 (13) O1—Rb3′i 3.10 (2)

Nb2—S9 2.4650 (12) O1—Rb3i 3.54 (2)

Nb2—S6 2.4951 (13) S2—S3 2.072 (2)

Nb2—S11 2.5275 (13) S2—Rb3′i 3.379 (8)

Nb2—S5 2.8600 (13) S2—Rb3i 3.472 (2)

Nb2—Rb2ii 4.2378 (10) S2—Rb3v 3.749 (2)

Nb2—Rb1iii 4.3594 (9) S2—Rb3′v 3.887 (8)

Nb2—Rb1 4.3896 (14) S3—Rb2ii 3.435 (2)

Rb1—S7ii 3.4355 (15) S3—Rb3′ix 3.460 (8)

Rb1—S11iv 3.4614 (15) S3—Rb3ix 3.481 (2)

Rb1—S12 3.467 (2) S4—S5 2.091 (2)

Rb1—S10ii 3.4978 (14) S4—Rb2v 3.4144 (15)

Rb1—S10iv 3.5148 (15) S4—Rb3v 3.474 (2)

Rb1—S6ii 3.5717 (14) S4—Rb3′v 3.799 (7)

Rb1—S9 3.590 (2) S5—Nb2 2.8600 (13)

Rb1—S10 3.5948 (15) S5—Rb2v 3.4758 (13)

Rb1—S11v 3.6682 (14) S6—S7 2.081 (2)

Rb1—Nb2ii 4.3593 (9) S6—Nb2 2.4951 (13)

Rb1—Nb2 4.3896 (14) S6—Rb1iii 3.5717 (14)

(9)

supporting information

sup-6

Acta Cryst. (2003). E59, i4–i6

Rb2—S7 3.322 (2) S7—Nb2 2.4635 (13)

Rb2—O1 3.34 (2) S7—Rb1iii 3.4355 (15)

Rb2—S8iii 3.3583 (13) S8—S9 2.066 (2)

Rb2—S9vi 3.4031 (13) S8—Nb2 2.4386 (13)

Rb2—S4vi 3.4144 (15) S8—Rb2ii 3.3583 (13)

Rb2—S12vi 3.426 (2) S8—Rb3v 3.505 (2)

Rb2—S3iii 3.435 (2) S8—Rb3′v 3.942 (6)

Rb2—S5vi 3.4758 (13) S9—Nb2 2.4650 (12)

Rb2—S10iii 3.6703 (15) S9—Rb2v 3.4031 (13)

Rb2—S6 3.8539 (15) S9—Rb3v 3.658 (2)

Rb2—S6iii 3.9109 (15) S10—Nb2 2.2149 (13)

Rb3—S1vii 3.346 (2) S10—Rb1iii 3.4978 (14)

Rb3—O1 3.45 (2) S10—Rb1iv 3.5148 (15)

Rb3—S4 3.457 (2) S10—Rb2ii 3.6702 (15)

Rb3—S2vii 3.472 (2) S11—S12 2.082 (2)

Rb3—S4vi 3.474 (2) S11—Nb2 2.5275 (13)

Rb3—S3viii 3.481 (2) S11—Rb1iv 3.4614 (15)

Rb3—S1 3.505 (3) S11—Rb1vi 3.6682 (14)

Rb3—S8vi 3.505 (2) S12—S13 2.048 (2)

Rb3—O1vii 3.54 (2) S12—Rb2v 3.426 (2)

Rb3—S9vi 3.658 (2) S13—S12iv 2.048 (2)

Rb3—S2vi 3.749 (2)

O1—Nb1—S4 100.6 (6) S4—Rb3—S9vi 88.97 (5)

S1—Nb1—S4 105.06 (6) S2vii—Rb3—S9vi 117.30 (5)

O1—Nb1—S3 108.3 (6) S4vi—Rb3—S9vi 63.56 (4)

S1—Nb1—S3 102.91 (6) S3viii—Rb3—S9vi 86.12 (5)

S4—Nb1—S3 136.22 (5) S1—Rb3—S9vi 89.88 (5)

O1—Nb1—S5 97.7 (6) S8vi—Rb3—S9vi 33.44 (3)

S1—Nb1—S5 102.80 (7) O1vii—Rb3—S9vi 161.5 (3)

S4—Nb1—S5 50.53 (4) S1vii—Rb3—S2vi 83.89 (6)

S3—Nb1—S5 148.65 (4) O1—Rb3—S2vi 136.2 (3)

O1—Nb1—S2 106.5 (6) S4—Rb3—S2vi 166.87 (6)

S1—Nb1—S2 103.23 (6) S2vii—Rb3—S2vi 51.99 (4)

S4—Nb1—S2 90.99 (4) S4vi—Rb3—S2vi 57.73 (4)

S3—Nb1—S2 49.87 (4) S3viii—Rb3—S2vi 104.44 (5)

S5—Nb1—S2 138.04 (4) S1—Rb3—S2vi 128.35 (6)

O1—Nb1—S6 103.6 (6) S8vi—Rb3—S2vi 55.61 (4)

S1—Nb1—S6 102.46 (6) O1vii—Rb3—S2vi 76.7 (3)

S4—Nb1—S6 128.36 (4) S9vi—Rb3—S2vi 86.59 (4)

S3—Nb1—S6 75.92 (4) S1vii—Rb3—S5 130.05 (6)

S5—Nb1—S6 81.28 (4) O1—Rb3—S5 51.0 (3)

S2—Nb1—S6 123.69 (4) S4—Rb3—S5 32.44 (3)

O1—Nb1—S8 175.7 (6) S2vii—Rb3—S5 142.99 (6)

S1—Nb1—S8 173.71 (6) S4vi—Rb3—S5 102.15 (4)

S4—Nb1—S8 81.16 (4) S3viii—Rb3—S5 74.54 (4)

S3—Nb1—S8 72.50 (4) S1—Rb3—S5 58.80 (5)

(10)

S2—Nb1—S8 77.28 (4) O1vii—Rb3—S5 137.7 (3)

S6—Nb1—S8 72.46 (4) S9vi—Rb3—S5 58.35 (3)

O1—Nb1—Rb3′i 48.5 (6) S2vi—Rb3—S5 144.92 (4)

S1—Nb1—Rb3′i 45.58 (11) S1vii—Rb3′—S2vii 70.9 (2)

S4—Nb1—Rb3′i 98.50 (12) O1vii—Rb3′—S2vii 62.6 (4)

S3—Nb1—Rb3′i 78.21 (12) S1vii—Rb3′—S4 108.8 (2)

S5—Nb1—Rb3′i 133.08 (12) O1vii—Rb3′—S4 117.6 (4)

S2—Nb1—Rb3′i 58.05 (10) S2vii—Rb3′—S4 147.5 (3)

S6—Nb1—Rb3′i 131.36 (12) S1vii—Rb3′—S3viii 92.9 (2)

S8—Nb1—Rb3′i 135.33 (10) O1vii—Rb3′—S3viii 98.5 (4)

O1—Nb1—Rb2 48.0 (6) S2vii—Rb3′—S3viii 147.6 (3)

S1—Nb1—Rb2 50.24 (5) S4—Rb3′—S3viii 63.60 (14)

S4—Nb1—Rb2 104.80 (3) S1vii—Rb3′—O1 117.9 (4)

S3—Nb1—Rb2 118.99 (3) O1vii—Rb3′—O1 120.2 (5)

S5—Nb1—Rb2 67.02 (3) S2vii—Rb3′—O1 94.7 (4)

S2—Nb1—Rb2 151.57 (3) S4—Rb3′—O1 55.8 (3)

S6—Nb1—Rb2 63.53 (3) S3viii—Rb3′—O1 117.7 (4)

S8—Nb1—Rb2 127.83 (3) S1vii—Rb3′—S1 115.2 (2)

Rb3′i—Nb1—Rb2 95.73 (10) O1vii—Rb3′—S1 116.2 (4)

O1—Nb1—Rb3i 52.9 (6) S2vii—Rb3′—S1 86.3 (2)

S1—Nb1—Rb3i 50.17 (6) S4—Rb3′—S1 63.99 (15)

S4—Nb1—Rb3i 95.52 (4) S3viii—Rb3′—S1 126.1 (2)

S3—Nb1—Rb3i 77.57 (4) S1vii—Rb3′—S4vi 123.2 (2)

S5—Nb1—Rb3i 133.38 (4) O1vii—Rb3′—S4vi 114.5 (4)

S2—Nb1—Rb3i 53.88 (4) S2vii—Rb3′—S4vi 52.61 (11)

S6—Nb1—Rb3i 135.15 (4) S4—Rb3′—S4vi 121.4 (2)

S8—Nb1—Rb3i 131.07 (4) S3viii—Rb3′—S4vi 131.3 (2)

Rb2—Nb1—Rb3i 100.40 (3) O1—Rb3′—S4vi 76.0 (3)

O1—Nb1—Rb3 48.5 (6) S1—Rb3′—S4vi 70.39 (13)

S1—Nb1—Rb3 53.40 (6) S1vii—Rb3′—S2vi 87.8 (2)

S4—Nb1—Rb3 52.70 (4) O1vii—Rb3′—S2vi 79.8 (4)

S3—Nb1—Rb3 148.63 (4) S2vii—Rb3′—S2vi 51.23 (11)

S5—Nb1—Rb3 62.72 (4) S4—Rb3′—S2vi 157.8 (2)

S2—Nb1—Rb3 110.40 (3) S3viii—Rb3′—S2vi 102.0 (2)

S6—Nb1—Rb3 125.16 (4) O1—Rb3′—S2vi 129.5 (3)

S8—Nb1—Rb3 132.48 (3) S1—Rb3′—S2vi 122.9 (2)

Rb2—Nb1—Rb3 64.77 (2) S4vi—Rb3′—S2vi 54.08 (10)

Rb3i—Nb1—Rb3 71.27 (2) S1vii—Rb3′—S8vi 133.4 (3)

S10—Nb2—S8 102.77 (4) O1vii—Rb3′—S8vi 127.7 (4)

S10—Nb2—S7 101.30 (5) S2vii—Rb3′—S8vi 93.2 (2)

S8—Nb2—S7 129.84 (5) S4—Rb3′—S8vi 107.2 (2)

S10—Nb2—S9 104.99 (5) S3viii—Rb3′—S8vi 77.63 (15)

S8—Nb2—S9 49.84 (4) O1—Rb3′—S8vi 106.5 (3)

S7—Nb2—S9 152.80 (4) S1—Rb3′—S8vi 106.70 (14)

S10—Nb2—S6 99.54 (5) S4vi—Rb3′—S8vi 54.06 (8)

S8—Nb2—S6 83.25 (4) S2vi—Rb3′—S8vi 51.33 (10)

S7—Nb2—S6 49.62 (5) S1vii—Rb3′—Nb1vii 32.96 (9)

(11)

supporting information

sup-8

Acta Cryst. (2003). E59, i4–i6

S10—Nb2—S11 99.09 (5) S2vii—Rb3′—Nb1vii 38.12 (8)

S8—Nb2—S11 137.40 (4) S4—Rb3′—Nb1vii 136.2 (2)

S7—Nb2—S11 79.64 (5) S3viii—Rb3′—Nb1vii 119.4 (2)

S9—Nb2—S11 89.36 (5) O1—Rb3′—Nb1vii 113.5 (4)

S6—Nb2—S11 128.38 (5) S1—Rb3′—Nb1vii 106.7 (2)

S10—Nb2—S5 172.52 (4) S4vi—Rb3′—Nb1vii 90.2 (2)

S8—Nb2—S5 82.28 (4) S2vi—Rb3′—Nb1vii 64.90 (12)

S7—Nb2—S5 71.24 (4) S8vi—Rb3′—Nb1vii 116.2 (2)

S9—Nb2—S5 82.48 (4) S1vii—Rb3′—Nb1 117.5 (2)

S6—Nb2—S5 75.39 (4) O1vii—Rb3′—Nb1 123.3 (4)

S11—Nb2—S5 80.33 (4) S2vii—Rb3′—Nb1 115.8 (2)

S10—Nb2—Rb2ii 59.97 (4) S4—Rb3′—Nb1 33.92 (8)

S8—Nb2—Rb2ii 52.34 (3) S3viii—Rb3′—Nb1 96.5 (2)

S7—Nb2—Rb2ii 107.98 (4) O1—Rb3′—Nb1 21.9 (3)

S9—Nb2—Rb2ii 91.32 (3) S1—Rb3′—Nb1 30.10 (8)

S6—Nb2—Rb2ii 65.14 (3) S4vi—Rb3′—Nb1 94.0 (2)

S11—Nb2—Rb2ii 158.43 (3) S2vi—Rb3′—Nb1 147.8 (2)

S5—Nb2—Rb2ii 121.13 (3) S8vi—Rb3′—Nb1 108.89 (14)

S10—Nb2—Rb1iii 52.80 (3) Nb1vii—Rb3′—Nb1 126.5 (2)

S8—Nb2—Rb1iii 118.42 (3) O1—S1—Rb3′i 110 (2)

S7—Nb2—Rb1iii 51.84 (3) Nb1—S1—Rb3′i 101.5 (2)

S9—Nb2—Rb1iii 155.19 (3) O1—S1—Rb2 91 (2)

S6—Nb2—Rb1iii 55.02 (3) Nb1—S1—Rb2 98.90 (8)

S11—Nb2—Rb1iii 103.95 (4) Rb3′i—S1—Rb2 159.2 (2)

S5—Nb2—Rb1iii 119.98 (3) O1—S1—Rb3i 108 (2)

Rb2ii—Nb2—Rb1iii 68.63 (2) Nb1—S1—Rb3i 99.53 (8)

S10—Nb2—Rb1 54.64 (4) Rb2—S1—Rb3i 161.51 (9)

S8—Nb2—Rb1 85.03 (4) O1—S1—Rb3 80 (2)

S7—Nb2—Rb1 143.70 (4) Nb1—S1—Rb3 96.37 (8)

S9—Nb2—Rb1 54.85 (3) Rb2—S1—Rb3 84.92 (5)

S6—Nb2—Rb1 148.14 (3) Rb3i—S1—Rb3 94.48 (6)

S11—Nb2—Rb1 78.50 (4) O1—S1—Rb3′ 80 (2)

S5—Nb2—Rb1 131.99 (3) Nb1—S1—Rb3′ 95.89 (14)

Rb2ii—Nb2—Rb1 84.303 (15) Rb3′i—S1—Rb3′ 89.1 (2)

Rb1iii—Nb2—Rb1 106.79 (2) Rb2—S1—Rb3′ 92.86 (10)

S7ii—Rb1—S11iv 149.36 (3) S1—O1—Nb1 157 (3)

S7ii—Rb1—S12 128.74 (4) S1—O1—Rb3′i 60.9 (19)

S11iv—Rb1—S12 70.40 (4) Nb1—O1—Rb3′i 107.1 (8)

S7ii—Rb1—S10ii 62.96 (3) S1—O1—Rb2 81 (2)

S11iv—Rb1—S10ii 111.41 (4) Nb1—O1—Rb2 109.6 (8)

S12—Rb1—S10ii 154.33 (3) Rb3′i—O1—Rb2 141.4 (6)

S7ii—Rb1—S10iv 87.86 (3) S1—O1—Rb3 92 (2)

S11iv—Rb1—S10iv 62.40 (3) Nb1—O1—Rb3 109.7 (7)

S12—Rb1—S10iv 104.76 (4) Rb2—O1—Rb3 85.1 (4)

S10ii—Rb1—S10iv 98.02 (4) S1—O1—Rb3′ 91 (2)

S7ii—Rb1—S6ii 34.48 (3) Nb1—O1—Rb3′ 108.7 (7)

S11iv—Rb1—S6ii 170.84 (3) Rb3′i—O1—Rb3′ 86.6 (5)

(12)

S10ii—Rb1—S6ii 61.22 (4) S1—O1—Rb3i 65 (2)

S10iv—Rb1—S6ii 122.32 (3) Nb1—O1—Rb3i 104.4 (7)

S7ii—Rb1—S9 83.75 (3) Rb2—O1—Rb3i 144.8 (6)

S11iv—Rb1—S9 120.96 (4) Rb3—O1—Rb3i 92.1 (4)

S12—Rb1—S9 50.81 (3) S3—S2—Nb1 65.02 (5)

S10ii—Rb1—S9 119.03 (3) S3—S2—Rb3′i 98.31 (13)

S10iv—Rb1—S9 132.06 (3) Nb1—S2—Rb3′i 83.82 (10)

S6ii—Rb1—S9 62.86 (3) S3—S2—Rb3i 104.52 (6)

S7ii—Rb1—S10 61.55 (3) Nb1—S2—Rb3i 91.22 (4)

S11iv—Rb1—S10 111.45 (4) S3—S2—Rb3v 124.33 (6)

S12—Rb1—S10 75.26 (3) Nb1—S2—Rb3v 93.87 (4)

S10ii—Rb1—S10 123.86 (2) Rb3i—S2—Rb3v 128.01 (4)

S10iv—Rb1—S10 72.25 (4) S3—S2—Rb3′v 129.95 (12)

S6ii—Rb1—S10 77.70 (4) Nb1—S2—Rb3′v 100.23 (10)

S9—Rb1—S10 62.29 (3) Rb3′i—S2—Rb3′v 128.77 (11)

S7ii—Rb1—S11v 135.77 (3) S2—S3—Nb1 65.12 (5)

S11iv—Rb1—S11v 67.19 (4) S2—S3—Rb2ii 124.50 (6)

S12—Rb1—S11v 74.39 (4) Nb1—S3—Rb2ii 113.59 (4)

S10ii—Rb1—S11v 82.77 (3) S2—S3—Rb3′ix 117.81 (12)

S10iv—Rb1—S11v 125.94 (3) Nb1—S3—Rb3′ix 118.80 (14)

S6ii—Rb1—S11v 105.36 (4) Rb2ii—S3—Rb3′ix 110.17 (14)

S9—Rb1—S11v 90.17 (3) S2—S3—Rb3ix 123.99 (7)

S10—Rb1—S11v 147.91 (3) Nb1—S3—Rb3ix 115.20 (5)

S7ii—Rb1—Nb2ii 34.32 (2) Rb2ii—S3—Rb3ix 106.93 (5)

S11iv—Rb1—Nb2ii 139.66 (3) S5—S4—Nb1 65.15 (5)

S12—Rb1—Nb2ii 148.06 (3) S5—S4—Rb3′ 93.12 (10)

S10ii—Rb1—Nb2ii 30.29 (2) Nb1—S4—Rb3′ 94.94 (14)

S10iv—Rb1—Nb2ii 101.32 (3) S5—S4—Rb2v 73.94 (5)

S6ii—Rb1—Nb2ii 34.91 (2) Nb1—S4—Rb2v 131.88 (5)

S9—Rb1—Nb2ii 97.68 (2) Rb3′—S4—Rb2v 111.97 (14)

S10—Rb1—Nb2ii 95.78 (3) S5—S4—Rb3 85.12 (5)

S11v—Rb1—Nb2ii 104.49 (3) Nb1—S4—Rb3 93.11 (5)

S7ii—Rb1—Nb2 77.12 (3) Rb2v—S4—Rb3 107.95 (4)

S11iv—Rb1—Nb2 112.27 (3) S5—S4—Rb3v 127.21 (6)

S12—Rb1—Nb2 52.24 (2) Nb1—S4—Rb3v 101.27 (5)

S10ii—Rb1—Nb2 136.09 (3) Rb2v—S4—Rb3v 83.63 (4)

S10iv—Rb1—Nb2 98.00 (3) Rb3—S4—Rb3v 147.65 (5)

S6ii—Rb1—Nb2 75.68 (3) S5—S4—Rb3′v 133.01 (12)

S9—Rb1—Nb2 34.16 (2) Nb1—S4—Rb3′v 102.94 (13)

S10—Rb1—Nb2 30.17 (2) Rb3′—S4—Rb3′v 133.9 (2)

S11v—Rb1—Nb2 118.48 (3) Rb2v—S4—Rb3′v 86.67 (12)

Nb2ii—Rb1—Nb2 106.23 (2) S4—S5—Nb1 64.33 (5)

S7ii—Rb1—Nb2 77.12 (3) S4—S5—Nb2 115.92 (6)

S11iv—Rb1—Nb2 112.27 (3) Nb1—S5—Nb2 84.08 (4)

S12—Rb1—Nb2 52.24 (2) S4—S5—Nb2 115.92 (6)

S10ii—Rb1—Nb2 136.09 (3) Nb1—S5—Nb2 84.08 (4)

S10iv—Rb1—Nb2 98.00 (3) S4—S5—Rb2v 70.73 (5)

(13)

supporting information

sup-10

Acta Cryst. (2003). E59, i4–i6

S9—Rb1—Nb2 34.16 (2) Nb2—S5—Rb2v 94.18 (4)

S10—Rb1—Nb2 30.17 (2) Nb2—S5—Rb2v 94.18 (4)

S11v—Rb1—Nb2 118.48 (3) S4—S5—Rb3 62.44 (5)

Nb2ii—Rb1—Nb2 106.23 (2) Nb1—S5—Rb3 83.06 (4)

Nb2—Rb1—Nb2 0.000 (15) Nb2—S5—Rb3 166.12 (5)

S1—Rb2—S7 90.75 (5) Nb2—S5—Rb3 166.12 (5)

S7—Rb2—O1 82.8 (3) Rb2v—S5—Rb3 97.89 (4)

S1—Rb2—S8iii 70.30 (4) S4—S5—Rb2 122.52 (6)

S7—Rb2—S8iii 82.50 (3) Nb1—S5—Rb2 78.32 (4)

O1—Rb2—S8iii 73.3 (3) Nb2—S5—Rb2 100.82 (4)

S1—Rb2—S9vi 98.16 (5) Nb2—S5—Rb2 100.82 (4)

S7—Rb2—S9vi 86.76 (3) Rb2v—S5—Rb2 150.82 (3)

O1—Rb2—S9vi 93.7 (3) Rb3—S5—Rb2 71.44 (3)

S8iii—Rb2—S9vi 164.02 (3) S7—S6—Nb2 64.40 (5)

S1—Rb2—S4vi 78.35 (5) S7—S6—Nb2 64.40 (5)

S7—Rb2—S4vi 149.33 (3) S7—S6—Nb1 112.25 (6)

O1—Rb2—S4vi 83.5 (3) Nb2—S6—Nb1 89.37 (4)

S8iii—Rb2—S4vi 119.24 (3) Nb2—S6—Nb1 89.37 (4)

S9vi—Rb2—S4vi 66.92 (3) S7—S6—Rb1iii 69.17 (5)

S1—Rb2—S12vi 136.35 (5) Nb2—S6—Rb1iii 90.07 (4)

S7—Rb2—S12vi 59.80 (4) Nb2—S6—Rb1iii 90.07 (4)

O1—Rb2—S12vi 127.8 (3) Nb1—S6—Rb1iii 178.02 (5)

S8iii—Rb2—S12vi 128.82 (3) S7—S6—Rb2 59.47 (5)

S9vi—Rb2—S12vi 52.66 (3) Nb2—S6—Rb2 112.04 (4)

S4vi—Rb2—S12vi 109.95 (4) Nb2—S6—Rb2 112.04 (4)

S1—Rb2—S3iii 67.45 (5) Nb1—S6—Rb2 79.54 (4)

S7—Rb2—S3iii 137.63 (4) Rb1iii—S6—Rb2 102.43 (4)

O1—Rb2—S3iii 76.2 (3) S7—S6—Rb2ii 131.79 (6)

S8iii—Rb2—S3iii 56.46 (3) Nb2—S6—Rb2ii 79.48 (4)

S9vi—Rb2—S3iii 130.44 (3) Nb2—S6—Rb2ii 79.48 (4)

S4vi—Rb2—S3iii 63.79 (3) Nb1—S6—Rb2ii 97.40 (4)

S12vi—Rb2—S3iii 155.54 (4) Rb1iii—S6—Rb2ii 80.63 (3)

S1—Rb2—S5vi 113.63 (5) Rb2—S6—Rb2ii 167.89 (4)

S7—Rb2—S5vi 141.51 (4) S6—S7—Nb2 65.98 (5)

O1—Rb2—S5vi 118.2 (3) S6—S7—Nb2 65.98 (5)

S8iii—Rb2—S5vi 132.60 (3) S6—S7—Rb2 87.88 (6)

S9vi—Rb2—S5vi 61.60 (3) Nb2—S7—Rb2 133.14 (5)

S4vi—Rb2—S5vi 35.33 (3) Nb2—S7—Rb2 133.14 (5)

S12vi—Rb2—S5vi 82.73 (4) S6—S7—Rb1iii 76.34 (5)

S3iii—Rb2—S5vi 80.64 (3) Nb2—S7—Rb1iii 93.84 (4)

S1—Rb2—S10iii 126.86 (4) Nb2—S7—Rb1iii 93.84 (4)

S7—Rb2—S10iii 61.74 (3) Rb2—S7—Rb1iii 117.95 (4)

O1—Rb2—S10iii 125.0 (3) S9—S8—Nb2 65.74 (5)

S8iii—Rb2—S10iii 62.17 (3) S9—S8—Nb2 65.74 (5)

S9vi—Rb2—S10iii 122.17 (3) S9—S8—Nb1 116.09 (6)

S4vi—Rb2—S10iii 145.92 (3) Nb2—S8—Nb1 82.75 (4)

S12vi—Rb2—S10iii 69.51 (3) Nb2—S8—Nb1 82.75 (4)

(14)

S5vi—Rb2—S10iii 115.50 (4) Nb2—S8—Rb2ii 92.57 (4)

S1—Rb2—S6 62.48 (5) Nb2—S8—Rb2ii 92.57 (4)

S7—Rb2—S6 32.66 (3) Nb1—S8—Rb2ii 103.70 (3)

O1—Rb2—S6 56.3 (3) S9—S8—Rb3v 77.33 (5)

S8iii—Rb2—S6 59.19 (3) Nb2—S8—Rb3v 134.63 (5)

S9vi—Rb2—S6 106.01 (3) Nb2—S8—Rb3v 134.63 (5)

S4vi—Rb2—S6 139.18 (3) Nb1—S8—Rb3v 91.17 (4)

S12vi—Rb2—S6 92.35 (4) Rb2ii—S8—Rb3v 132.28 (4)

S3iii—Rb2—S6 107.43 (4) S9—S8—Rb3′v 80.57 (12)

S5vi—Rb2—S6 167.10 (3) Nb2—S8—Rb3′v 138.05 (12)

S10iii—Rb2—S6 73.34 (3) Nb2—S8—Rb3′v 138.05 (12)

S1—Rb2—S6iii 110.25 (5) Nb1—S8—Rb3′v 90.94 (12)

S7—Rb2—S6iii 115.13 (3) Rb2ii—S8—Rb3′v 129.04 (12)

O1—Rb2—S6iii 117.3 (3) S8—S9—Nb2 64.42 (4)

S8iii—Rb2—S6iii 52.94 (3) S8—S9—Nb2 64.42 (4)

S9vi—Rb2—S6iii 143.03 (3) S8—S9—Rb2v 123.88 (6)

S4vi—Rb2—S6iii 95.54 (3) Nb2—S9—Rb2v 103.98 (4)

S12vi—Rb2—S6iii 111.34 (4) Nb2—S9—Rb2v 103.98 (4)

S3iii—Rb2—S6iii 49.46 (3) S8—S9—Rb1 114.73 (5)

S5vi—Rb2—S6iii 85.00 (3) Nb2—S9—Rb1 90.99 (4)

S10iii—Rb2—S6iii 56.60 (3) Nb2—S9—Rb1 90.99 (4)

S6—Rb2—S6iii 107.89 (2) Rb2v—S9—Rb1 120.39 (3)

S1vii—Rb3—O1 107.4 (3) S8—S9—Rb3v 69.23 (5)

S1vii—Rb3—S4 97.75 (6) Nb2—S9—Rb3v 126.75 (5)

O1—Rb3—S4 55.8 (3) Nb2—S9—Rb3v 126.75 (5)

S1vii—Rb3—S2vii 64.78 (5) Rb2v—S9—Rb3v 81.06 (4)

O1—Rb3—S2vii 93.8 (3) Rb1—S9—Rb3v 132.60 (4)

S4—Rb3—S2vii 140.22 (5) Nb2—S10—Rb1iii 96.91 (4)

S1vii—Rb3—S4vi 119.62 (7) Nb2—S10—Rb1iii 96.91 (4)

O1—Rb3—S4vi 81.0 (3) Nb2—S10—Rb1iv 99.55 (4)

S4—Rb3—S4vi 130.26 (5) Nb2—S10—Rb1iv 99.55 (4)

S2vii—Rb3—S4vi 54.94 (4) Rb1iii—S10—Rb1iv 81.98 (4)

S1vii—Rb3—S3viii 85.05 (6) Nb2—S10—Rb1 95.19 (5)

O1—Rb3—S3viii 118.4 (3) Nb2—S10—Rb1 95.19 (5)

S4—Rb3—S3viii 62.89 (4) Rb1iii—S10—Rb1 163.99 (4)

S2vii—Rb3—S3viii 141.73 (6) Rb1iv—S10—Rb1 85.72 (4)

S4vi—Rb3—S3viii 144.11 (5) Nb2—S10—Rb2ii 88.53 (4)

S1vii—Rb3—S1 105.13 (6) Nb2—S10—Rb2ii 88.53 (4)

S4—Rb3—S1 63.92 (5) Rb1iii—S10—Rb2ii 85.08 (4)

S2vii—Rb3—S1 85.53 (6) Rb1iv—S10—Rb2ii 165.46 (4)

S4vi—Rb3—S1 74.80 (5) Rb1—S10—Rb2ii 105.70 (4)

S3viii—Rb3—S1 126.71 (7) S12—S11—Nb2 100.56 (6)

S1vii—Rb3—S8vi 133.04 (7) S12—S11—Nb2 100.56 (6)

O1—Rb3—S8vi 118.1 (3) S12—S11—Rb1iv 100.29 (6)

S4—Rb3—S8vi 116.59 (5) Nb2—S11—Rb1iv 94.83 (4)

S2vii—Rb3—S8vi 99.71 (5) Nb2—S11—Rb1iv 94.83 (4)

S4vi—Rb3—S8vi 60.58 (4) S12—S11—Rb1vi 104.75 (6)

(15)

supporting information

sup-12

Acta Cryst. (2003). E59, i4–i6

S1—Rb3—S8vi 118.08 (5) Nb2—S11—Rb1vi 137.84 (5)

O1—Rb3—O1vii 110.0 (4) Rb1iv—S11—Rb1vi 112.81 (4)

S4—Rb3—O1vii 105.5 (3) S13—S12—S11 106.33 (7)

S2vii—Rb3—O1vii 57.5 (3) S13—S12—Rb2v 113.69 (7)

S4vi—Rb3—O1vii 112.1 (3) S11—S12—Rb2v 90.45 (6)

S3viii—Rb3—O1vii 90.4 (3) S13—S12—Rb1 110.16 (7)

S1—Rb3—O1vii 106.6 (3) S11—S12—Rb1 109.76 (6)

S8vi—Rb3—O1vii 128.1 (3) Rb2v—S12—Rb1 123.36 (4)

S1vii—Rb3—S9vi 164.99 (7) S12iv—S13—S12 104.03 (11)

O1—Rb3—S9vi 87.5 (3)

Figure

Figure 1
Figure 2

References

Related documents

commitment to you for Quality Assurance &amp; Project Management you will receive a call every week to go through the prior week’s inbound report. In these sessions, we will be

How Many Breeding Females are Needed to Produce 40 Male Homozygotes per Week Using a Heterozygous Female x Heterozygous Male Breeding Scheme With 15% Non-Productive Breeders.

I further understand that La Trobe University, as an education provider, is required to provide information about my enrolment and my contact details in Australia to the Department

El desarrollo de una estrate- gia de subsistencia diversificada se acompañaba de una alta movilidad residencial, momentos de dispersión/agregación de los grupos co-residentes

S ohledem na požadavky, které jsou na systém kladeny, byl tento rozdělen celkem na sedm částí: jádro systému (Server Side System, SSS), databázi vstupenek a

In studies where other types of dyadic relationship were also represented (e.g. people with dementia and their child as caregiver), more than 70% of the sample needed to consist of

The function of estimator module is to estimate the parameters of a PID controller which control a process using Ziegler-Nichols closed loop method... START Initialization Search

Previous studies have demonstrated that the phosphorylation of Ser675 and Ser552 in the C-terminus of at β-catenin promotes its nuclear accumulation and transcriptional