• No results found

Study of a Generating Function Involving Generalised Lauricella Function

N/A
N/A
Protected

Academic year: 2020

Share "Study of a Generating Function Involving Generalised Lauricella Function"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

STUDYOF A GENERATING FUNCTION

INVOLVING GENERALISED

LAURICELLA FUNCTION

Ekta Mittal

1

, Sunil Joshi

2

,Rupakshi Mishra Pandey

3

1Department of Mathematics, The IIS University, Jaipur, Rajasthan,India 2Department of Mathematics & Statistics, Manipal University Jaipur, Rajasthan ,India

3

Department of Applied Mathematics, Amity University Uttar Pradesh, Noida, India

ekta.jaipur@gmail.com, sunil.joshi@manipal.edu, rmpandey@amity.edu

Abstract.Recently, Generating function of the extended second Appllehypergeometricfunction was introduced by S. D.Purohit, R.K.Parmar and K.S. Nishar, here in the present investigations we established some generating functions involving generalised extendedLauricellafunction

, ,

1 2

,...,

; ,

1 2

,...,

; ,

1 2

,...,

; ;

A n n n

F a b b

b c c

c x x

x p

. Further we develop some certain interesting special cases

Key words: Extended Beta function, extendedhypergeometric function, Lauricellafunction.

1. INTRODUCTION

Some extensions of the well-known special functions have been considered by several authors (See [1–6]). In 1994, Chaudhry and Zubair [1] presented the following extension of gamma function.

(1)

In 1997, Chaudhry et al.[2] presented the following extension of Euler’s Beta function.

1 1

1

 

 

 

0

R 0; R 0; R 0

, ;

1

xp

,

.

(1

)

y x

p x y

p

B x y p

t

t

e

dt

t

t

(2)

In 2004, Chaudhry et al. [3] used B x y p( , ; )to extend the hypergeometric functions as follows.

   

0

1

, ; ;

,

;

,

,

!

n

p n

n

z

F a b c z

a

B b n c b p

B b c b

n

 

 

 

z 1; R c R b 0; R p 0 .

(3)

In 2010, Özarslan and Özergin [7] extended the familiar Appellhypergeometric function using

B x y p

( , ; )

as given below.

 

 

 

2

, 0

,

;

'

, '

';

, , '; , '; , ;

,

,

', '

'

! !

m n m n

m n

B b m c b p B b

n c

b p x y

F a b b c c x y p

a

B b c b B b c

b

m n

 

1

1

 

 

0

;

x

exp

,

,

(Re

> 0, Re

> 0) .

x p

t

t

t

pt

dt

x

p

 

(2)

In 2011, Lee et al.[9], presented the generalisation of extended beta function (2) and hypergeometric function

(3) as follows: 1

1 1

0

( , ; ; )

(1

)

exp

,

(1

)

x y

p

B x y p

t

t

dt

t

t

   

 

 

R x ,R y 0,R p 0,R  0 .

(5)

and

   

;

0

1

, ; ;

,

; ;

,

,

!

n n

p

n

z

F

a b c z

a

B b n c b p

B b c b

n

 

 

 

 

z 1,R cR b 0,R p 0,R  0 .

(6)

Recently R. K. Parmar (2014) generalised the extended Appellhypergeometric function by usingB x y p

, , ;

,

 

 

 

2

, 0

,

; ;

'

, '

'; ;

, , '; , '; , ; ;

,

,

', '

'

! !

m n m n

m n

B b m c b p

B b

n c

b p

x

y

F a b b c c x y p

a

B b c b B b c

b

m n

 

 

 

xy 1;R p 0,R  0 .

(7)

Here we also use

B x y p

, , ;

in the firstLauricella function such as

1 1 1

( )

, ,.... ; ,... ; ,...,

n n n

; ;

n A

F

a b

b c

c x

x p

 

 

 

 

 

 

1

1

1

1 1 1 1 2 2 2 2

...

,..., 0 1 1 1 2 2 2

1 1

;

; ;

;

; ;

...

;

; ;

;

;

...

;

...

,

!

!

n

n

n

n n n n m m

m m n n n

m m n

n

a

B b

m c

b p

B b

m c

b p

B b

m c

b p

B b c

b B b c

b

B b c

b

x

x

m

m

 

where

x1  ... xn 1 .

(8)

When

1,

equations (5), (6),(7) yields extended Beta function,

Gauss’shypergeometricandAppellhypergeometric functions [5,8] respectively.If we put

1,

p

0,

in equation (9), we get the Lauricella function.

2. MAIN RESULT

Here we obtain some generating function for the generalised extendedLauricella function

( )

1 1 1

, ,.... ; ,... ; ,... ; ;

n

A n n n

(3)

Theorem-1: The following function hold true

 

 

 

 

 

1 1 1

0

1 2

1 1

, ,.... ; ,... ; ,... ; ;

!

1

, ,.... ; ,... ;

,

...,

; ;

,

1

1

1

k n

A n n n

k k

n n

A n n

t

F

k b

b c

c x

x p

k

x

x

x

t

F

b

b c

c

p

t

t

t

 

 

where{R p

 

0,R

 

 0,C and t 1}

.

Proof:Using definition (8) in the left hand side,we have

 

 

1 1 1

0

, ,.... ; ,... ; ,... ; ;

!

k n

A n n n

k k

t

F

k b

b c

c x

x p

k

 

 

0

!

k k k

t

k

 

 

 

 

 

 

   

1 1 1

1 1 1 1 2 2 2 2

... 1

1 1 1 2 2 2 1

,..., 0 ; ; ; ; ; ; ... ; ; ; .. , , ... , ! ! n n n m m

n n n n

m m n

n n n n

m m

k B b m c b p B b m c b p B b m c b p x x

B b c b B b c b B b c b m m

                  

Changing order of summation

 

 

1

1 1 1 1 2 2 2 2

,..., 0 1 1 1 2 2 2

;

; ;

;

; ;

...

;

; ;

,

,

...

,

n

n n n n

m m n n n

B b

m c

b p

B b

m c

b p

B b

m c

b p

B b c

b B b c

b

B b c

b

 

  

   

1

1 1 ... 0 1

.

...

!

!

!

n n

m m k

n

k m m

k n

x

x

t

k

m

m

k

   

Using the identity

  

 

1 2 ... 1 2 ... 1 2

...

n n n

k k m m m m m m m m m k

            in above equation, we have

 

 

 

 

 

   

1 2 1

1

1 1 1 1 2 2 2 2 ...

,..., 0 1 1 1 2 2 2

1 1 2 0 1 ; ; ; ; ; ; ... ; ; ; , , ... , . .. . ... ! ! !                              

n n n

n n n n

m m m

m m n n n

m m k

n

n k k

n

B b m c b p B b m c b p B b m c b p

B b c b B b c b B b c b

x x t

m m m

m m k

 

 

 

 

 

  1 2 1 1 1 2

1 1 1 1 2 2 2 2

...

,..., 0 1 1 1 2 2 2

... 1 1 ; ; ; ; ; ; ... ; ; ; , , ... , ( ) ( )

. ... 1

! !                     

n n n n

n n n n m m m

m m n n n

m m

m m m n

n

B b m c b p B b m c b p B b m c b p

B b c b B b c b B b c b

x x t m m

1

,

1

,

2

,...,

;

1

,

2

,...,

;

1

,

2

,...,

; ;

n

A n n n

t



F

b b

b c c

c x x

x

p

(4)

Theorem-2:For

R p

 

0,R

 

 0,C&t 1

 

1 2 1 2 1 2

0

, , ,..., ; , ,..., ; , ,..., ; ; n

A n n n

k k

F k b b b c c c x x x p

1

 

2

1 2 1 2

1

, ,

,...,

; ,

,...,

;

,

,...,

; ;

1

1

1

n n

A n n

x t

x t

x t

t

F

b b

b c c

c

p

t

t

t

 

Proof: using above definition of Lauricella function (8) and changing order of summation, we get

 

 

1

1 1 1 1 2 2 2 2

,..., 0 1 1 1 2 2 2

;

; ;

;

; ;

...

;

; ;

.

,

,

....

,

n

n n n n

m m n n n

B b

m c

b p

B b

m c

b p

B b

m c

b

p

B b c

b B b c

b

B b c

b

 

   

 

1

 

1 1 ... 0 1 . ... ! ! ! n n

m m k

n

k m m

k n

x x t

k

m m k

           

Using following factorial function property in above theorem

 

 

1 2 1 2 ... ... 1 2 1 ! [ ... ]! n n

m m m

m m m

n k

k k m m m

  

 

    , we get

 

 

 

 

   

 

 

1 1 1 2

1 1 1 1 2 2 2 2

,..., 0 1 1 1 2 2 2

... 1

0 1 1 2

; ; ; ; ; ; ... ; ; ; , , ... , 1 ... ! ! [ ... ]! n n n

n n n n

m m n n n

m m k

m m m n

k

k n n

B b m c b p B b m c b p B b m c b p

B b c b B b c b B b c b

x x t

m m k m m m

                           

If we put, k k m1m2....mn,we get the required result.

Corollary:

 

 

 

1 2 1 2 1 2

0

1 1 1 2 2 2

0, 0, & 1

,

, ,

,...,

; ,

,...,

; ,

,...,

; ;

; ;

,

;

;

,

...

;

;

,

n k

A n n n

k

t

p p p n n n

R p R C t

for

F

k b b

b c c

c x x

x p

t

e

b c

x t

b c

x t

b c

x t

 

 

 

     

Proof: By replacing k

 in the theorem (2), then we have

 

 

 

 

 

1 2 1

1 2

1 1 1 1 2 2 2 2

...

,..., 0 1 1 1 2 2 2

1 2 1 2 ; ; ; ; ; ; ... ; ; ; 1 , , ... , /

/ 1 / 1 1

....

(1 / ) ! (1 / ) ! (1 / )

n n

n

n n n n m m m

m m n n n

m m m

n

n

B b m c b p B b m c b p B b m c b p

t

B b c b B b c b B b c b

x t

x t x t

t m t m t m

                                     

!

 

 

 

 

 

 

1 1 2

1 2 1 1 2 ... ... ... ,..., 0

1 1 1 1 2 2 2 2

1 1 1 2 2 2

1 2

1

1

;

; ;

;

; ;

...

;

; ;

.

,

,

...

,

.

...

,

          

 

 

 

 

n n n n n

m m m m m

m m m m m

n n n n n n n

m m m

n

t

B b

m c

b p

B b

m c

b p

B b

m c

b p

B b c

b B b c

b

B b c

b

x t

x t

x t

(5)

usingbinomial theorem,taking limit   , and using the property

1 2 ... 1 2 1 2 ...

( )

(

...

)

(

)

( )

n n

m m m

m

m

m

n k

k

m m m k

  

 

  

and

  

/

,

0

Lim x n xn n N

n

     , we get desired result.

3. SPECIAL CASES

Case-I: if we put

1 in theorem 1 and theorem 2 above results are reduced to the extended Lauricella function.

 

 

 

 

 

( )

1 1 1

0

1 2

1 1

{ 0, 1}

, ,.... ; ,... ; ,... ;

!

1

, ,.... ; ,... ;

,

...,

;

,

1

1

1

.

k n

A n n n

k k

n n

A n n

R p C and t

t

F

k b

b c

c x

x p

k

x

x

x

t

F

b

b c

c

p

t

t

t

where

  

 

and

 

 

 

1 2 1 2 1 2

0

1 2

1 2 1 2

0,

&

1 ,

, ,

,...,

; ,

,...,

; ,

,...,

;

!

1

, ,

,...,

; ,

,...,

;

,

,...,

;

.

1

1

1

k n

A n n n

k k

n n

A n n

for R p

C

t

t

F

k b b

b c c

c x x

x

p

k

x t

x t

x t

t

F

b b

b c c

c

p

t

t

t

 

Case-2: If we put1,p0, in theorem 1 and 2, the above results arereducedtotheLauricella function.

Case-3: If we put

x

3

x

4

 

...

x

n

0

,then results are converted into generalised extended second Appell function.

Case-4: If we put

x

2

 

x

3

x

4

 

...

x

n

0

then results are true for generalised extended Gauss hypergeometric function.

4.CONCLUSION

(6)

REFERENCES

[1]M. A. Chaudhry, S. M. Zubair, Generalized incomplete gamma functions withapplications,J. Comput. Appl. Math. 55 (1994), 99–124. [2] M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler’s betafunction, J. Compt. Appl. Math. 78 (1997), 19–32. [3] M. A. Chaudhry, A. Qadir, H. M. Srivastava, R. B. Paris, Extended hypergeometricand confluent hypergeometric function, Appl. Math.Comput. 159 (2004),589–602.

[4] M.A. Chaudhry, S.M. Zubair, On a Class of Incomplete Gamma Functions withApplications, CRC Press (Chapman and Hall), Boca Raton, FL, 2002.

[5]M. A. Chaudhry, S. M. Zubair, Extended incomplete gamma functions with applications,J. Math. Anal. Appl. 274 (2002), 725–745. [6] E. Ӧzergin, M.A. Ӧzarslan , A. Altin, Extension of gamma, beta and hypergeometricfunction, J. Comp. and Appl. Math, 235(16)(2011), 4601–4610.

[7] M.A. Ӧzarslan, E. Ӧzergin, Some generating relations for extended hypergeometricfunction via generalized fractional derivative operator. Math.Comput.Model.52(2010), 1825–1833.

[8]E.D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted ByChelsea Publishing Company, Bronx, New York, 1971.

[9]D. M. Lee , A. K. Rathie, R. K. Parmar, Y. S. Kim, Generalization of ExtendedBeta Function, Hypergeometric and Confluent Hypergeometric Functions, HonamMath. Journal 33 (2) (2011), 187–206.

References

Related documents

Winter wheat, winter barley, winter beans, spring barley, potatoes, sugar beet, grass leys given nitrogen fe ilizer and grass-clover and lucerne leys have all

This is to determine whether there were significant differences in the constraints experienced by female students offering engineering, medicine, pharmacy, and computer

Reasons for not pursuing teaching revolved around concerns pertaining to the graduates’ experiences, perceptions of other professions, changes in their

In determining the relevance of USC COEd’s curricular programs in meeting the needed manpower for regional and national development, an evaluation of its

190|58) the changes in carbon, nitrogen and organic P content of old arable soils over many years were too small to measure reliably. Moreover, these results

In this paper we mainly use population statistics drawn from the GGP Contextual Database (CDB), although alternative sources have been considered when they provided longer