• No results found

To differentiate logarithmic functions with bases other than e, use

N/A
N/A
Protected

Academic year: 2021

Share "To differentiate logarithmic functions with bases other than e, use"

Copied!
120
0
0

Loading.... (view fulltext now)

Full text

(1)
(2)

1 To differentiate logarithmic functions with bases other than e, use

logb m = ln m lnb

(3)

logb m = ln m lnb Example Find the derivative of y = log2(5x3).

(4)

1 To differentiate logarithmic functions with bases other than e, use

logb m = ln m lnb Example Find the derivative of y = log2(5x3).

Solution dy

dx =

d dx

ln 5x3 ln 2

(5)

logb m = ln m lnb Example Find the derivative of y = log2(5x3).

Solution dy

dx =

d dx

ln 5x3 ln 2

!

= d dx

1

ln 2 · ln 5x 3

(6)

1 To differentiate logarithmic functions with bases other than e, use

logb m = ln m lnb Example Find the derivative of y = log2(5x3).

Solution dy

dx =

d dx

ln 5x3 ln 2

!

= d dx

1

ln 2 · ln 5x 3

!

= 1 ln 2 ·

d

(7)

logb m = ln m lnb Example Find the derivative of y = log2(5x3).

Solution dy

dx =

d dx

ln 5x3 ln 2

!

= d dx

1

ln 2 · ln 5x 3

!

= 1 ln 2 ·

d

dx(ln 5 + 3 ln x) properties of log = 1

ln 2 0 + 3 · 1 x

(8)

1 To differentiate logarithmic functions with bases other than e, use

logb m = ln m lnb Example Find the derivative of y = log2(5x3).

Solution dy

dx =

d dx

ln 5x3 ln 2

!

= d dx

1

ln 2 · ln 5x 3

!

= 1 ln 2 ·

d

dx(ln 5 + 3 ln x) properties of log = 1

ln 2 0 + 3 · 1 x

!

= 3 xln 2

(9)

Exponential functions of other bases To differentiate f(x) = bx where b , e

(10)

2

Exponential functions of other bases To differentiate f(x) = bx where b , e

Method 1 Express bx using exponential with base e.

(11)

Exponential functions of other bases To differentiate f(x) = bx where b , e

Method 1 Express bx using exponential with base e. y = bx

(12)

2

Exponential functions of other bases To differentiate f(x) = bx where b , e

Method 1 Express bx using exponential with base e. y = bx

ln y = lnbx = xlnb

(13)

Exponential functions of other bases To differentiate f(x) = bx where b , e

Method 1 Express bx using exponential with base e. y = bx

ln y = lnbx = xlnb y = e(lnb)x

(14)

2

Exponential functions of other bases To differentiate f(x) = bx where b , e

Method 1 Express bx using exponential with base e. y = bx

ln y = lnbx = xlnb y = e(lnb)x

Method 2 Use a technique called logarithmic differentiation. Both methods need chain rule.

(15)

Chapter 9: More Differentiation

• Chain Rule

• Implicit Differentiation

• More Curve Sketching

• More Extremum Problems

Objectives

• To use Chain Rule to do differentiation.

• To use Implicit Differentiation to find dy

dx.

(16)

4

Up to this moment, can differentiate “simple” functions like (1) f(x) = x5 + 1

(2) f(x) = x − 1 x + 1 (3) f(x) = sin x

(4) f(x) = ex + 2 tan x (5) f(x) = ln x

cos x

ex x2 + 1

(17)

How about

(1) g(x) = sin(x2) ?

(2) g(x) = ex2+1 ?

(18)

5

How about

(1) g(x) = sin(x2) ?

(2) g(x) = ex2+1 ?

(3) g(x) = ln(1 + 2x) ?

Need the chain rule – most important rule for finding derivatives, used for differentiating composite functions.

(19)

How about

(1) g(x) = sin(x2) ? g(x) = sin f(x) where f(x) = x2

(2) g(x) = ex2+1 ?

(3) g(x) = ln(1 + 2x) ?

Need the chain rule – most important rule for finding derivatives, used for differentiating composite functions.

(20)

5

How about

(1) g(x) = sin(x2) ? g(x) = sin f(x) where f(x) = x2

(2) g(x) = ex2+1 ? g(x) = ef(x) where f(x) = x2 + 1

(3) g(x) = ln(1 + 2x) ?

Need the chain rule – most important rule for finding derivatives, used for differentiating composite functions.

(21)

How about

(1) g(x) = sin(x2) ? g(x) = sin f(x) where f(x) = x2

(2) g(x) = ex2+1 ? g(x) = ef(x) where f(x) = x2 + 1

(3) g(x) = ln(1 + 2x) ? g(x) = ln f(x) where f(x) = 1 + 2x

Need the chain rule – most important rule for finding derivatives, used for differentiating composite functions.

(22)

6 Composition of Functions

(23)

Recall (g ◦ f)(x) = gf(x)

Example Let f(x) = sin x and g(x) = x2. Find (1) (fg)(x)

(24)

6 Composition of Functions

Recall (g ◦ f)(x) = gf(x)

Example Let f(x) = sin x and g(x) = x2. Find (1) (fg)(x)

Solution (fg)(x) = fg(x)

(25)

Recall (g ◦ f)(x) = gf(x)

Example Let f(x) = sin x and g(x) = x2. Find (1) (fg)(x)

Solution (fg)(x) = fg(x) = f(x2)

(26)

6 Composition of Functions

Recall (g ◦ f)(x) = gf(x)

Example Let f(x) = sin x and g(x) = x2. Find (1) (fg)(x)

Solution (fg)(x) = fg(x) = f(x2)

= sin(x2) = sin x2 (2) (gf)(x)

(27)

Recall (g ◦ f)(x) = gf(x)

Example Let f(x) = sin x and g(x) = x2. Find (1) (fg)(x)

Solution (fg)(x) = fg(x) = f(x2)

= sin(x2) = sin x2 (2) (gf)(x)

(28)

6 Composition of Functions

Recall (g ◦ f)(x) = gf(x)

Example Let f(x) = sin x and g(x) = x2. Find (1) (fg)(x)

Solution (fg)(x) = fg(x) = f(x2)

= sin(x2) = sin x2 (2) (gf)(x)

Solution (gf)(x) = gf(x) = g(sin x)

(29)

Recall (g ◦ f)(x) = gf(x)

Example Let f(x) = sin x and g(x) = x2. Find (1) (fg)(x)

Solution (fg)(x) = fg(x) = f(x2)

= sin(x2) = sin x2 (2) (gf)(x)

Solution (gf)(x) = gf(x) = g(sin x)

(30)

7

Composition of Functions Recall (g ◦ f)(x) = gf(x)

(31)

Composition of Functions Recall (g ◦ f)(x) = gf(x)

Example Express ex2+1 as composition of two functions. Solution Let f(x) = x2 + 1 and

(32)

7

Composition of Functions Recall (g ◦ f)(x) = gf(x)

Example Express ex2+1 as composition of two functions. Solution Let f(x) = x2 + 1 and

(33)

Composition of Functions Recall (g ◦ f)(x) = gf(x)

Example Express ex2+1 as composition of two functions. Solution Let f(x) = x2 + 1 and g(x) = ex. Then

(34)

7

Composition of Functions Recall (g ◦ f)(x) = gf(x)

Example Express ex2+1 as composition of two functions. Solution Let f(x) = x2 + 1 and g(x) = ex. Then

ex2+1 = ef(x) = gf(x)

(35)
(36)

8

Chain Rule If y is a differentiable function of u and u is a differentiable function of x, then y is a differentiable function of x and

dy dx =

dy du ·

du dx

(37)

of x, then y is a differentiable function of x and dy

dx = dy du ·

du dx Idea of proof dy

dx = ∆xlim→0 ∆y

x limh→0

f(x + h) − f(x)

(38)

8

Chain Rule If y is a differentiable function of u and u is a differentiable function of x, then y is a differentiable function of x and

dy dx =

dy du ·

du dx Idea of proof dy

dx = ∆xlim→0 ∆y

x limh→0

f(x + h) − f(x)

h

= lim

∆x→0

y

u ·

u

x

(39)

of x, then y is a differentiable function of x and dy

dx = dy du ·

du dx Idea of proof dy

dx = ∆xlim→0 ∆y

x limh→0

f(x + h) − f(x)

h

= lim

∆x→0

y

u ·

u

x

!

= lim

u→0

y

u · ∆x→0lim ∆u

(40)

8

Chain Rule If y is a differentiable function of u and u is a differentiable function of x, then y is a differentiable function of x and

dy dx =

dy du ·

du dx Idea of proof dy

dx = ∆xlim→0 ∆y

x limh→0

f(x + h) − f(x)

h

= lim

∆x→0

y

u ·

u

x

!

= lim

u→0

y

u · ∆x→0lim ∆ux = dy du · du dx

(41)

Chain Rule in alternative form Put y = f(u) and u = g(x).

(42)

9

Chain Rule in alternative form Put y = f(u) and u = g(x).

(43)

Chain Rule in alternative form Put y = f(u) and u = g(x).

Then y = (fg)(x) (composition of functions) (fg)0(x) = dy

(44)

9

Chain Rule in alternative form Put y = f(u) and u = g(x).

Then y = (fg)(x) (composition of functions) (fg)0(x) = dy

dx

= dy

du · du dx

(45)

Chain Rule in alternative form Put y = f(u) and u = g(x).

Then y = (fg)(x) (composition of functions) (fg)0(x) = dy

dx

= dy

du · du dx

(46)

9

Chain Rule in alternative form Put y = f(u) and u = g(x).

Then y = (fg)(x) (composition of functions) (fg)0(x) = dy

dx

= dy

du · du dx

= f0(u) · g0(x) (fg)0(x) = f0 g(x) · g0(x)

(47)

dx

(1) without using chain rule; (2) using chain rule.

(48)

10 Example Find d

dx(x

2 + 5)3

(1) without using chain rule; (2) using chain rule.

Solution

(1) (without chain rule) Expanding

(x2 + 5)3 = (x2)3 + 3(x2)2(5) + 3(x2)(52) + 53 = x6 + 15x4 + 75x2 + 125

(49)

dx

(1) without using chain rule; (2) using chain rule.

Solution

(1) (without chain rule) Expanding

(x2 + 5)3 = (x2)3 + 3(x2)2(5) + 3(x2)(52) + 53 = x6 + 15x4 + 75x2 + 125

Differentiating term by term: d

dx(x

2 + 5)3 = d

dx(x

6 + 15x4 + 75x2 + 125)

= 6x5 + 15 · 4x3 + 75 · 2x = 6x5 + 60x3 + 150x

(50)

11 Example Find d

dx(x

2 + 5)3

(2) using chain rule.

Solution

(51)

dx

(2) using chain rule.

Solution

(2) (using chain rule)

(52)

11 Example Find d

dx(x

2 + 5)3

(2) using chain rule.

Solution

(2) (using chain rule)

(53)

dx

(2) using chain rule.

Solution

(2) (using chain rule)

(54)

11 Example Find d

dx(x

2 + 5)3

(2) using chain rule.

Solution

(2) (using chain rule)

• Put u = x2 + 5 and y = u3. Then y = (x2 + 5)3.

• d

dx(x

2 + 5)3 = dy

(55)

dx

(2) using chain rule.

Solution

(2) (using chain rule)

• Put u = x2 + 5 and y = u3. Then y = (x2 + 5)3.

• d

dx(x

2 + 5)3 = dy

dx

= dy

du · du

(56)

11 Example Find d

dx(x

2 + 5)3

(2) using chain rule.

Solution

(2) (using chain rule)

• Put u = x2 + 5 and y = u3. Then y = (x2 + 5)3.

• d

dx(x

2 + 5)3 = dy

dx

= dy

du · du

dx chain rule

= d

duu

3 · d dx(x

(57)

dx

(2) using chain rule.

Solution

(2) (using chain rule)

• Put u = x2 + 5 and y = u3. Then y = (x2 + 5)3.

• d

dx(x

2 + 5)3 = dy

dx

= dy

du · du

dx chain rule

= d

duu

3 · d dx(x

2 + 5) = 3u2 · 2x

(58)

11 Example Find d

dx(x

2 + 5)3

(2) using chain rule.

Solution

(2) (using chain rule)

• Put u = x2 + 5 and y = u3. Then y = (x2 + 5)3.

• d

dx(x

2 + 5)3 = dy

dx

= dy

du · du

dx chain rule

= d

duu

3 · d dx(x

2 + 5) = 3u2 · 2x

(59)

dx

(2) using chain rule.

Solution

(2) (using chain rule)

• Put u = x2 + 5 and y = u3. Then y = (x2 + 5)3.

• d

dx(x

2 + 5)3 = dy

dx

= dy

du · du

dx chain rule

= d

duu

3 · d dx(x

2 + 5) = 3u2 · 2x

= 3(x2 + 5)2(2x) = 6x(x2 + 5)2

(60)

12

Method 1 Answer is 6x5 + 60x3 + 150x

Method 2 Answer is 6x(x2 + 5)2 Remark 1

(61)

Remark 1

• The above two results are the same.

Remark 2

(62)

12

Method 1 Answer is 6x5 + 60x3 + 150x

Method 2 Answer is 6x(x2 + 5)2 Remark 1

• The above two results are the same.

Remark 2

• If change the function to y = (x2 + 5)13, first method can’t be applied.

(63)

Remark 1

• The above two results are the same.

Remark 2

• If change the function to y = (x2 + 5)13, first method can’t be applied.

Method 1 (x2 + 5)3 = (x2)3 + 3(x2)2(5) + 3(x2)(52) + 53 (x2 + 5)13 no way to expand

(64)

12

Method 1 Answer is 6x5 + 60x3 + 150x

Method 2 Answer is 6x(x2 + 5)2 Remark 1

• The above two results are the same.

Remark 2

• If change the function to y = (x2 + 5)13, first method can’t be applied.

Method 1 (x2 + 5)3 = (x2)3 + 3(x2)2(5) + 3(x2)(52) + 53 (x2 + 5)13 no way to expand

(65)

Remark 1

• The above two results are the same.

Remark 2

• If change the function to y = (x2 + 5)13, first method can’t be applied.

Method 1 (x2 + 5)3 = (x2)3 + 3(x2)2(5) + 3(x2)(52) + 53 (x2 + 5)13 no way to expand

Method 2 Put u = x2 + 5 and y = u3. Then y = (x2 + 5)3. Put u = x2 + 5 and y = u31. Then y = (x2 + 5)13.

(66)

12

Method 1 Answer is 6x5 + 60x3 + 150x

Method 2 Answer is 6x(x2 + 5)2 Remark 1

• The above two results are the same.

Remark 2

• If change the function to y = (x2 + 5)13, first method can’t be applied.

Method 1 (x2 + 5)3 = (x2)3 + 3(x2)2(5) + 3(x2)(52) + 53 (x2 + 5)13 no way to expand

Method 2 Put u = x2 + 5 and y = u3. Then y = (x2 + 5)3. Put u = x2 + 5 and y = u31. Then y = (x2 + 5)13. • Second method makes use of

the chain rule

(67)

Simple Form General Form d

dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x) d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] · d

dx f(x) d

dx cos x = −sin x

d

dx cos[f(x)] = −sin[f(x)] · d

dx f(x) d

dx tan x = sec

2 x d

dx tan[f(x)] = sec

2[f(x)] · d

dx f(x) d

dxe

x = ex d

dxe

f(x) = ef(x) · d

dx f(x) d

dx ln x = 1 x

d

dx ln[f(x)] = 1 f(x) ·

d

(68)

14

(3) d

dx cos[f(x)] = −sin[f(x)] · d

dx f(x) Proof

(69)

(3)

dx cos[f(x)] = −sin[f(x)] · dx f(x) Proof Put u = f(x) and y = cosu.

(70)

14

(3) d

dx cos[f(x)] = −sin[f(x)] · d

dx f(x)

(71)

(3)

dx cos[f(x)] = −sin[f(x)] · dx f(x)

Proof Put u = f(x) and y = cosu. Then y = cos f(x) and so

d

dxcos[f(x)] =

dy

(72)

14

(3) d

dx cos[f(x)] = −sin[f(x)] · d

dx f(x)

Proof Put u = f(x) and y = cosu. Then y = cos f(x) and so

d

dxcos[f(x)] =

dy

dx

= dy

du · du

(73)

(3)

dx cos[f(x)] = −sin[f(x)] · dx f(x)

Proof Put u = f(x) and y = cosu. Then y = cos f(x) and so

d

dxcos[f(x)] =

dy

dx

= dy

du · du

dx chain rule

= d

du cosu · du dx

(74)

14

(3) d

dx cos[f(x)] = −sin[f(x)] · d

dx f(x)

Proof Put u = f(x) and y = cosu. Then y = cos f(x) and so

d

dxcos[f(x)] =

dy

dx

= dy

du · du

dx chain rule

= d

du cosu · du dx

= −sinu · du

(75)

(3)

dx cos[f(x)] = −sin[f(x)] · dx f(x)

Proof Put u = f(x) and y = cosu. Then y = cos f(x) and so

d

dxcos[f(x)] =

dy

dx

= dy

du · du

dx chain rule

= d

du cosu · du dx

= −sinu · du

dx

= −sin[f(x)] · d

(76)

15

(6) d

dx ln[f(x)] = 1 f(x) ·

d

dx f(x) Proof

(77)

(6)

dx ln[f(x)] = f(x) · dx f(x) Proof Put u = f(x) and y = lnu.

(78)

15

(6) d

dx ln[f(x)] = 1 f(x) ·

d

dx f(x)

(79)

(6)

dx ln[f(x)] = f(x) · dx f(x)

Proof Put u = f(x) and y = lnu. Then y = ln f(x) and so

d

dxln[f(x)] =

dy

(80)

15

(6) d

dx ln[f(x)] = 1 f(x) ·

d

dx f(x)

Proof Put u = f(x) and y = lnu. Then y = ln f(x) and so

d

dxln[f(x)] =

dy

dx

= dy

du · du

(81)

(6)

dx ln[f(x)] = f(x) · dx f(x)

Proof Put u = f(x) and y = lnu. Then y = ln f(x) and so

d

dxln[f(x)] =

dy

dx

= dy

du · du

dx chain rule

= d

du lnu · du dx

(82)

15

(6) d

dx ln[f(x)] = 1 f(x) ·

d

dx f(x)

Proof Put u = f(x) and y = lnu. Then y = ln f(x) and so

d

dxln[f(x)] =

dy

dx

= dy

du · du

dx chain rule

= d

du lnu · du dx = 1 u · du dx

(83)

(6)

dx ln[f(x)] = f(x) · dx f(x)

Proof Put u = f(x) and y = lnu. Then y = ln f(x) and so

d

dxln[f(x)] =

dy

dx

= dy

du · du

dx chain rule

= d

du lnu · du dx = 1 u · du dx = 1

f(x) · d

(84)

16

Simple Form General Form

d dxx

(85)

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

(86)

16

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

(87)

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

(88)

16

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

(89)

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

(90)

16

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

dx cos x = −sin x

d

(91)

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

dx cos x = −sin x

d

dx cos[f(x)] = − sin[f(x)] ·

d

(92)

16

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

dx cos x = −sin x

d

dx cos[f(x)] = − sin[f(x)] ·

d

dx f(x)

d

dx tan x = sec

(93)

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

dx cos x = −sin x

d

dx cos[f(x)] = − sin[f(x)] ·

d

dx f(x)

d

dx tan x = sec

2 x d

(94)

16

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

dx cos x = −sin x

d

dx cos[f(x)] = − sin[f(x)] ·

d

dx f(x)

d

dx tan x = sec

2 x d

dx tan[f(x)] = sec

2[f(x)] · d

(95)

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

dx cos x = −sin x

d

dx cos[f(x)] = − sin[f(x)] ·

d

dx f(x)

d

dx tan x = sec

2 x d

dx tan[f(x)] = sec

2[f(x)] · d

dx f(x)

d dxe

(96)

16

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

dx cos x = −sin x

d

dx cos[f(x)] = − sin[f(x)] ·

d

dx f(x)

d

dx tan x = sec

2 x d

dx tan[f(x)] = sec

2[f(x)] · d

dx f(x)

d dxe

x = ex d

dxe

(97)

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

dx cos x = −sin x

d

dx cos[f(x)] = − sin[f(x)] ·

d

dx f(x)

d

dx tan x = sec

2 x d

dx tan[f(x)] = sec

2[f(x)] · d

dx f(x)

d dxe

x = ex d

dxe

f(x) = ef(x) · d

(98)

16

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

dx cos x = −sin x

d

dx cos[f(x)] = − sin[f(x)] ·

d

dx f(x)

d

dx tan x = sec

2 x d

dx tan[f(x)] = sec

2[f(x)] · d

dx f(x)

d dxe

x = ex d

dxe

f(x) = ef(x) · d

dx f(x)

d

dx ln x =

1

(99)

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

dx cos x = −sin x

d

dx cos[f(x)] = − sin[f(x)] ·

d

dx f(x)

d

dx tan x = sec

2 x d

dx tan[f(x)] = sec

2[f(x)] · d

dx f(x)

d dxe

x = ex d

dxe

f(x) = ef(x) · d

dx f(x)

d

dx ln x =

1

x

d

(100)

16

Simple Form General Form

d dxx

r = rxr−1 d

dx[f(x)]

r = r[f(x)]r−1 · d

dx f(x)

d

dx sin x = cos x

d

dx sin[f(x)] = cos[f(x)] ·

d

dx f(x)

d

dx cos x = −sin x

d

dx cos[f(x)] = − sin[f(x)] ·

d

dx f(x)

d

dx tan x = sec

2 x d

dx tan[f(x)] = sec

2[f(x)] · d

dx f(x)

d dxe

x = ex d

dxe

f(x) = ef(x) · d

dx f(x)

d

dx ln x =

1

x

d

dx ln[f(x)] =

1

f(x) ·

d

(101)

dx (1) y = sin(x2 + 1) (2) y = ex3+2

(3) y = ln(x4 − 3x + 2) (4) y = ex5+tanx5

(5) y = ln[sin2(2x + 3)] (6) y = 1

(x2 + 3)40 − 3e 4x+1

(102)

18 Example Find dy

dx for the following: (1) y = sin(x2 + 1)

(103)

dx (1) y = sin(x2 + 1)

Solution dy

dx =

d

dx sin(x

(104)

18 Example Find dy

dx for the following: (1) y = sin(x2 + 1)

Solution dy

dx =

d

dx sin(x

2 + 1)

= cos(x2 + 1) · d dx(x

(105)

dx (1) y = sin(x2 + 1)

Solution dy

dx =

d

dx sin(x

2 + 1)

= cos(x2 + 1) · d dx(x

2 + 1)

(106)

18 Example Find dy

dx for the following: (1) y = sin(x2 + 1)

Solution dy

dx =

d

dx sin(x

2 + 1)

= cos(x2 + 1) · d dx(x

2 + 1)

= 2xcos(x2 + 1) (2) y = ex3+2

(107)

dx (1) y = sin(x2 + 1)

Solution dy

dx =

d

dx sin(x

2 + 1)

= cos(x2 + 1) · d dx(x

2 + 1)

= 2xcos(x2 + 1) (2) y = ex3+2

Solution dy

dx =

d dxe

(108)

18 Example Find dy

dx for the following: (1) y = sin(x2 + 1)

Solution dy

dx =

d

dx sin(x

2 + 1)

= cos(x2 + 1) · d dx(x

2 + 1)

= 2xcos(x2 + 1) (2) y = ex3+2

Solution dy

dx =

d dxe

x3+2

= ex3+2 · d dx(x

(109)

dx (1) y = sin(x2 + 1)

Solution dy

dx =

d

dx sin(x

2 + 1)

= cos(x2 + 1) · d dx(x

2 + 1)

= 2xcos(x2 + 1) (2) y = ex3+2

Solution dy

dx =

d dxe

x3+2

= ex3+2 · d dx(x

3 + 2)

(110)

19 Example Find dy

dx for the following: (3) y = ln(x4 − 3x + 2)

(111)

(3) y = ln(x4 − 3x + 2) Solution dy

dx =

d

dx ln(x

(112)

19 Example Find dy

dx for the following: (3) y = ln(x4 − 3x + 2)

Solution dy

dx =

d

dx ln(x

4 3x + 2)

= 1

x4 3x + 2 ·

d dx(x

(113)

(3) y = ln(x4 − 3x + 2) Solution dy

dx =

d

dx ln(x

4 3x + 2)

= 1

x4 3x + 2 ·

d dx(x

4 3x + 2) = 4x3 − 3

(114)

19 Example Find dy

dx for the following: (3) y = ln(x4 − 3x + 2)

Solution dy

dx =

d

dx ln(x

4 3x + 2)

= 1

x4 3x + 2 ·

d dx(x

4 3x + 2) = 4x3 − 3

x4 3x + 2

(115)

(3) y = ln(x4 − 3x + 2) Solution dy

dx =

d

dx ln(x

4 3x + 2)

= 1

x4 3x + 2 ·

d dx(x

4 3x + 2) = 4x3 − 3

x4 3x + 2

(4) y = ex5+tanx5 Solution dy

dx =

d dxe

(116)

19 Example Find dy

dx for the following: (3) y = ln(x4 − 3x + 2)

Solution dy

dx =

d

dx ln(x

4 3x + 2)

= 1

x4 3x + 2 ·

d dx(x

4 3x + 2) = 4x3 − 3

x4 3x + 2

(4) y = ex5+tanx5 Solution dy

dx =

d dxe

x5+tanx5 = ex5+tanx5 · d dx(x

(117)

(3) y = ln(x4 − 3x + 2) Solution dy

dx =

d

dx ln(x

4 3x + 2)

= 1

x4 3x + 2 ·

d dx(x

4 3x + 2) = 4x3 − 3

x4 3x + 2

(4) y = ex5+tanx5 Solution dy

dx =

d dxe

x5+tanx5 = ex5+tanx5 · d dx(x

5 + tan x5)

= ex5+tanx5 · (5x4 + d

dx tan(x

(118)

19 Example Find dy

dx for the following: (3) y = ln(x4 − 3x + 2)

Solution dy

dx =

d

dx ln(x

4 3x + 2)

= 1

x4 3x + 2 ·

d dx(x

4 3x + 2) = 4x3 − 3

x4 3x + 2

(4) y = ex5+tanx5 Solution dy

dx =

d dxe

x5+tanx5 = ex5+tanx5 · d dx(x

5 + tan x5)

= ex5+tanx5 · (5x4 + d

dx tan(x

5) do in your head)

= ex5+tanx5 · (5x4 + sec2x5 · d dxx

(119)

(3) y = ln(x4 − 3x + 2) Solution dy

dx =

d

dx ln(x

4 3x + 2)

= 1

x4 3x + 2 ·

d dx(x

4 3x + 2) = 4x3 − 3

x4 3x + 2

(4) y = ex5+tanx5 Solution dy

dx =

d dxe

x5+tanx5 = ex5+tanx5 · d dx(x

5 + tan x5)

= ex5+tanx5 · (5x4 + d

dx tan(x

5) do in your head)

= ex5+tanx5 · (5x4 + sec2x5 · d dxx

5)

(120)

19 Example Find dy

dx for the following: (3) y = ln(x4 − 3x + 2)

Solution dy

dx =

d

dx ln(x

4 3x + 2)

= 1

x4 3x + 2 ·

d dx(x

4 3x + 2) = 4x3 − 3

x4 3x + 2

(4) y = ex5+tanx5 Solution dy

dx =

d dxe

x5+tanx5 = ex5+tanx5 · d dx(x

5 + tan x5)

= ex5+tanx5 · (5x4 + d

dx tan(x

5) do in your head)

= ex5+tanx5 · (5x4 + sec2x5 · d dxx

5)

References

Related documents

blowing cold air around firebox and into 7-inch stove- pipe plenum leading to existing air ducts. New Hampshire Wood Stoves, Inc. Has two hot-air wood-buming

D DRIVING SPRING ROD ASSEMBLY – Provides energy for returning bolt and operating rod assembly to firing position.. E TRIGGER HOUSING ASSEMBLY – Controls the firing of the

Modeling DNA data using only finite-context models has advantages over the typical DNA compression approaches that mix purely statistical (for example, finite-context models)

 The purpose of this grant is to improve the health status of clients with multiple chronic conditions who are Medicare and Medicaid beneficiaries living in

For instance, in bars 3 and 4, third beat, the right hand could take the upper G of the left hand’s octave, using fingers 4/2 on the B and G, and in bar 24 the left hand could play

Pada akhir perancangan prototype data warehouse ini, diharapkan dapat mengurangi resiko kegagalan dalam implementasi data warehouse serta hasil analisis proses ketiga

For the 2015-16 flu season, MHHLS is allotted quadrivalent inactivated vaccine (QIV), Fluzone® Quadrivalent (Sanofi Pasteur), and quadrivalent live attenuated influenza vaccine

• develop databases of trading activity by brokers as well as clients. The information and feedback received from member inspections is vital input for effective surveillance. For