• No results found

Some New Double Sequence Spaces Defined by Orlicz Function in Normed Space

N/A
N/A
Protected

Academic year: 2020

Share "Some New Double Sequence Spaces Defined by Orlicz Function in Normed Space"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

Volume 2011, Article ID 592840,9pages doi:10.1155/2011/592840

Research Article

Some New Double Sequence Spaces Defined by

Orlicz Function in

n

-Normed Space

Ekrem Savas¸

Department of Mathematics, Istanbul Commerce University, Uskudar, 34672 Istanbul, Turkey

Correspondence should be addressed to Ekrem Savas¸,ekremsavas@yahoo.com

Received 1 January 2011; Accepted 17 February 2011

Academic Editor: Alberto Cabada

Copyrightq2011 Ekrem Savas¸. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of this paper is to introduce and study some new double sequence spaces with respect to an Orlicz function, and also some properties of the resulting sequence spaces were examined.

1. Introduction

We recall that the concept of a 2-normed space was first given in the works of G¨ahler1,2 as an interesting nonlinear generalization of a normed linear space which was subsequently studied by many authors see, 3, 4. Recently, a lot of activities have started to study summability, sequence spaces, and related topics in these nonlinear spaces see, e.g., 5– 9. In particular, Savas¸10combined Orlicz function and ideal convergence to define some sequence spaces using 2-norm.

In this paper, we introduce and study some new double-sequence spaces, whose elements are formn-normed spaces, using an Orlicz function, which may be considered as an extension of various sequence spaces ton-normed spaces. We begin with recalling some notations and backgrounds.

Recall in11that an Orlicz functionM:0,∞ → 0,∞is continuous, convex, and nondecreasing function such thatM0 0 andMx > 0 forx > 0, andMx → ∞ as

x → ∞.

Subsequently, Orlicz function was used to define sequence spaces by Parashar and Choudhary12and others. An Orlicz functionMcan always be represented in the following integral form:Mx 0xptdt, wherepis the known kernel ofM, right differential fort≥0,

(2)

If convexity of Orlicz functionMis replaced byMxyMx My, then this function is called Modulus function, which was presented and discussed by Ruckle13and Maddox14.

Remark 1.1. IfMis a convex function and M0 0, thenMλxλMxfor all λwith 0< λ <1.

Letn∈ andXbe real vector space of dimensiond, wherend. Ann-norm onXis a function·, . . . ,·:X×X× · · · ×X → which satisfies the following four conditions:

ix1, x2, . . . , xn0 if and only ifx1, x2, . . . , xnare linearly dependent,

iix1, x2, . . . , xnare invariant under permutation,

iiiαx1, x2, . . . , xn|α|x1, x2, . . . , xn,α∈,

ivxx, x2, . . . , xnx, x2, . . . , xnx, x2, . . . , xn.

The pairX,·, . . . ,·is then called ann-normed space3. LetX

d d nbe equipped with then-norm, thenx

1, x2, . . . , xn−1, xnS :the volume of then-dimensional parallelepiped spanned by the vectors,x1, x2, . . . , xn−1, xnwhich may be given explicitly by the formula

x1, x2, . . . , xn−1, xnS

x1, x2 · · · x1, xn

.

. · · · .

xn, x1 · · · xn, xn

1/2

, 1.1

where ·,·denotes inner product. LetX,·, . . . ,·be ann-normed space of dimensiondnand {a1, a2, . . . , an}a linearly independent set inX. Then, the function ·,·∞ onXn−1 is

defined by

x1, x2, . . . , xn−1, xn∞:max{x1, x2, . . . , xn−1, ai: i1,2, . . . , n}, 1.2

is defines ann−1norm onXwith respect to{a1, a2, . . . , an}see,15.

Definition 1.2 see 7. A sequence xk in n-normed space X,·, . . . ,· is aid to be convergent to anxinXin then-normif

lim

k→ ∞x1, x2, . . . , xn−1, xkx0, 1.3

for everyx1, x2, . . . , xn−1 ∈X.

Definition 1.3see16. LetXbe a linear space. Then, a mapg :X → is called a paranorm

onXif it is satisfies the following conditions for allx, yXandλscalar:

(3)

iigx gx,

iiigxygx gy,

iv|λnλ| → 0n → ∞andgxnx 0 n → ∞implygλnxnλx 0n

∞.

2. Main Results

LetX,·, . . . ,·be anyn-normed space, and letSnXdenoteX-valued sequence spaces. ClearlySnXis a linear space under addition and scalar multiplication.

Definition 2.1. LetMbe an Orlicz function andX,·, . . . ,·anyn-normed space. Further, let

p pk,lbe a bounded sequence of positive real numbers. Now, we define the following new double sequence space as follows:

lM, p,·, . . . ,·:

xSnX:

,

k,l1

M xk,l

ρ , z1, z2, . . . , zn−1

pk,l

<, ρ >0

,

2.1

for eachz1, z2, . . . , zn−1∈X.

The following inequalities will be used throughout the paper. Letp pk,lbe a double sequence of positive real numbers with 0 < pk,l ≤supk,lpk,l H, and letD max{1,2H−1}. Then, for the factorable sequences{ak}and{bk}in the complex plane, we have as in Maddox

16

|ak,lbk,l|pk,lD

|ak,l|pk,l|bk,l|pk,l

. 2.2

Theorem 2.2. lM, p,·, . . . ,·sequences space is a linear space.

Proof. Now, assume thatx, yl M, p,·, . . . ,·andα, β∈. Then,

,

k,l1

M xk,l ρ1

, z1, z2, . . . , zn−1 pk,l

<∞ for someρ1>0,

,

k,l1,1

M xk,l ρ2

, z1, z2, . . . , zn−1

pk,l <∞ for someρ2 >0.

(4)

Since·, . . . ,·is an-norm onX, andMis an Orlicz function, we get

,

k,l1,1

M

αxk,lβyk,l max|α|ρ1,βρ2

, z1, z2, . . . , zn−1 pk,lD,

k,l1,1

|α|

|α|ρ1βρ2

M xk,l

ρ1 , z1, z2, . . . , zn−1 pk,l

D

k,l1,1

β

|α|ρ1βρ2

M yk,l ρ2

, z1, z2, . . . , zn−1 pk,l

DF

,

k,l1,1

M xk,l ρ1

, z1, z2, . . . , zn−1 pk,l

DF

k,l1,1

M yk,l

ρ2 , z1, z2, . . . , zn−1 pk,l,

2.4

where

F max ⎡ ⎣1,

|α|

|α|ρ1βρ2 H , β

|α|ρ1βρ2

H

, 2.5

and this completes the proof.

Theorem 2.3. lM, p,·, . . . ,· space is a paranormed space with the paranorm defined by g :

lM, p,·, . . . ,· →

gx inf ⎧ ⎨ ⎩ρpk,l/H:

k,l1,1

M xk,l

ρ , z1, z2, . . . , zn−1

pk,l1/M

<

⎫ ⎬

, 2.6

where0< pk,l≤suppk,lH,M∗max1, H.

Proof. iClearly, 0 andiigx gx.iiiLetxk,l, yk,llM, p,·, . . . ,·, then there existsρ1, ρ2>0 such that

,

k,l1,1

M xk,l ρ1

, z1, z2, . . . , zn−1 pk,l

<,

,

k,l1,1

M yk,l ρ2

, z1, z2, . . . , zn−1

pk,l <.

(5)

So, we have

M xk,lyk,l ρ1ρ2

, z1, z2, . . . , zn−1

M xk,l

ρ1ρ2, z1, z2, . . . , zn−1

yk,l

ρ1ρ2, z1, z2, . . . , zn−1

ρ1

ρ1ρ2M

xk,l

ρ1 , z1, z2, . . . , zn−1

ρ1

ρ1ρ2

M yk,l ρ2

, z1, z2, . . . , zn−1 ,

2.8

and thus

gxyinf ⎧ ⎨ ⎩

ρ1ρ2 pk,l/H:

k,l1,1

M xk,lyk,l ρ1ρ2

, z1,z2, . . . , zn−1 pk,l

1/M∗⎫

⎭ ≤inf ⎧ ⎨ ⎩ ρ1 pk,l/H:

k,l1,1

M xk,l ρ1

, z1, z2, . . . , zn−1 pk,l

1/M∗⎫

⎭ inf ⎧ ⎨ ⎩ ρ2 pk,l/H :

k1

M yk,l ρ2

, z1, z2, . . . , zn−1 pk,l

1/M∗⎫

.

2.9

ivNow, letλ → 0 andgxnx → 0n → ∞. Since

gλx inf ⎧ ⎨ ⎩

ρ

|λ|

pk,l/H :

k,l1,1

M λxk,l

ρ , z1, z2, . . . , zn−1

pk,l

1/M

<

⎫ ⎬ ⎭.

2.10

This gives usgλxn 0 n → ∞.

Theorem 2.4. If0< pk,l< qk,l<for eachkandl, thenlM, p,·, . . . ,·⊆lM, q,·, . . . ,·.

Proof. IfxlM, p,·, . . . ,·, then there exists someρ >0 such that

,

k,l1,1

M xk,l

ρ , z1, z2, . . . , zn−1

pk,l

<. 2.11

This implies that

M xk,l

ρ , z1, z2, . . . , zn−1

(6)

for sufficiently large values ofkandl. SinceMis nondecreasing, we are granted

,

k,l1,1

M xk,l

ρ , z1, z2, . . . , zn−1

qk,l

≤ ∞,

k,l1,1

M xk,l

ρ , z1, z2, . . . , zn−1

pk,l

<.

2.13

Thus,xlM, q,·, . . . ,·. This completes the proof.

The following result is a consequence of the above theorem.

Corollary 2.5. iIf0< pk,l<1for eachkandl, then

lM, p,·, . . . ,·⊆lM,·, . . . ,·, 2.14

iiIfpk,l≥1for eachkandl, then

lM,·, . . . ,·⊆lM, p,·, . . . ,·. 2.15

Theorem 2.6. u uk,ll∞⇒uxlM, p,·, . . . ,·, wherelis the double space of bounded

sequences andux uk,lxk,l.

Proof. u uk,ll∞. Then, there exists anA >1 such that|uk,l| ≤Afor eachk,l. We want to showuk,lxk,llM, p,·, . . . ,·. But

,

k,l1,1

M uk,lxk,l

ρ , z1, z2, . . . , zn−2, zn−1

pk,l

,

k,l1,1

M |uk,l| xk,l

ρ , z1, z2, . . . , zn−2, zn−1

pk,l

KAH

k,l1,1

M xk,l

ρ , z1, z2, . . . , zn−2, zn−1

pk,l

,

2.16

and this completes the proof.

Theorem 2.7. LetM1andM2be Orlicz function. Then, we have

lM1, p,·, . . . ,· l

M2, p,·, . . . ,·

lM1M2, p,·, . . . ,·

(7)

Proof. We have

M1M2

xk,l

ρ , z1, z2, . . . , zn−1

pk,l

M1

xk,l

ρ , z1, z2, . . . , zn−1

M2

xk,l

ρ , z1, z2, . . . , zn−1

pk,l

D

M1

xk,l

ρ , z1, z2, . . . , zn−1

pk,l

D

M2

xk,l

ρ , z1, z2, . . . , zn−1

pk,l

.

2.18

LetxlM1, p,·, . . . ,·lM2, p,·, . . . ,·; when adding the above inequality fromk, l 0,0 to∞,∞we getxlM

1M2, p,·, . . . ,·and this completes the proof.

Definition 2.8 see 10. LetX be a sequence space. Then, X is called solid ifαkxkX wheneverxkXfor all sequencesαkof scalars with|αk| ≤1 for allk∈ .

Definition 2.9. Let X be a sequence space. Then, X is called monotone if it contains the canonical preimages of all its step spacessee,17.

Theorem 2.10. The sequence spacelM, p,·, . . . ,·is solid.

Proof. Letxk,llM, p,·, . . . ,·; that is,

,

k,l1,1

M xk,l

ρ , z1, z2, . . . , zn−1

pk,l <. 2.19

Letαk,lbe double sequence of scalars such that|αk,l| ≤1 for allk, l∈ × . Then, the result follows from the following inequality:

,

k,l1,1

M αk,lxk,l

ρ , z1, z2, . . . , zn−1

pk,l

≤ ∞,

k,l1,1

M xk,l

ρ , z1, z2, . . . , zn−1

pk,l

, 2.20

and this completes the proof.

We have the following result in view of Remark1.1and Theorem2.10.

Corollary 2.11. The sequence spacelM, p,·, . . . ,·is monotone.

Definition 2.12see18. LetA am,n,k,ldenote a four-dimensional summability method that maps the complex double sequences xinto the double-sequenceAx, where themnth term toAxis as follows:

Axm,n

,

k,l1,1

am,n,k,lxk,l. 2.21

(8)

Definition 2.13. LetA am,n,k,lbe a nonnegative matrix. LetMbe an Orlicz function andpk,l a factorable double sequence of strictly positive real numbers. Then, we define the following sequence spaces:

ω0M, A, p,·, . . . ,·

xSn−1: lim m,n→ ∞,

,

k,l1,1

M am,n,k,lxk,l

ρ , z1, z2, . . . , zn−2, zn−1

pk,l 0

.

2.22

for each z1, z2, . . . , zn−1 ∈ X. If xleω0M, A, p,·, . . . ,·, then we say xis ω0M, A,

p,·, . . . ,·summable tol, wheree 1,1, . . ..

If we takeMx xandpk,l1 for allk, l, then we have

ω0A, p,·, . . . ,·

xSn−1: lim m,n→ ∞

,

k,l1,1

am,n,k,lxk,l, z1, z2, . . . , zn−2, zn−10

.

2.23

Theorem 2.14. ω0M, A, p,·, . . . ,·is linear spaces.

Proof. This can be proved by using the techniques similar to those used in Theorem2.2.

Theorem 2.15. 1If0<infpk,lpk,l<1, then

ω0M, A, p,·, . . . ,·⊂ω0M, A,·, . . . ,·. 2.24

2If1≤pk,l≤suppk,l<, then

ω0M, A,·, . . . ,·⊂ω0M, A, p,·, . . . ,·. 2.25

Proof. 1Letxω0M, A, p,·, . . . ,·; since 0<infpk,l≤1, we have

,

k,l1,1

M am,n,k,lxk,l

ρ , z1, z2, . . . , zn−2, zn−1

≤∞,

k,l1

M am,n,k,lxk

ρ , z1, z2, . . . , zn−2, zn−1

pk,l

,

2.26

and hencexω0M, A,·, . . . ,·.

2Letpk,l≥1 for eachk, land supk,lpk,l<∞. Letxω0M, A,·, . . . ,·. Then, for each 0< <1, there exists a positive integer such that

,

k,l1,1

M am,n,k,lxk,l

ρ , z1, z2, . . . , zn−2, zn−1

(9)

for allm, n≥ . This implies that

,

k,l1,1

M am,n,k,lxk,l

ρ , z1, z2, . . . , zn−2, zn−1

pk,l

≤ ∞

k,l1

M am,n,k,lxk,l

ρ , z1, z2, . . . , zn−2, zn−1

.

2.28

Thus,xω0M, A, p,·, . . . ,·, and this completes the proof.

Acknowledgments

The author wishes to thank the referees for their careful reading of the paper and for their helpful suggestions.

References

1 S. G¨ahler, “Lineare 2-normierte R¨aume,”Mathematische Nachrichten, vol. 28, pp. 1–43, 1965.

2 S. G¨ahler, “ ¨Uber die Uniformisierbarkeit 2-metrischer R¨aume,”Mathematische Nachrichten, vol. 28, pp. 235–244, 1965.

3 H. Gunawan, “The space ofp-summable sequences and its naturaln-norm,”Bulletin of the Australian Mathematical Society, vol. 64, no. 1, pp. 137–147, 2001.

4 R. W. Freese and Y. J. Cho,Geometry of Linear 2-Normed Spaces, Nova Science Publishers, Hauppauge, NY, USA, 2001.

5 A. S¸ahiner, M. G ¨urdal, S. Saltan, and H. Gunawan, “Ideal convergence in 2-normed spaces,”Taiwanese Journal of Mathematics, vol. 11, no. 5, pp. 1477–1484, 2007.

6 M. G ¨urdal and S. Pehlivan, “Statistical convergence in 2-normed spaces,”Southeast Asian Bulletin of Mathematics, vol. 33, no. 2, pp. 257–264, 2009.

7 H. Gunawan and M. Mashadi, “On n-normed spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 27, no. 10, pp. 631–639, 2001.

8 A. Sahiner and M. Gurdal, “New sequence spaces in n-normed spaces with respect to an Orlicz function,”The Aligarh Bulletin of Mathematics, vol. 27, no. 1, pp. 53–58, 2008.

9 E. Savas¸, “On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function,”journal of Inequalities and Applications, vol. 2010, Article ID 482392, 8 pages, 2010.

10 E. Savas¸, “Δm-strongly summable sequences spaces in 2-normed spaces defined by ideal convergence

and an Orlicz function,”Applied Mathematics and Computation, vol. 217, no. 1, pp. 271–276, 2010.

11 M. A. Krasnoselski and Y. B. Rutisky,Convex Function and Orlicz Spaces, Noordhoff, Groningen, The Netherlands, 1961.

12 S. D. Parashar and B. Choudhary, “Sequence spaces defined by Orlicz functions,”Indian Journal of Pure and Applied Mathematics, vol. 25, no. 4, pp. 419–428, 1994.

13 W. H. Ruckle, “FKspaces in which the sequence of coordinate vectors is bounded,”Canadian Journal of Mathematics. Journal Canadien de Math´ematiques, vol. 25, pp. 973–978, 1973.

14 I. J. Maddox, “Sequence spaces defined by a modulus,”Mathematical Proceedings of the Cambridge Philosophical Society, vol. 100, no. 1, pp. 161–166, 1986.

15 H. Gunawan, “On n-inner products, n-norms, and the Cauchy-Schwarz inequality,” Scientiae Mathematicae Japonicae, vol. 55, no. 1, pp. 53–60, 2002.

16 I. J. Maddox,Elements of Functional Analysis, Cambridge University Press, London, UK, 1970.

17 P. K. Kampthan and M. Gupta,Sequence Spaces and Series, vol. 65 ofLecture Notes in Pure and Applied Mmathematics, Marcel Dekker, New York, NY, USA, 1981.

References

Related documents

However, regarding ICSI outcomes using frozen/thawed sperm obtained by PVS or SSR in SCI patients, only few studies have been published in the literature. Indeed, in the past 10

In this study, the relative CI values of un- treated and HT-treated wheat straw (cultivar Robigus ) leaves and stems and the change after hydrolysis were measured (Table 4).. Wide

This Comment charts the evolution of the Internet's choice-of-law problem. This Comment first reviews the academic literature disparag- ing the old choice-of-law

Based on this control strategy, appropriate controllers utilizing PI controllers are designed to control the active and reactive power at each end station.The operation performance

Research outcomes and analysis have indicated that the Canadian market for care has been shaped largely by discourses that devalue women's work and commodify migrant

Min. Total Stress vs. Total Stress vs. Total Stress vs. 9) in comparison with normal operating conditions, which makes practical grounds for crack development not

( A ) Typical phenotypes of regenerating legs (RLs) at fourth, fifth and sixth instar and adult stages of control, Gb’dome1 RNAi , Gb’hop1 RNAi and Gb’Stat1 RNAi crickets..

Action rules are based on congruent predicaments and strategies that can be triggered when possible transitions of objects occur from one stage to another. This