• No results found

Earth-abundant water-splitting catalysts coupled to silicon solar cells for solar-to-fuels conversion

N/A
N/A
Protected

Academic year: 2021

Share "Earth-abundant water-splitting catalysts coupled to silicon solar cells for solar-to-fuels conversion"

Copied!
136
0
0

Loading.... (view fulltext now)

Full text

(1)

Earth-abundant water-splitting catalysts coupled to silicon solar

cells for solar-to-fuels conversion

(Article begins on next page)

The Harvard community has made this article openly available.

Please share how this access benefits you. Your story matters.

Citation

No citation.

Accessed

February 17, 2015 1:19:21 AM EST

Citable Link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:13070034

Terms of Use

This article was downloaded from Harvard University's DASH

repository, and is made available under the terms and conditions

applicable to Other Posted Material, as set forth at

http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

(2)
(3)
(4)

Earth–abundant  water–splitting  catalysts  coupled  to  

silicon  solar  cells  for  solar–to–fuels  conversion.  

  A  dissertation  presented     by       Casandra  R.  Cox     to      

The  Department  of  Chemistry  and  Chemical  Biology    

in  partial  fulfillment  of  the  requirements   for  the  degree  of    

Doctor  of  Philosophy   in  the  subject  of    

Chemistry     Harvard  University   Cambridge,  Massachusetts   September  2014    

(5)

                                     

©  2014  by  Casandra  R.  Cox    

(6)

 

Casandra  R.  Cox   Daniel  G.  Nocera  

 

Earth–abundant  water–splitting  catalysts  coupled  to  silicon  

solar  cells  for  solar–to–fuels  conversion.    

  Abstract    

Direct  solar–to–fuels  conversion  can  be  achieved  by  coupling  

semiconductors  with  water–splitting  catalysts.  A  10%  or  higher  solar  to  fuels   conversion  is  minimally  necessary  for  the  realization  of  a  robust  future  technology.   Many  water–splitting  devices  have  been  proposed  but  due  to  expensive  designs   and/or  materials,  none  have  demonstrated  the  necessary  efficiency  at  low–cost  that   is  a  requisite  for  large–scale  implementation.  In  this  thesis,  a  modular  approach  is   used  to  couple  water–splitting  catalysts  with  crystalline  silicon  (c–Si)  photovoltaics,   with  ultimate  goal  of  demonstrating  a  stand–alone  and  direct  solar-­‐to-­‐fuels  water– splitting  device  comprising  all  non–precious,  technology  ready,  materials.    

Since  the  oxygen  evolution  reaction  is  the  key  efficiency–limiting  step  for   water–splitting,  we  first  focus  on  directly  interfacing  oxygen  evolution  catalysts   with  c–Si  photovoltaics.  Due  to  the  instability  of  silicon  under  oxidizing  conditions,  a   protective  interface  between  the  PV  and  OER  catalyst  is  required.  This  coupling  of   catalyst  to  Si  semiconductor  thus  requires  optimization  of  two  interfaces:  the   silicon|protective  layer  interface;  and,  the  protective  layer|catalyst  interface.  A   modular  approach  allows  for  the  independent  optimization  and  analysis  of  these   two  interfaces.  

(7)

A  stand–alone  water–splitting  device  based  on  c–Si  is  created  by  connecting   multiple  single  junction  c-­‐Si  solar  cells  in  series.  Steady–state  equivalent  circuit   analysis  allows  for  a  targeted  solar–to–fuels  efficiency  to  be  designed  within  a   predictive  framework  for  a  series–connected  c–Si  solar  cells  and  earth–abundant   water–splitting  catalysts  operating  at  neutral  pH.  Guided  by  simulation  and   modeling,  a  completely  modular,  stand–alone  water–splitting  device  possessing  a   10%  SFE  is  demonstrated.  Importantly,  the  modular  approach  enables  facile   characterization  and  trouble–shooting  for  each  component  of  the  solar  water– splitting  device.  Finally,  as  direct  solar  water–splitting  is  far  from  a  mature  

technology,  alternative  concepts  are  presented  for  the  future  design  and  integration   of  solar  water–splitting  devices  based  on  all  earth–abundant  materials.    

(8)

Table  of  Contents  

 

 

Title  page   i   Copyright  page   ii   Abstract   iii  

Table  of  Contents   v  

List  of  Figures   viii  

List  of  Tables   xiii  

List  of  Abbreviations   xiv  

Acknowledgments   xvi–xix                     1. Chapter  1–Introduction   1  

1.1.The  need  for  clean  energy   2  

1.2.Renewable  energy   3  

1.3.Capture  of  solar  power  and  conversion  to  electrical  power   4   1.4.Conversion  of  electrical  power  into  fuels   5  

1.5.Photoelectrochemical  water–splitting   8  

1.5.1. Buried–junction  PEC  requirements   9  

1.5.2. Buried–junction  PEC  devices   11  

1.6.Crystalline  Silicon   11  

1.7.Earth–abundant  water–splitting  catalysts   13  

1.8.Overview   14  

(9)

2. Chapter  2–Interfaces  between  crystalline  silicon    

solar  cells  and  water–oxidation  catalysts   24  

2.1.Introduction   25  

2.2.Results   27  

2.2.1. Optimization  of  OER–catalyst  functionalized    

silicon  solar  cells   32  

2.3.Discussion   37  

2.4.Conclusion   39  

2.5.Experimental   40  

2.6.References   46  

3. Chapter  3–Modeling  a  coupled  photovoltaic  electrochemical    

devices  using  steady–state  equivalent  circuit  analysis   50  

3.1.Introduction   51  

3.2.Efficiency  considerations   52  

3.3.Steady–state  equivalent  circuit  analysis   57  

3.4.Results  and  Discussion   60  

3.4.1. Impact  of  ηPV  on  SFE   61  

3.4.2. Impact  of  ηEC  efficiency  on  SFE   63  

3.5.Model  validation   65  

3.6.Conclusion   67  

3.7.Experimental   68  

(10)

4. Chapter  4–10%  solar–to–fuels  efficiency  with   non–precious  materials   73   4.1.Introduction   74   4.2.Results   75   4.2.1. Device  integration   80   4.3.Discussion   84   4.4.Conclusion   90   4.5.Experimental   91   4.6.References   95  

5. Chapter  5–Future  directions   98  

5.1.Introduction   99  

5.2.Alternative  PV  materials   99  

5.3.Alternative  catalyst  deposition  methods   101  

5.4.Cell  design   106   5.5.Conclusion   108   5.6.Experimental   108   5.7.References   110          

(11)

List  of  Figures  

 

Figure   1.1   Schematic   showing   (1)   solar   capture   of   solar   energy   by   a   photovoltaic   device,  (2)  conversion  of  solar  photons  into  a  wireless  current,  and  (3)  storage  via   breaking  the  bonds  of  H2O  to  make  H2  which  can  be  used  as  a  fuel.  Adapted  from  ref.  

5.   3  

 

Figure   1.2  Solar  irradiance  at  the  surface  of  the  Earth.  The  band–gap  of  silicon  is   overlaid   as   an   example   showing   that   photons   absorbed   at   the   band–gap   can   be   converted  and  those  absorbed  above  the  band–gap  are  wasted  as  heat.     4  

 

Figure   1.3   Qualitative   schematic   of   an  n–type   semiconductor/electrolyte   junction  

for  photoelectrochemical  water–splitting.     9  

 

Figure   1.4  Qualitative  schematic  of  a  buried–junction  photovoltaic  interfaced  with   water–splitting  catalysts  via  Ohmic  contacts  for  solar–water–splitting.   10    

Figure  1.5  Chinese  c–Si  PV  module  prices  since  2006.  The  data  was  recreated  from  

ref.  43.   12  

 

Figure   1.6  Depictions   of   the   molecular   structure   of   our   Mn,   Co,   and   Ni   water– oxidation  catalysts.  Reprinted  with  permission  from  Mike  Huynh.     14  

 

Figure   2.1   Schematic   of   the   OER–catalyst   functionalized   silicon   solar   cell   used   in   these   studies.   For   electrochemical   measurements,   an   external   voltage   may   be   applied  to  the  contacts  at  either  side  of  the  cell  with  or  without  illumination.  A.  The   solar  cell  is  operating  under  reverse  bias  conditions  with  voltage  applied  to  the  front   metal  contacts  on  the  n–side  in  the  dark.  B.  The  voltage  can  be  applied  directly  to   the   protective–layer,   in   which   case   the   PV   is   bypassed   and   the   current–voltage   characteristics   are   those   of   the   OER–catalyst   on   an   electrode.  C.   The   solar–cell   is   illuminated  with  AM  1.5  illumination  and  the  current–voltage  behavior  reflects  the   activity  of  the  OER–catalyst  functionalized  solar  cell.   27  

 

Figure   2.2  CV  curves  of  (top)  npSi|ITO|CoPi  and  (bottom)  npp+Si|ITO|CoPi  in  0.1  M   KPi   electrolyte   at   pH   7   in   the   dark   with   Vappl  through   the  n–side   of   the   cell   (▬▬,   black),  with  Vappl  thought  the  n–side  under  1  sun  AM  1.5  illumination  (▬▬,  green)  ,   and  in  the  dark  with  Vappl  through  the  ITO  layer  bypassing  the  PV  (▬▬,  blue).  Taken  

from  ref.  20.   28  

(12)

Figure   2.3   Schematic   showing   the   band-­‐diagrams   at   the   p-­‐Si|ITO   interface.   A.   Before  contact.  B.  After  equilibration  of  Fermi  levels  after  interfacing  p–Si  with  ITO.   C.  After  equilibration  of  the  Fermi  levels  after  interfacing  p+–Si  with  ITO.     30  

 

Figure   2.4  Tafel  plots  for  npp+Si|ITO|CoPi  with  potential  applied  to  the  metal  front   contact   for   measurements   in   dark   (black   squares,  n),   at   100   mW   cm–2   (green   squares,  n),   and   1000   mW   cm–2   (orange   red   squares,  n)   illumination.   The   blue   triangles  (▲)  correspond  to  a  measurement  in  dark  where  the  potential  was  applied   through  the  ITO  film  at  the  back  of  the  sample.  Figure  taken  from  ref  20.     31  

 

Figure  2.5  Representative  J–V  curve  for  generation  2  npp+–Si  solar  cells  used  in  this   study  in  the  dark  (▬▬,  black)  and  under  AM  1.5  illumination  (▬▬,  blue).     33  

 

Figure  2.6  Plane  view  SEM  images  of  OER–catalyts  deposited  on  surface–protected   npp+Si|electrodes.  From  left  to  right  A  npp+|FTO|CoBi  and  B  npp+Si|Ni|CoBi.     34  

 

Figure   2.7   O2   production   measured   by   a   fluorescent   sensor   (▬▬,   red)   and   the   amount   produced   based   on   current   passed   assuming   100%   Faradaic   efficiency   (▬▬,  green)  for  (left)  npp+–Si|FTO|CoBi  and  (right)  npp+–Si|Ni|CoBi.     35  

 

Figure   2.8   Tafel   plots   of   (a)   npp+Si|ITO|CoBi   (b)   npp+Si|FTO|CoBi   and   (c)   npp+Si|Ni|CoBi.   With   the   potential   applied   to   the   metal   front   contact   for   measurements  in  the  dark  (●),  under  1  sun  AM  1.5  illumination  (●),  and  in  the  dark  

with  the  potential  applied  through  the  protective  coating  at  the  back  of  the  sample    

(●).   36  

 

Figure  2.9  Graph  showing  the  variability  in  Tafel  slope  for  various  combinations  of   OER–catalyst  functionalized  c–Si  solar  cells.    The  red  lines  indicate  the  value  based  

on  previously  reported  Tafel  analysis.   38  

 

Figure   3.1  Schematic   of   a   wired   and   wireless   PV–EC   based   on   silicon   solar   cells.   Regardless   of   the   mode   of   coupling   between   the   two,   the   equivalent   circuit   is  

identical.     55  

 

Figure  3.2  Block  diagram  for  a  photovoltaic  (PV)  powered  electrochemical  cell  (EC),   where  direct  electrical  connection  constrains  JPV  =  JEC  and  VPV  =  VEC.   56  

 

(13)

Figure  3.3  The  generalized  current  density–voltage  (J–V)  diagram  of  a  coupled  PV– EC   system   where   the   point   of   intersection   of   the   PV–curve   (▬▬,   blue)   and   EC– curve   (▬▬,   red)   represents   the   operational   point   and   SFE   of   the   coupled   PV–EC   device.  The  SFE  is  maximized  when  the  operating  point  is  equal  to  PMAX.     57  

 

Figure  3.4  Impact  on  the  J–V  curve  for  a  PV  due  to  shunt  (▬▬,dark  red)  or  series   (▬▬,dark  green)  resistance  compared  to  an  ideal  J–V  curve  (▬▬,dark  blue).   58  

 

Figure  3.5  Steady–state  equivalent  circuit  of  a  PV–EC  system.  An  applied  voltage  is   incorporated  to  illustrate  analysis  of  an  externally  assisted  system.     60  

 

Figure   3.6   Impact   on   SFE   via   improvement   in   PV   efficiency   compared   to   the   baseline  ηPV  =  20%  (–––––,  grey  dash).  Given  optimal  coupling  between  the  PV  and   EC   components   (Top)   a   higher   relative   SFE   can   be   obtained   by   improving   the  JSC   (▬▬,   green)   as   opposed   to   the  VOC  (–––––,   dashed   green).   Given   poor   coupling   between  the  baseline  PV  and  EC  (bottom),  only  minor  improvements  in  the  SFE  can  

be  obtained.     62  

 

Figure  3.7  J–V  curves  of  multiple  series  connected  solar  cells  with  ηPV  =  20%  (▬▬,   grey)  and  EC  curves  (▬▬,  dark  blue).  The  number  of  solar  cells  required  changes   based  on  choice  of  catalyst  which  causes  the  EC  curve  to  shift  left  or  right  and   resistive  losses  due  to  RSOL  cause  the  EC  curve  to  tilt  down.   63    

Figure  3.8  Impact  of  solution  resistance  and  EC  parameters  on  SFE  given  ηPV  =  20%.   Case  I  EC  parameters  (▬▬,  green)  are  based  on  utilizing  the  Co–OEC  and  Case  II  EC  

(▬▬,  navy)  are  based  on  utilizing  the  Ni–OEC.   65  

 

Figure   3.9  Graphical  demonstration  of  how  the  predictive  analysis  works  for  PV– assisted   reactions,   where   the   PV–curve   (▬▬,   blue)   is   based   on   the   J–V   characteristics  of  an  in–house  built  single  junction  c–Si  PV  and  the  EC–curve  (▬▬,   red)  is  based  on  the  CoBi  water–oxidation  catalyst  operating  in  pH  9.2  solution.     66  

 

Figure   3.10   Predicted   Tafel   behavior   of   a   PV–assisted   water   oxidation   system   similar  to  the  experiments  described  in  Chapter  2.  The  electrical  properties  of  the   PV   (shown   in   Fig.   3.8)   and   EC   systems   were   measured   independently   (●,   black  

dots)  and  used  to  predict  the  coupled  behavior  (▬▬,  black).  The  Tafel  analysis  of   the  PV–assisted  photoanode  (●,  red  dots)  and  predicted  behavior  match  to  within  

10  mV.     67  

(14)

Figure  4.1  Schematic  of  a  PV–EC  device  based  on  series–connected  single–junction   c–Si  solar  cells  and  water–splitting  catalyst.  In  this  configuration  the  OER–catalyst  is   directly  deposited  on  the  back  of  the  last  solar  cell  in  the  stack.     76  

 

Figure   4.2   Schematic   of   a   PV–EC   device   used   in   these   studies.   In   this   modular   configuration  each  component  can  be  easily  evaluated  and  replaced  independently.

  77  

 

Figure  4.3  J–V  curves  of  the  individually  measure  PV  and  EC  components  making  up   the   PV–EC   device.   The   grey   curves   represent   the  J–V   curves   for   the   PV   modules   composed   of   either   three   (

––––

,   grey–dashed)   or   four  (▬▬,  grey–solid)   single– junction   c–Si   solar   cells   measure   under   AM   1.5   illumination.   The   red   curves   represent   electrochemical   load  J–V  curves   using   NiBi  and   NiMoZn   catalysts,   where   the   ideal   EC   curve   (

––––

,   red–dashed)   is   based   on   previously   reported   Tafel   analysis  and  the  actual  EC  curve  (▬▬,  red)  measured  in  a  2–electrode  experiment   (0.5M   KBi  /   0.5M   K2SO4,   pH   9.2).   The   point   of   intersection   represents   the  JOP  (●,   orange  circles)  and  the  SFE  of  the  coupled  system.   78   Figure  4.4.  Steady–state  current  voltage  behavior  for  the  NiBi  operating  in  0.5M  KBi   /  0.5  M  K2SO4  pH  9.2  in  H2  saturated  solution  (●)  and  in  Ar  saturated  solution  (▲).  

Since  the  voltage  required  to  achieve  a  given  current  density  under  both  conditions   is   almost   identical   indicates   that   the   contribution   of   H2   oxidation   at   the   anode   is  

negligible.     82  

 

Figure   4.5   Current   under   chopped   illumination   representing  JOP   for   the   PV–EC   device   in   0.5M   KBi  /   0.5M   K2SO4   pH9.2.   The   chopped   illumination   illustrates   the   recovery  in  SFE  and  reproducibility  in  measuring  JOP  through  the  PV-­‐EC  device     83    

Figure  4.6  Decay  of  the  open–circuit  voltage  of  the  4–cell  PV  mini–module  over  the   course  of  ~15  min.  The  initial  VOC  at  2.42  V  decays  to  a  steady–state  of  2.27  V  after   the  first  10  min  (▬▬,  orange),  which  contributes  to  the  initial  decline  in  the  SFE  of   the   coupled   PV–EC   device.   After   overnight   illumination,   the  Voc   was   measured   (▬▬,  blue)  and  shows  a  slight  recovery  to  2.31  V,  which  corresponds  to  the  initial   increase  in  SFE  of  the  PV–EC  device  during  the  first  24  h.     84    

Figure   4.7  Specific  conductance  measurements  for  various  electrolytes  considered   to  minimize  RSOL.  KOH  (∎,  red  squares)  is  the  most  conductive  electrolyte;  in  order   to  operate  in  pH  near  neutral  regimes  0.5M  KBi  was  used  with  additional  supporting   electrolyte,  such  as  KNO3  (●,  green  circles)  or  K2SO4  (●,  black  circles).     85  

 

Figure   4.8   Gas   quantification   for   NiMoZn   cathode   operating   in  (left)   0.5   M   KBi   /   K2SO4  and  (right)  0.5  M  KBi  /  KNO3  both  at  pH  9.2.  The  black  line  represents  100%  

(15)

represent   H2   measured   by   gas   chromatography.   The   red   arrow   indicates   when   electrolysis   was   stopped.   GC   analysis   was   conducted   until   the   moles   of   gas   measured  in  the  headspace  reached  a  steady–state.  The  lag  period  (▬▬,  black)  in   gas  generation  is  due  to  the  buildup  of  gases  in  the  headspace  of  the  EC  cell.   86    

Figure  4.9  Gas  quantification  for  NiBi  cathode  operating  in  (left)  0.5  M  KBi  /  K2SO4   and   at   pH   9.2.   The   black   line   represents   100%   Faradaic   efficiency   based   on   the   charge  passes  during  electrolysis.  The  green  circles  represent  O2  measured  by  gas   chromatography.   The   red   arrow   indicates   when   electrolysis   was   stopped.   GC   analysis  was  conducted  until  the  moles  of  gas  measured  in  the  headspace  reached  a   steady–state.  The  lag  period  (▬▬,  black)  in  gas  generation  is  due  to  the  buildup  of  

gases  in  the  headspace  of  the  EC  cell.   87  

 

Figure   4.10   Current   under   chopped   illumination   representing  JOP   for   a   PV–EC   device   composed   of   a   3–cell   PV–module,   a   NiBi   anode,   and   NiMoZn   cathode   operating   in   1M   KOH.   Because   KOH   is   a   more   conductive   electrolyte,   a   12%   or   greater  SFE  can  be  obtain  with  a  3–cell  PV  module  as  opposed  to  a  4–cell  module.   The  initial  drop  in  SFE  is  due  to  the  decrease  in  PV  efficiency,  due  to  heating  of  the   PV–module.  The  chopped  illumination  represents  the  recovery  in  SFE.     88    

 

Figure  4.11  J–V  curves  of  the  individually  measure  PV  and  EC  components  making   up  the  PV–EC  device  operating  in  1M  KOH.  The  grey  curves  represent  the  J–V  curves   for  the  PV  modules  composed  of  either  three  (

–––––

,  grey–dashed)  or  four  (▬▬,   grey–solid)  single–junction  c–Si  solar  cells  measure  under  AM  1.5  illumination.  The   blue   curves   represent   electrochemical   load   J–V  curves   using   NiBi  and   NiMoZn   catalysts,   where   the   ideal   EC   curve   (–––––,   blue–dashed)   is   based   on   previously   reported  Tafel  analysis  and  the  actual  EC  curve  (▬▬,  blue–solid)  measured  in  a  2– electrode  experiment.  The  point  of  intersection  represents  the  JOP  (●,  orange  circles)  

and  the  SFE  of  the  coupled  system.     89  

 

Figure  4.12  SFE  inferred  from  JOP  for  the  PV–EC  device  operating  in  0.5M  KBi  /  0.5M   K2SO4   pH   9.2   measured   for   over   7   days   of   operation   showing   no   decrease   in   SFE   over   operation   time.   Spikes   are   due   to   the   addition   of   solution   to   maintain   the  

solution  level  and  pH.     90  

 

Figure   5.1   Tafel   plot   of   a   sputtered   NiFeO   OER   catalyst   operating   in   0.5   M   KBi   /   1.5M  KNO3  pH  9.2.  A  Tafel  slope  of  45  mV  decade–1  is  observed  for  a  50  nm  (∎),  100   nm  (●)and  200  nm  (▲)  thick  NiFeO  film.  Inset:  SEM  image  of  a  NiFeO  shows  a  very  

dense,  compact  film.   102  

(16)

Figure   5.2   Tafel   plots   of   200   nm   thick   NiFeO   (81%   mol   Ni,   19%   mol   Fe)   on   Ni-­‐ coated  glass  operated  in  (▲)  0.2  M  KPi,  pH  7.0,  92  mV  decade–1  slope;  ()  0.2  M  KBi,   pH  9.3,  61  mV  decade–1  slope;  ()  1.0  M  KOH,  pH  13.9,  45  mV  decade–1  slope.   103  

   

Figure   5.3   Tafel   analysis   of   Co–OEC   films   formed   and   operated   in   KBi  (●)   as  

opposed  to  KPi  (●)  solution.    The  films  formed  from  KBi  exhibit  a  lower  Tafel  slope  

and  therefore  demonstrate  higher  activity  than  those  formed  in  KPi.     104    

Figure  5.4  Tafel  analysis  of  Co–OEC’s  formed  from  anodizing  metallic  cobalt  in  KBi   solution.  In  all  cases  the  Co–OEC  exhibits  a  Tafel  slope  of  60  mV  decade–1,  however   starting   with   thicker   metallic   films   produces   Co–OEC’s   with   higher   activity   than  

thinner  films.     105  

 

Figure   5.5   The   current   density   traces   show   that   recirculating   streams   allow   the   device   to   function   stably   and   continuously   (purple   trace),   while   without   recirculation  the  device  performance  deteriorates  as  concentration  gradients  form   across   the   cell   and   ionic   species   are   depleted   in   the   oxygen-­‐evolution   side   (red   trace).   The   inset   in   the   graph   corresponds   to   a   schematic   representation   of   the   parallel-­‐plate  solar-­‐hydrogen  generator.  Reprinted  with  permission  from  reference  

32.   107  

(17)

List  of  Tables  

 

Table  2.1.  Summary  of  Faradaic  efficiency  for  npp+–Si | interface| catalyst  films        39   Table  3.1.  Solar  cell  parameters  for  the  modeling.   61   Table  3.2  Electrochemical  parameters  for  the  modeling.   61   Table  4.1.  PV  characteristics  for  the  3  and  4–cell  c–Si  mini–modules.   78  

(18)

List  of  Abbreviations  

 

ALD     atomic–layer  deposition   AM     air  mass  

a–Si     amorphous  silicon   b     Tafel  slope  

BJ     buried  junction   BOS     balance  of  systems   Bi     borate  buffer   cb     bulk  concentration  

CIGS     copper  indium  gallium  diselenide    

CoBi     cobalt–based  catalysts  deposited  from  borate  electrolyte   CoPi     cobalt–based  catalysts  deposited  from  phosphate  electrolyte   c–Si     crystalline  silicon  

CV     cyclic  voltammogram  or  cyclic  voltammetry   CVD     chemical  vapor  deposition  

D     diffusion  coefficient  

E-­‐beam   electron  beam  evaporation   EC     electrochemical  

EF     Fermi  energy  or  level   F     Faraday’s  constant   FF     fill  factor    

FTO     fluorine  doped  tin  oxide   HEC     hydrogen–evolution  catalyst   HER     hydrogen–evolution  reaction   ITO     tin–doped  indium  oxide   J     current–density  

J0     exchange  current  density     JSC     short–circuit  current   kb     Boltzmann’s  constant   MPP     maximum  power–point   n     ideality  factor  

NHE     normal  hydrogen  electrode  

NiBi     nickel  based  catalyst  deposited  from  borate  electrolyte   NiFeO     nickel  iron  oxide  

OEC     oxygen  evolution  catalyst   OER     oxygen  evolution  reaction  

P     power  

PCET     proton–coupled  electron  tranfer     PEC     photoelectrochemical    

PSII     photosystem  I   PSII     photosystem  II   Pi     phosphate  buffer   PV     photovoltaic   q     charge  

(19)

R     resistance   s     series    

SEI     semiconductor  electrolyte  interface   SEM     scanning  electron  micrograph   SFE     solar–to–fuels  efficiency     sh     shunt    

SJ     solution  junction   sol     solution  

T     temperature  

TCO     transparent  conductive  oxide   th     thermodynamic  

VAppl     potential  applied  to  the  electrode   VOC     open  circuit  voltage  

WP     watt  at  peak  power   η     overpotential   ηC     coupling  efficiency  

ηEC     electrochemical  efficiency     ηPV     PV  efficiency  

δ     Nernst  diffusion  layer    

(20)

Acknowledgments  

 

During  the  past  six  years  at  MIT  and  then  at  Harvard,  I  have  had  the  pleasure  of   meeting  some  amazing  people  and  scientists  during  this  time  and  I  would  like  to   thank  them  for  having  an  impact  on  me  and  my  decisions.    

 

From  a  scientific  perspective  I  first  have  to  thank  my  PhD  advisor  Dan  Nocera.  I  have   learned  a  lot  from  him.  He  has  taught  me  many  technical  skills  including  how  to   write  a  paper,  how  to  make  my  research  accessible  and  interesting  to  others,  and   how  to  make  pretty  figures.  His  unique  advising  style  of  always  pushing  you  when   you  need  it  has  taught  me  more  than  anything  else  I’ve  encountered  in  graduate   school.  He  seems  to  always  be  so  intuitive  to  what  his  students  need  to  be  successful   and  no  matter  how  many  times  we  mess  up  he  never  gives  up  on  us.    

 

I  would  also  like  to  acknowledge  my  long–time  collaborator  Tonio  Buonassisi  for   our  many  thought  provoking  meetings.    

 

From  my  undergraduate  academic  experience  I  like  to  thank  my  under–graduate   research  advisor  Dr.  Stephen  Mezyk  for  sparking  my  interest  in  doing  research  and   pursuing  a  graduate  degree.  

 

I  thank  Dr.  James  Kiddle  for  being  a  great  collaborator  and  kindred  spirit.  We  have   been  great  friends  and  have  had  so  much  fun  together.    

 

Now  for  the  part  most  people  skip  to  acknowledging  all  of  the  lab  mates  and   colleagues  that  have  inspired,  influenced,  and/or  have  just  been  great  friends  over   the  years:  

 

I  would  like  to  thank  Dr.  Liz  Young  for  telling  me  that  I  was  not  alone  in  feeling  like  I   was  the  only  person  in  my  class  who  didn’t  understand  everything  and  felt  way  too   behind  to  keep  on  going.  I  also  admire  Liz’s  no  nonsense  attitude  and  the  ability  to   always  stand  up  for  herself  and  others  without  being  shy  or  afraid  what  others   might  think.    

 

I  will  also  have  to  thank  Dr.  Matt  Kanan  for  always  being  so  inspiring  and  kind  even   to  a  lowly  first  year  graduate  student.  I  was  always  so  impressed  seeing  him  at  the   Miracle  of  Science  every  Saturday  with  a  new  scientific  paper  to  read  along  side  a   beer  and  burger.  I  also  appreciate  the  friendship  we  have  maintained  over  the  years   and  how  he  always  makes  time  to  meet  me  for  a  drink  when  he  is  town.    

 

Additionally  I  would  like  to  thank  Dr.  Steve  Reece.  Although  we  didn’t  overlap,  being   the  great  mentor  that  he  is  really  helped  me  a  lot  during  my  first  few  years  in  

graduate  school.      

(21)

Dr.  Mark  Winkler  was  a  great  colleague  and  collaborator.  For  having  so  many   helpful  meetings  and  pep  talks  now  and  then.    

 

Dr.  Joep  Pijpers  got  me  started  on  my  project  and  was  a  great  mentor  during  the   short  time  period  we  worked  together.    

 

Dr.  Dino  Villagran  is  one  of  the  nicest  people  but  somehow  has  made  every  female  in   lab  cry  over  some  ridiculous  thing.    

 

Dr.  Alex  Radosevich  for  teaching  every  one  how  to  bootie  bomb.      

Dr.  Bob  McGuire  for  being  such  a  fun  and  nice  person.    

Dr.  Dilek  Doğutan  and  I  joined  the  Nocera  lab  around  the  same  time.  It  has  been  nice   seeing  her  progress  from  a  post–doc  to  her  current  position  where  she  has  so  much   leadership  responsibility.  She  really  helps  facilitate  the  research  in  our  lab  on  a  daily   basis.    

 

Dr.  David  Powers  for  giving  great  pep–talks  during  this  last  month  and  being  a  good   friend.    

 

Dr.  Eric  Bloch  has  been  someone  I  have  only  known  a  short  time  but  has  been  a   really  fun  and  kind  person.    

 

Dr.  Tom  Kempa  for  reading  over  portions  of  my  thesis  and  for  all  of  our  long  talks   about  science.    

 

Dr.  Chris  Gagliardi  for  being  such  a  nice  and  funny  person.      

Dr.  Emily  McClaurin  for  being  such  a  good  friend  to  me  during  my  first  few  years.   She  always  put  up  with  my  crisis  (which  were  fairly  often).  She  taught  me  a  lot  of   things  about  how  to  handle  myself  in  lab  and  our  “CHEMREF”  sessions  were  always   helpful.    

 

Dr.  Changhoon  Lee  for  being  someone  who  I  could  never  hear  speak  but  I  knew  he   was  a  kind  person.    

 

Dr.  Yogesh  Suredranath  was  the  person  I  was  most  scared  to  present  in  front  of  at   group  meeting  so  I  would  go  through  my  slides  with  him  beforehand.  He  always   gave  time  and  attention  to  people  who  asked  for  it.    

 

Dr.  Matt  Chambers  for  being  the  eternal  optimist  and  always  playing  devil’s   advocate.  We  had  a  lot  of  fun  times  especially  at  the  Bleacher  Bar.  Let’s  go  Buffalo!    

(22)

In  my  first  year  I  started  out  as  one  of  four  and  am  the  only  one  who  made  it   through.  I  would  specifically  like  to  thank  Pete  Curtain  for  being  such  a  smart  and   happy  person.  He  is  someone  I  have  always  missed,  especially  in  times  where  I  just   wanted  a  person  who  could  be  a  partner  in  crime  during  the  various  phases  of   graduate  school.  My  last  memory  of  a  big  hung  before  telling  him  good  luck  before   he  left  is  still  one  my  favorite  memories.    

 

Kwabena  Bediako  for  being  so  knowledgeable  and  helpful.  However,  sharing   frustrations  with  science  and  graduate  school  with  someone  who  makes  it  all  seem   so  easy  made  me  feel  not  so  alone.  I  also  always  appreciate  the  pep  talks  walking   home  after  a  long  day  in  lab.    

 

Chris  Lemon  for  being  a  great  friend.  Chris  was  always  there  when  I  needed  him  and   was  always  ready  to  grab  a  beer  and  hang  out  after  a  long  day  in  lab.  He  is  one  of  the   hardest  workers  in  lab  and  never  seems  frustrated.  I  love  our  “gay–tes”  at  

Cambridge  Common.      

Andrew  Ullman  for  being  so  quirky.  I  have  loved  seeing  the  transformation  from   hippie  to  clean–cut  and  dad–like  (thanks  Anne  Marie).  His  love  for  reading  old   textbooks  is  hilarious  and  he  has  the  best  smile  out  of  anyone  in  lab.    

 

Mike  Huynh  for  being  the  smartest,  hardest–working,  and  kindest  person  in  lab  all   of  which  comes  completely  naturally.  I  think  I  had  the  best  person  to  give  group   meeting  with  and  enjoyed  his  delicious  home–cooked  treats  he  would  surprise  me   with.    

 

Bon  Jun  Koo  I  don’t  even  know  where  to  start.  You  have  been  a  great  friend  and   have  always  been  there  for  me.  Obviously  my  favorite  thing  about  you  is  your   confusion  with  the  English  language  and  American  culture,  which  has  made  me   laugh  countless  times.  I  also  love  your  no  nonsense  attitude  especially  during  long   group  meetings.    

 

Nancy  Li  has  been  like  a  little  sister  to  me  over  the  past  year.  I  love  our  talks  about   all  things  shopping  and  being  terrible  influences  on  one  another  when  it  comes  to   purchasing  things  we  don’t  need.  She  is  so  thoughtful  and  such  a  hard  worker.  I   think  she  will  have  a  very  successful  PhD  experience.    

 

Dan  Graham  all  I  can  say  is  thank  you  for  always  being  the  scape–goat.      

Bryce  Anderson  and  Andrew  Maher  are  both  fun,  sincere,  and  kind  people  and  made   sharing  an  office  with  no  windows  seem  not  so  bad.    

 

Evan  Jones  for  always  seeming  to  be  in  the  wrong  place  at  the  wrong  time,  which   makes  me  laugh.    

(23)

Seung–Jun  Hwang  for  putting  up  with  all  of  our  questions  on  the  Korean  language   after  Bon  Jun  confuses  us.    

 

There  have  been  many  people  I  didn’t  get  to  know  very  well  to  all  of  you  I  wish  the   best  of  luck.  

 

On  a  more  personal  note:      

I  would  like  to  thank  my  amazing  husband  Eric  Hontz.  In  the  last  two  years  he  has   helped  me  in  every  aspect  of  life.  We  have  so  much  fun  together  and  I  am  so  excited   about  our  future  together.    

 

I  would  like  to  thank  my  dad  for  always  visiting  me  in  every  place  I’ve  lived  and   being  proud  of  me.    

 

I  would  like  to  thank  my  mother  for  being  the  strongest  person  I  know.  She  has  been   so  encouraging  and  helpful  and  I  love  her  very  much.    

                   

 

 
(24)
(25)

 1.1  The  need  for  clean–energy    

One  of  the  greatest  challenges  facing  the  world  today  is  the  need  for  clean– renewable  energy  resources  to  supply  the  needs  of  a  quickly  growing  world– population.  Current  world  energy  consumption  is  524  quadrillion  BTU  (5.5  x  1020  

Joules  or  17.5  TW  per  year).1  Due  to  an  increase  in  world  population  to  3  billion  

people  by  2050,  the  world  energy  consumption  is  expected  to  increase  by  56%  and   double  by  the  end  of  the  century.  1–3  Most  of  this  population  growth  is  occurring  in  

the  developing  world,  which  presently  does  not  have  the  infrastructure  or  wealth  to   keep  up  with  this  demand.4    

Presently  86%  of  the  current  world–energy  is  supplied  by  fossil  fuels  and  it  is   projected  that  even  with  increase  world  population,  fossil  fuels  can  continue  to   power  the  planet  for  many  years  to  come.5,6  However,  increasing  levels  of  CO2  in  the  

atmosphere  have  been  rising  since  the  industrial  revolution  when  the  world   population  was  seven  times  less  than  today.  Given  that  human  activity  led  to   increased  concentrations  of  CO2  in  the  atmosphere  with  a  considerably  smaller  

population,  the  impact  of  today’s  rapidly  growing  world  population  could  lead  to   much  more  severe  results.  The  common  goal  amongst  scientists  and  policy  makers   is  to  prevent  the  concentrations  of  CO2  in  the  atmosphere  from  reaching  levels  such  

that  the  change  in  global  temperature  is  more  than  2oC.7  While  it  remains  unclear  

what  impact  the  increased  global  temperature  will  have,  it  seems  unwise  to  perform   an  uncontrolled  experiment  on  the  environment.    

(26)

This  quandary  necessitates  new  technologies  to  produce  and  store  

renewable  energy  that  minimizes  the  environmental  consequences  associated  with   burning  fossil  fuels.  

 

1.2  Renewable  Energy  

Due  to  the  inefficiency  of  photosynthesis  (1%)8  and  the  spatial  limitations  of  

wind  power,9  neither  biomass  nor  wind  is  a  viable  option  to  fully  meet  the  world  

energy  needs.  The  sun  is  by  far  the  most  abundant  source  of  energy  as  more  energy   from  the  sun  strikes  the  earth  in  just  one  hour  than  is  presently  consumed  in  one   year.  Impressively,  covering  0.1%  of  the  Earth’s  surface  with  solar  cells  with  an   efficiency  of  10%  would  satisfy  present  energy  needs.10,11  Unfortunately  due  to  the  

intermittent  and  diurnal  nature  of  sunlight,  in  order  to  make  solar–energy  as  a   viable  resource  requires  capture,  conversion,  and  storage.  

    Figure   1.1  Schematic   showing   (1)   solar   capture   of   solar   energy  by   a   photovoltaic   device,  (2)  conversion  of  solar  photons  into  a  wireless  current,  and  (3)  storage  via   breaking  the  bonds  of  H2O  to  make  H2  which  can  be  used  as  a  fuel.  Adapted  from  ref.  

(27)

1.3  Capture  of  solar  power  and  conversion  to  electrical  power    

An  elegant  technological  approach  to  directly  convert  sunlight  into  electricity   without  moving  parts  or  environmental  emissions  is  to  utilize  semiconductors.   Semiconductors  take  advantage  of  the  fact  that  photons  with  energy  equal  to  the   optical  band–gap  (similar  to  HOMO–LUMO  transition  for  molecules)  can  create  an   electron–hole  pair  that  can  be  separated  between  two  different  materials,  thus   effectively  establishing  a  potential  difference  across  the  interface.  However,  since   semiconductors  are  transparent  to  photons  below  the  band–gap  and  photons  having   energies  much  higher  than  the  band  gap  rapidly  release  heat  to  the  lattice  of  the   solid  the  upper  bound  conversion  efficiency  of  solar  power  input  to  electric  power   output  of  a  single–absorber  is  32%  based  on  a  semiconductor  with  a  band–gap  of   1.4  eV.  12  

   

Figure   1.2  Solar   irradiance   at   the   surface   of   the  Earth.   The  band–gap   of   silicon  is   overlaid   as   an   example   showing   that   photons   absorbed   at   the   band–gap   can   be   converted  and  those  absorbed  above  the  band–gap  are  wasted  as  heat.    

(28)

After  photogenerated  electrons  and  holes  are  created,  an  electric  field  is   required  to  separate  charges  such  that  they  can  be  transferred  to  an  external  load.   An  electric  field  can  be  established  by  interfacing  a  semiconductor  with  another   material  containing  a  different  work  function  (also  called  Fermi  level,  electron   affinity).  This  can  include  a  metal,  another  semiconductor,  doping  two  sides  of  the   same  semiconductor,  or  an  electrolyte  containing  a  redox  couple.  Once  interfaced,   charge  transfer  between  the  two  materials  occurs  until  equilibrium  is  established.   This  produces  a  region  in  each  material  that  is  depleted  of  majority  charge  carriers   (electrons  for  an  n–type  semiconductor  and  holes  for  a  p–type  semiconductor),   which  is  depicted  as  band–bending  within  the  semiconductor  (upward  for  n–type,   downward  for  p–type).  This  translates  to  a  built  in  potential  due  the  electric  field   formed  at  the  junction.  Upon  illumination,  a  non–equilibrium  concentration  of   photogenerated  electrons  and  holes  disturb  the  previously  established  equilibrium   formed  at  the  interface  and  the  electric  field  serves  to  separate  the  photogenerated   electrons  and  holes  such  that  they  can  be  extracted  to  do  electrical  work.  The   electrical  power  generated  could  be  used  directly.  However  due  to  the  intermittent   nature  of  sunlight,  it  is  also  important  to  store  the  electrical  power  generated  in  a   fuel.    

 

1.4  Conversion  of  electrical  power  into  fuels    

The  best–known  example  of  converting  solar  energy  and  storing  it  as  

chemical  energy  can  be  found  in  nature.  Photosynthetic  organisms  capture  sunlight   and  convert  water  and  carbon  dioxide  into  oxygen  and  reduced  organic  species,  

(29)

due  to  the  high  energy  density  the  chemical  bond.  The  primary  steps  in  

photosynthesis  are  absorption  of  solar  energy  by  chlorophyll  and  other  pigments,   after  which  the  photogenerated  electrons  and  holes  are  separated  in  the  

Photosystem  II  (PSII)  reaction  center.  The  oxidative  power  of  the  photogenerated   holes  in  PSII  are  transferred  to  the  oxygen  evolving  complex  to  split  water,  

producing  molecular  oxygen  which  is  released  into  the  atmosphere,  as  well  as   protons  and  electrons  which  are  transferred  and  consumed  in  Photosystem  I  (PSI)   to  reduce  NADP+  into  NADPH  (natures  form  of  hydrogen),  which  is  ultimately  used  

to  reduce  CO2  to  carbohydrates.  Since  products  from  the  water–splitting  reaction  

are  subsumed  in  subsequent  photosynthetic  processes,  water–splitting  is  the  most   critical  step  in  photosynthesis.6,13,14    

The  thermodynamics  of  water–splitting  can  be  described  by  the  following  oxygen   evolution  and  hydrogen  evolution  electrochemical  half  reactions  (OER  and  HER,   respectively):     2𝐻!𝑂  →  𝑂!+4𝐻!+4𝑒!     Eoanode  =  1.23V  −  0.059(pH)  vs.  NHE                                  (1.1)   4𝐻!+4𝑒!  2𝐻 !         Eocathode  =  0V  −  0.059(pH)  vs.  NHE                                    (1.2)    

combining  equations  (1)  and  (2)  indicates  that  a  total  voltage  of  1.23  V  is  required   to  drive  the  uphill  water–splitting  reaction.  However,  additional  voltage  is  necessary   to  drive  the  reaction  kinetics  or  rate  of  the  reaction  for  a  given  current  density  (JEC)  

making  the  overall  voltage  for  water–splitting  (VEC):  

(30)

  𝑉!" 𝐽!" =  𝜂!!+  𝜂!"# 𝐽!" +  𝜂!"# 𝐽!" +  𝜂!(𝐽!")   (1.3)    

where,  ηOER  and  ηHER  are  the  anodic  and  cathodic  overpotentials,  respectively,  that  

arise  from  the  intrinsic  activation  barrier  for  the  electrochemical  half–reaction   occurring  at  the  electrode–solution  interface  and  ηR  accounts  for  resistive  losses  

which  can  arise  from  resistance  through  the  electrodes,  contacts,  or  mass  transport   limitations.  Water–splitting  catalysts  can  minimize  ηOER  and  ηHER.  While  the  impact  

of  ηR  can  be  minimized  through  optimal  cell  designs,15–17  the  activation  

overpotentials  are  intrinsic  properties  of  the  catalysts  utilized  at  the  anode  and   cathode.  This  overpotential,  which  is  also  a  metric  for  catalyst  activity,  is  typically   reported  in  units  of  mV  decade–1,  and  is  logarithmically  related  to  the  current  

density  (J)  as  given  by  the  Tafel  law18:    

 

  𝐽= 𝑏  log   𝐽𝐽

!   (1.4)  

 

where    b  is  the  Tafel  slope  and  J0  is  the  exchange  current–density  that  characterizes  

the  intrinsic  activity  of  the  electrode  under  equilibrium  conditions.  In  order  to   optimize  the  efficiency  for  water–splitting,  that  is  the  ratio  of  the  thermodynamic   potential  for  water  splitting  to  the  thermodynamic  potential,  catalysts  exhibiting   high  J0  and  a  low  Tafel  slopes  are  necessary.  

(31)

1.5  Photoelectrochemical  water–splitting  

The  concept  of  a  photoelectrochemical  (PEC)  device  was  first  popularized  by   the  1976  paper  of  Fujishima  and  Honda.  19    They  described  immersing  a  TiO2  

semiconductor  in  solution,  illuminating  it  with  UV  light,  and  observing  upon  

application  of  a  potential  bias  the  evolution  of  both  hydrogen  and  oxygen.  Since  this   study,  hundreds  of  device–constructs  have  been  investigated  as  PECS.  They  can   broadly  be  classified  as  those  that  either  employ  a  solution  junction  (SJ)  or  buried   junction  (BJ)  for  charge  separation.20,21,22  While  the  physical  principles  underlying  

the  operation  of  the  methods  are  quite  similar,21  the  position  of  charge  separating  

interfaces  relative  to  interfaces  injecting  charge  into  water  redox  couples  has   important  consequences  for  implementation  of  either  method.  SJ–PEC  operates  on   the  principle  that  upon  submerging  a  semiconductor  in  a  solution  containing  a   redox  couple,  charge  transfer  at  the  interface  will  occur  provided  appropriate   alignment  between  the  semiconductor  Fermi  level  (EF)  and  the  Nernst  potential  of  

redox  species.  The  depletion  region  formed  due  to  band–bending  within  the   semiconductor  allows  for  charge  injection  into  the  solution.  For  the  case  of  water   splitting  by  a  SJ–PEC,  the  quasi–Fermi  level  for  photogenerated  electrons  or  holes   must  straddle  the  thermodynamic  potential  for  the  water–splitting  reaction  (i.e.   1.23  V).23  Due  to  the  previously  mentioned  kinetic  overpotentials  the  actual  voltage  

required  for  water–splitting  lies  between  1.6–2  V.  Since  the  photovoltage  generated   from  a  semiconductors  is  typically  at  least  0.4  V  less  than  its  band–gap,24  this  

requires  the  semiconductor  to  have  a  band–gap  in  excess  of  2  V.  Therefore,  even   with  proper  band–alignment,  only  a  small  fraction  of  the  solar  spectrum  can  be  

(32)

utilized  limiting  the  efficiency  to  7%.23,25  Furthermore,  semiconductors  are  rarely  

good  water–splitting  catalysts.26  This  limitation  may  be  addressed  by  depositing  

water–splitting  catalysts  on  the  semi–conductor  surface.  But  surface  modification   often  affects  the  efficiency  of  light  absorption  and  charge  separation  through  the   semiconductor–electrolyte  interface  (SEI).2728  Since  charge  separation  and  catalysis  

are  intimately  tied  together,  optimization  of  optimization  of  the  individual   components  of  such  a  device  is  challenging  and  such  devices  have  only   demonstrated  solar–to–fuel  efficiencies  (SFE)  of  less  than  1%.29    

  1.5.1  BJ–PEC  requirements    

Many  of  the  aforementioned  challenges  with  SJ–PEC  can  be  overcome  by   relying  on  a  solid–state  semiconductor–semiconductor  junction  (also  referred  to  as   a  buried  junction)  to  perform  charge  separation.  In  the  BJ–PEC  configuration  a  

 

Figure   1.3   Qualitative   schematic   of   an  n–type   semiconductor/electrolyte   junction   for  photoelectrochemical  water–splitting.  

(33)

solid–state  junction  is  formed  either  between  two  semiconductors  or  by  doping  two   sides  of  the  same  semiconductor.  By  controlling  the  doping–levels,  the  width  of  the   depletion  region  can  be  optimized  for  maximum  charge  separation.30  Thirty  years  of  

ongoing  research  in  the  photovoltaic  (PV)  community  has  led  to  doping  as  a  mature   technology  and  optimal  charge  separation  and  photovoltage  characteristics  has   been  achieved.31  The  buried–junction  can  be  connected  to  relevant  interfaces  (e.g.  

for  charge  injection  to  catalysts)  through  Ohmic  contacts,  which  can  be  either  thin– metal  films  or  conductive  oxides  deposited  on  the  surface  of  the  semiconductor.   Since  the  semiconductor  surface  is  completely  protected  from  the  aqueous   environment,  semiconductor  stability  no  longer  poses  a  problem.  Ultimately,  the   only  requirement  is  of  the  BJ–PEC  is  that  an  appropriate  voltage  is  supplied  to  drive   the  HER  and  OER  conversions.29  

 

Figure  1.4  Qualitative  schematic  of  a  buried  semiconductor/electrolyte  junction  for   photoelectrochemical  water–splitting.    

(34)

Furthermore,  decoupling  the  absorption  and  charge  rectification  properties  from   the  water–splitting  catalysis  enables  independent  optimization  of  all  the  required   components.  The  Ohmic  contacts  can  be  optimized  by  choosing  highly  conductive   materials  with  proper  band–alignment  to  allow  facile  charge  transport.32,33  Water–

splitting  catalysts  can  be  independently  evaluated  and  interfaced.      

1.5.2  BJ–PEC  devices    

Many  buried  junction  BJ–PEC  devices  have  been  demonstrated  in  the  last  30   years.  To  date  the  highest  solar–to–fuels  efficiency  (SFE)  devices  utilized  either   expensive  multi–junction  III–V  solar  cells,34,35  low  efficiency  amorphous  silicon  (a–

Si)  solar  cells,35–38  and  most  recently  copper  indium  gallium  diselenide  (CIGS)  solar  

cells.39,40  In  all  cases  the  integrated  BJ–PEC  device  suffered  from  either  low  SFE,36–38  

and/or  were  composed  of  expensive  PV  materials,  expensive  catalysts,  and  operated   in  strongly  acidic  or  basic  electrolytes  hindering  long–term  stability.34,35,39,40  For  

these  reasons,  none  of  these  devices  were  realistic  for  economic  viability.  In  order  to   make  this  technology  realistic  from  both  a  cost  and  stability  perspective,  low–cost   high  efficiency  PV  materials  and  high  efficiency  earth–abundant  catalyst  that   operate  in  benign  aqueous  environments  are  necessary.    

 

1.6  Crystalline  Silicon  

  Silicon  is  prime  candidate  material  for  buried–junction  devices  owing  to  its   almost  optimal  band–gap  of  1.1  eV  which  absorbs  a  large  fraction  of  the  solar   spectrum  and  it  is  the  second  most  abundant  material  on  the  planet.  Additionally  

(35)

silicon  solar  cells  and  modules  are  one  of  the  most  mature  technologies  developed   for  solar  capture  and  conversion.31  Currently,  the  record  solar  conversion  efficiency  

for  c–Si  solar  cells  has  hit  25%,  which  is  quite  impressive  considering  the  

thermodynamic  limit  of  29%.31,41,42  Traditionally  silicon  PV’s  have  been  thought  to  

be  too  expensive.11,13,43,44  However,  after  30  years  of  optimization  the  price  of  silicon  

solar  cells  has  declined  and  the  conversion  efficiency  has  improved.  31,41  ,45    From  

2004–2008  crystalline  silicon  (c–Si)  PV  modules  remained  steady  at  $3.5–$4  per   peak  watt  (WP–1).  However,  due  to  the  price  decrease  in  polycrystalline  silicon,  

which  is  used  a  feedstock  material  for  c–Si,  in  2008  the  price  decreased  by  half  and   in  2011  fell  below  $1  Wp–1.41–47  In  order  to  be  cost  competitive  with  current  the  

baseload  fossil  fuel  electrical  utility  plants  in  the  US  without  subsidies  the  price  

needs  to  further  decrease  to  $0.5–0.75  WP–1.  Modeling  and  outlined  pathways  show  

 

Figure   1.5  Chinese  c–Si  PV  module  prices  since  2006.  The  data  was  adapted  from   ref.  43.    

(36)

that  this  goal  should  be  achievable  by  the  year  2020.47,48    However,  even  the  current  

status  of  c–Si  PV’s  has  made  them  a  cost–competitive  technology  with  the  current   resources  used  in  developing  nations  such  as  Africa,  the  Persian  Gulf,  and  India.45    

 

1.7  Earth–abundant  water–splitting  catalysts  

Traditionally  catalysts  for  water–splitting  include  rare  earth  elements  of   noble  metals  including  Pt,  Ir,  Ru.49–51    Our  labs  changed  the  paradigm  by  discovering  

active  catalysts  composed  of  Earth–abundant  materials.  Oxidation  of  Co2+  salts  in  

buffered  solutions  yield  a  cobalt–oxide  water–oxidation  catalyst  self–assembles   onto  conductive  substrates.52,53  This  technique  has  been  extended  to  other  earth–

abundant  metals  such  as  Ni  and  Mn.54–56  These  catalyst  are  stable  by  virtue  of  a  self–

healing  mechanism,57–60  and  they  operate  under  a  variety  of  pH  ranges,55,56,61,62    and  

in  the  presence  of  impurities.  61,62  Additionally,  it  has  been  shown  that  these  

catalysts  can  be  easily  interfaced  with  semiconductors63–68  and  specifically  with  

buried–junction  silicon  PV’s.36,69–71  Since  these  OER  catalysts  operate  under  a  variety  

of  pH  neutral  conditions,  the  choice  of  catalyst  for  the  hydrogen  evolution  reaction   (HER)  has  not  required  platinum.36,72    Specifically,  NiMo(Zn)  alloys  for  hydrogen  

evolution,  which  also  self–assemble  onto  conductive  substrates  from  an  aqueous   solution  containing  Ni2+,  sodium  molybdate  and  anhydrous  zinc  chloride  in  the  

presence  of  pyrophosphate,  bicarbonate,  and  hydrazine.  Subsequent  leaching  in   base  produces  a  high  surface  area  material.73  Theses  alloys  are  able  to  achieve  

(37)

leaching,  can  attain  activities  as  high  as  at  1000  mA  cm–2  at  an  overpotential  of  35  

mV.  72,74    

   

1.8  Overview  

The  following  chapters  of  the  thesis  will  discuss  the  interfacing  of  water– splitting  catalysts  with  c–Si  photovoltaics  to  produce  BJ–PEC  devices  using  a   completely  modular  approach.  Chapter  2  focuses  on  directly  depositing  OER   catalysts  onto  single–junction  c–Si  PV’s  to  create  a  light–assisted  photoanode.  Of   particular  importance  is  the  ability  to  protect  silicon  from  the  oxidizing  conditions   required  for  water–splitting  with  a  protective  interface.  Fabrication  of  these  silicon   photoanodes  requires  optimization  of  two  interfaces:  a  silicon–protective  layer   interface  and  a  protective  layer  catalyst  interface.  Optimization  of  both  lead  to  a   lower  overpotential  (as  determined  by  Tafel  analysis)  required  for  OER.  

Since  a  single–junction  c–Si  solar  cell  does  not  supply  the  voltage  required  to   achieve  water–splitting  without  the  use  of  an  external  potential  bias,  in  order  to   realize  a  stand–alone  water–splitting  device  based  on  c–Si,  multiple  single–junction  

  Figure   1.6  Depictions   of   the   molecular   structure   of   our   Mn,   Co,   and   Ni   water– oxidation  catalysts.  Reprinted  with  permission  from  Mike  Huynh.  

(38)

c–Si  solar  cells  need  to  be  connected  in  series.  Given  that  the  technical  aspects  of   device  integration  can  be  quite  challenging,  it  is  beneficial  to  predict  the  behavior  of   a  coupled  photovoltaic–electrochemical  device  (PV–EC).  In  Chapter  3,  steady–state   equivalent–circuit  analysis  of  a  PV  based  on  a  string  of  single–junction  c–Si  solar   cells  driving  an  electrochemical  load  based  on  the  OER–catalysts  developed  in  our   lab  allows  us  to  predict  the  coupled  behavior  between  the  PV  and  EC  components.   Importantly  this  allows  us  to  observe  the  impact  solar–to–fuel  efficiency  based  on   parameters  such  as  choice  of  catalysts  as  well  as  resistive  losses.    

Guided  by  modeling  and  simulation,  a  modular  PV–EC  device  is  presented  in   Chapter  4  that  is  constructed  from  c–Si  and  non–precious  catalysts.  A  10%  solar–to– fuels  efficiency    is  demonstrated.  This  chapter  illustrates  how  a  modular  approach   allows  for  independent  characterization  of  each  component.    

  The  fi

References

Related documents