• No results found

DL Valinium nitrate

N/A
N/A
Protected

Academic year: 2020

Share "DL Valinium nitrate"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, o95±o97 DOI: 10.1107/S1600536802000028 N. Srinivasanet al. C5H12NO2+NO3ÿ

o95

organic papers

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

DL

-Valinium nitrate

N. Srinivasan,aB. Sridharb and R. K. Rajaramb*

aDepartment of Physics, Thiagarajar College,

Madurai 625 009, India, andbDepartment of

Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: sshiya@yahoo.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.055

wRfactor = 0.180

Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The asymmetric unit of the title compound, C5H12NO2+NO3ÿ,

consists of four valinium cations and four nitrate anions. The valinium residues are related to one another by pseudo-twofold symmetry and pseudo-translation. The nitrate anions are related by a pseudo-c-glide and pseudo-translation. The crystal structure is stabilized by NÐH O and OÐH O hydrogen bonds.

Comment

Valine is one of the essential amino acids. The crystal struc-tures ofl-valine hydrochloride (Parthasarathy, 1966; Andoet al., 1967), l-valine hydrochloride monohydrate (Rao, 1969),

dl-valine (Mallikarjunan & Rao, 1969), l-valine (Torii & Iitaka, 1970),l-valinium nitrate (Srinivasanet al., 1997) and

l-valinel-valininium perchlorate monohydrate (Pandiarajan et al., 2001) have been reported. The structure ofdl-valinium nitrate was solved inP21/c(Rao & Parthasarathy, 1974) and

re®ned to an R value of 0.12. However, our preliminary crystallographic investigation ondl-valinium nitrate indicated a triclinic cell. Hence the crystal structure determination of the title compound, (I), was undertaken.

The collected intensity data, in the present study, con®rm the triclinic system. The transformation to the monoclinic primitive cell reported by Rao & Parthasarathy (1974) requiresH=h;K=k/2 andL=k/2 +l; thushklre¯ections with kodd have to be systematically weak. In fact, the intensity data showed that the re¯ections with k odd are not weak. Another transformation (012/010/100) to a monoclinic C -centred cell is possible; however, one of the cell angles differs by 0.25from 90. Thus no higher symmetry has been

over-looked in the present study.

The geometry of four crystallographically independent valinium residues (A, B, C and D; Fig. 1) are similar in geometry and agree well with dl-valine hydrochloride (Di Blasioet al., 1977). The residuesAandCare related toBand D, respectively, by a pseudo-twofold symmetry rotation around (1/2,y, 1/4) and a translation of 1/6 along theyaxis.

(2)

organic papers

o96

N. Srinivasanet al. C5H12NO2+NO3ÿ Acta Cryst.(2002). E58, o95±o97

ResiduesAandBare related toCandD, respectively, by a pseudo-translation of half the unit cell along thebaxis. The pseudosymmetry present in the structure looks credible in view of the difference in the conformations of the C(H)(CH3)2

moieties (Fig. 2). The geometry of the four nitrate anions (I, II, III and IV) is similar and they exhibit pseudosymmetric features. Anions I and II are related to III and IV, respectively, by a pseudo-c-glide with a mirror plane aty= 0. Anions I and III are related to II and IV, respectively, by a pseudo-trans-lation of half the unit cell along thebaxis.

Generally in valine residues, all three possible rotational isomers,viz. trans, gauche-I andgauche-II, have been found in the crystalline state (Torii & Iitaka, 1970). For the valinium residues A, B, C and D, the conformation angles 1 are

19.9 (4), 22.6 (4), 33.1 (4) and 32.6 (4), respectively. The

branched-chain conformation angle11 [159.0 (3), 160.7 (3),

174.3 (3) and 177.4 (3)] of the four valinium residues

indi-cates the trans form. However, the conformation angle 12

indicates the gauche-II form [ÿ74.5 (4) and ÿ73.3 (4)] for

residues A and B, and the gauche-I form [52.2 (4) and 54.6 (4)] for residuesCandD. The absence of higher perfect

symmetry in the crystal may be due to this difference in the conformation angle12.

All four residues have strikingly similar hydrogen-bonding patterns due to the presence of the pseudosymmetry (Fig. 3 and Table 1). The nitrate anions are involved in strong OÐ H O and NÐH O hydrogen bonds with the valinium residues and as a result the corresponding acceptor O atoms have relatively weak covalent bonds with the N atoms. The amino N atoms of the valinium residues are also involved in relatively weak NÐH O hydrogen bonds with the nitrate anions. Chelated three-centered hydrogen bonds of amino nitrogen with nitrate O atoms, besides three-centered hydrogen bonds of the amino nitrogen with carboxyl (head-to-tail sequence) and nitrate O atoms are observed in the structure (Jeffrey & Saenger, 1991). The aggregation of the double layered hydrophilic groups about the x= 0 plane is such that these groups are involved in an extensive two-dimensional hydrogen-bonding network. The hydrophobic

zone (x = 1/2) is sandwiched between the double-layered hydrophilic groups.

Experimental

The title compound was crystallized by slow evaporation from an aqueous solution ofdl-valine and nitric acid in a stoichiometric ratio of 1:1.

Crystal data C5H12NO2+NO3ÿ

Mr= 180.17

Triclinic,P1 a= 9.5695 (10) AÊ b= 11.2104 (16) AÊ c= 17.537 (3) AÊ

= 108.52 (3)

= 104.14 (2)

= 90.25 (2) V= 1722.9 (4) AÊ3

Z= 8

Dx= 1.389 Mg mÿ3

Dm= 1.375 Mg mÿ3

Dmmeasured by ¯otation using a

mixture of carbon tetrachloride and xylene

CuKradiation Cell parameters from 25

re¯ections

= 15.2±23.8

= 1.08 mmÿ1

T= 293 (2) K Needle, colorless 0.450.300.15 mm

Data collection Enraf±Nonius CAD-4

diffractometer

!±2scans

Absorption correction: scan (Northet al., 1968) Tmin= 0.712,Tmax= 0.851

5768 measured re¯ections 5409 independent re¯ections 4447 re¯ections withI> 2(I)

Rint= 0.012

max= 63.5

h= 0!10

k=ÿ12!11

l=ÿ19!19 3 standard re¯ections

frequency: 60 min intensity decay: none

Re®nement Re®nement onF2

R[F2> 2(F2)] = 0.055

wR(F2) = 0.180

S= 1.11 5409 re¯ections 435 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0809P)2

+ 1.5449P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.43 e AÊÿ3 min=ÿ0.31 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0049 (4) Figure 1

View of the four cations and four anions in the asymmetric unit of (I) showing the numbering schemes; displacement ellipsoids are drawn at the 50% probability level (Johnson, 1976). H atoms have been omitted for

(3)

Table 1

Selected geometric parameters (AÊ,).

N1ÐO1A 1.226 (3) N1ÐO1B 1.249 (3) N1ÐO1C 1.266 (4) N2ÐO2A 1.222 (4) N2ÐO2B 1.246 (3) N2ÐO2C 1.268 (4) N3ÐO3A 1.224 (4) N3ÐO3B 1.251 (3) N3ÐO3C 1.268 (4) N4ÐO4A 1.218 (4)

N4ÐO4B 1.246 (3) N4ÐO4C 1.272 (4) O11ÐC11 1.199 (4) O12ÐC11 1.312 (4) O21ÐC21 1.197 (4) O22ÐC21 1.315 (4) O31ÐC31 1.204 (4) O32ÐC31 1.315 (4) O41ÐC41 1.204 (4) O42ÐC41 1.314 (4)

O11ÐC11ÐC12ÐN11 19.9 (4) N11ÐC12ÐC13ÐC15 ÿ74.5 (4) N11ÐC12ÐC13ÐC14 159.0 (3) O21ÐC21ÐC22ÐN21 22.6 (4) N21ÐC22ÐC23ÐC25 ÿ73.3 (4) N21ÐC22ÐC23ÐC24 160.7 (3)

O31ÐC31ÐC32ÐN31 33.1 (4) N31ÐC32ÐC33ÐC34 174.3 (3) N31ÐC32ÐC33ÐC35 52.2 (4) O41ÐC41ÐC42ÐN41 32.6 (4) N41ÐC42ÐC43ÐC45 54.6 (4) N41ÐC42ÐC43ÐC44 177.4 (3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O12ÐH12 O1Ci 0.82 1.87 2.636 (3) 155

N11ÐH11B O21ii 0.89 2.18 2.907 (3) 138

N11ÐH11B O4Aiii 0.89 2.53 3.014 (4) 115

N11ÐH11C O4Biv 0.89 1.97 2.843 (4) 168

N11ÐH11A O3Cv 0.89 2.02 2.914 (4) 179

N11ÐH11A O3Bv 0.89 2.46 3.048 (4) 124

O22ÐH22 O4Cv 0.82 1.84 2.628 (3) 160

N21ÐH21C O2Biv 0.89 1.96 2.840 (4) 168

N21ÐH21A O1C 0.89 2.01 2.899 (3) 178 N21ÐH21A O1B 0.89 2.50 3.061 (4) 122 N21ÐH21B O31vi 0.89 2.20 2.920 (4) 138

N21ÐH21B O2Avii 0.89 2.45 2.968 (4) 117

O32ÐH32 O2Cviii 0.82 1.88 2.660 (3) 160

N31ÐH31B O41ii 0.89 2.13 2.885 (3) 143

N31ÐH31B O3Aii 0.89 2.47 2.963 (4) 116

N31ÐH31A O4C 0.89 2.08 2.946 (4) 165 N31ÐH31A O4B 0.89 2.50 3.019 (4) 118 N31ÐH31C O3Bv 0.89 1.97 2.835 (4) 163

O42ÐH42 O3C 0.82 1.91 2.667 (3) 152 N41ÐH41B O11ix 0.89 2.11 2.877 (4) 144

N41ÐH41B O1Avii 0.89 2.54 3.011 (4) 114

N41ÐH41C O1B 0.89 1.97 2.832 (4) 163 N41ÐH41A O2C 0.89 2.09 2.954 (3) 165 N41ÐH41A O2B 0.89 2.47 3.004 (4) 119

Symmetry codes: (i) 1ÿx;2ÿy;1ÿz; (ii) 1‡x;y;z; (iii) 2ÿx;1ÿy;ÿz; (iv) x;1‡y;z; (v) 1ÿx;1ÿy;ÿz; (vi) xÿ1;y;z; (vii) ÿx;1ÿy;1ÿz; (viii) 1ÿx;1ÿy;1ÿz; (ix)xÿ1;yÿ1;z.

The structure is twinned (twin matrix 100/010/011) with a twinning factor of 0.140 (2). All H atoms were ®xed by geometrical constraints and were allowed to ride on the parent atom.

Data collection: CAD-4 Software (Enraf±Nonius, 1989); cell re®nement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:PLATON(Spek, 1999); software used to prepare material for publication:SHELXL97.

BS and RKR thank the Department of Science and Tech-nology (DST), Government of India, for ®nancial support. The authors thank Dr Bjorn Dalhus, Department of Chem-istry, University of Oslo, Norway, for his help in the analysis of pseudosymmetry.

References

Ando, O., Ashida, T., Sasada, Y. & Kakudo, M. (1967).Acta Cryst.23, 172±173. Di Blasio, B., Napolitano, G. & Pedone, C. (1977).Acta Cryst.B33, 542±545. Enraf±Nonius (1989).CAD-4Software. Version 5.0. Enraf±Nonius, Delft, The

Netherlands.

Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin, Heidelberg, New York: Springer-Verlag.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Mallikarjunan, M. & Rao, S. T. (1969).Acta Cryst.B25, 296±303.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Pandiarajan, S., Sridhar, B. & Rajaram, R. K. (2001).Acta Cryst.E57, o466± o468.

Parthasarathy, R. (1966).Acta Cryst.21, 422±426.

Rao, S. N. & Parthasarathy, R. (1974).Am. Crystallogr. Assoc.(Spring), p. 129. Rao, S. T. (1969).Z. Kristallogr.128, 339±351.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of GoÈttingen, Germany.

Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.

Srinivasan, N., Rajaram, R. K. & Jeba Raj, D. D. (1997).Z. Kristallogr.212, 313±314.

Torii, K & Iitaka, Y. (1970).Acta Cryst.B26, 1317±1326.

Acta Cryst.(2002). E58, o95±o97 N. Srinivasanet al. C5H12NO2+NO3ÿ

o97

organic papers

Figure 3

(4)

supporting information

sup-1 Acta Cryst. (2002). E58, o95–o97

supporting information

Acta Cryst. (2002). E58, o95–o97 [https://doi.org/10.1107/S1600536802000028]

DL

-Valinium nitrate

N. Srinivasan, B. Sridhar and R. K. Rajaram

DL-valinium nitrate

Crystal data

C5H12NO2+·NO3−

Mr = 180.17

Triclinic, P1 a = 9.5695 (10) Å b = 11.2104 (16) Å c = 17.537 (3) Å α = 108.52 (3)° β = 104.14 (2)° γ = 90.25 (2)° V = 1722.9 (4) Å3

Z = 8 F(000) = 768

Dx = 1.389 Mg m−3

Dm = 1.375 Mg m−3

Dm measured by flotation using mixture of carbon tetrachloride and xylene

Cu radiation, λ = 1.54180 Å Cell parameters from 25 reflections θ = 15.2–23.8°

µ = 1.08 mm−1

T = 293 K Needle, colorless 0.45 × 0.3 × 0.15 mm

Data collection

Enraf-Nonius sealed tube diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω–2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.712, Tmax = 0.851 5768 measured reflections

5409 independent reflections 4447 reflections with I > 2σ(I) Rint = 0.012

θmax = 63.5°, θmin = 2.8°

h = 0→10 k = −12→11 l = −19→19

3 standard reflections every 60 min intensity decay: none

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.055

wR(F2) = 0.180

S = 1.11 5409 reflections 435 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0809P)2 + 1.5449P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.43 e Å−3 Δρmin = −0.31 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2002). E58, o95–o97

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

N1 0.1736 (3) 0.6748 (3) 0.51090 (16) 0.0383 (6)

O1A 0.1612 (3) 0.6144 (3) 0.55649 (16) 0.0536 (7)

O1B 0.1719 (3) 0.6211 (2) 0.43638 (14) 0.0524 (7)

O1C 0.1884 (3) 0.7944 (2) 0.53753 (14) 0.0498 (6)

N2 0.1416 (3) 0.1749 (3) 0.50931 (16) 0.0397 (6)

O2A 0.1516 (3) 0.1128 (3) 0.55619 (17) 0.0629 (8)

O2B 0.1337 (3) 0.1246 (2) 0.43381 (15) 0.0554 (7)

O2C 0.1368 (3) 0.2936 (2) 0.53592 (14) 0.0489 (6)

N3 0.1704 (3) 0.3332 (3) 0.01105 (17) 0.0397 (6)

O3A 0.1595 (3) 0.4387 (2) 0.05717 (16) 0.0547 (7)

O3B 0.1713 (3) 0.3136 (2) −0.06314 (15) 0.0569 (7)

O3C 0.1811 (3) 0.2391 (2) 0.03680 (14) 0.0482 (6)

N4 0.8549 (3) 0.1627 (3) −0.00921 (16) 0.0382 (6)

O4A 0.8463 (3) 0.0542 (2) −0.05549 (17) 0.0622 (8)

O4B 0.8636 (3) 0.1893 (2) 0.06651 (14) 0.0531 (7)

O4C 0.8580 (3) 0.2546 (2) −0.03675 (14) 0.0507 (6)

O11 0.8927 (3) 1.1682 (2) 0.25717 (14) 0.0470 (6)

O12 0.7869 (3) 1.0479 (3) 0.31090 (14) 0.0619 (8)

H12 0.8094 1.1098 0.3533 0.093*

C11 0.8311 (3) 1.0710 (3) 0.25139 (18) 0.0359 (7)

C12 0.7917 (3) 0.9582 (3) 0.17196 (18) 0.0333 (7)

H12A 0.8145 0.8819 0.1866 0.040*

N11 0.8853 (3) 0.9727 (2) 0.11845 (15) 0.0344 (6)

H11A 0.8642 0.9077 0.0712 0.052*

H11B 0.9778 0.9749 0.1451 0.052*

H11C 0.8700 1.0442 0.1071 0.052*

C13 0.6305 (4) 0.9430 (3) 0.1256 (2) 0.0463 (8)

H13 0.6212 0.8848 0.0691 0.056*

C14 0.5402 (5) 0.8813 (5) 0.1654 (3) 0.0739 (13)

H14A 0.5795 0.8044 0.1700 0.111*

H14B 0.4423 0.8626 0.1315 0.111*

H14C 0.5417 0.9378 0.2198 0.111*

C15 0.5736 (5) 1.0651 (5) 0.1170 (3) 0.0711 (12)

H15A 0.6333 1.1015 0.0919 0.107*

(6)

supporting information

sup-3 Acta Cryst. (2002). E58, o95–o97

H15C 0.4761 1.0482 0.0826 0.107*

O21 0.1042 (3) 0.9136 (2) 0.24535 (14) 0.0468 (6)

O22 0.2003 (3) 0.7362 (3) 0.18907 (14) 0.0593 (8)

H22 0.1754 0.7553 0.1466 0.089*

C21 0.1632 (3) 0.8214 (3) 0.25036 (18) 0.0351 (7)

C22 0.2082 (3) 0.7892 (3) 0.33035 (18) 0.0351 (7)

H22A 0.1868 0.6981 0.3167 0.042*

N21 0.1160 (3) 0.8569 (2) 0.38509 (15) 0.0349 (6)

H21A 0.1394 0.8401 0.4327 0.052*

H21B 0.0233 0.8312 0.3595 0.052*

H21C 0.1304 0.9397 0.3956 0.052*

C23 0.3694 (4) 0.8233 (4) 0.3754 (2) 0.0460 (8)

H23 0.3813 0.8205 0.4319 0.055*

C24 0.4604 (5) 0.7251 (5) 0.3340 (3) 0.0750 (14)

H24A 0.4234 0.6425 0.3291 0.112*

H24B 0.5589 0.7418 0.3671 0.112*

H24C 0.4566 0.7289 0.2796 0.112*

C25 0.4237 (4) 0.9557 (4) 0.3841 (3) 0.0658 (11)

H25A 0.3643 1.0157 0.4103 0.099*

H25B 0.4192 0.9609 0.3299 0.099*

H25C 0.5219 0.9744 0.4174 0.099*

O31 0.8968 (3) 0.6711 (2) 0.25551 (14) 0.0475 (6)

O32 0.8201 (3) 0.5390 (2) 0.31209 (14) 0.0573 (7)

H32 0.8487 0.5985 0.3554 0.086*

C31 0.8441 (3) 0.5699 (3) 0.24979 (18) 0.0345 (7)

C32 0.7936 (3) 0.4635 (3) 0.16793 (17) 0.0314 (6)

H32A 0.8012 0.3824 0.1780 0.038*

N31 0.8923 (3) 0.4737 (2) 0.11565 (15) 0.0344 (6)

H31A 0.8658 0.4123 0.0667 0.052*

H31B 0.9827 0.4666 0.1414 0.052*

H31C 0.8872 0.5483 0.1077 0.052*

C33 0.6353 (4) 0.4736 (3) 0.1242 (2) 0.0430 (8)

H33 0.6268 0.5595 0.1219 0.052*

C34 0.5349 (5) 0.4500 (6) 0.1735 (3) 0.0844 (16)

H34A 0.5641 0.5082 0.2294 0.127*

H34B 0.5393 0.3651 0.1747 0.127*

H34C 0.4377 0.4618 0.1478 0.127*

C35 0.5889 (4) 0.3815 (4) 0.0358 (2) 0.0606 (11)

H35A 0.6527 0.3961 0.0045 0.091*

H35B 0.4918 0.3936 0.0101 0.091*

H35C 0.5929 0.2965 0.0370 0.091*

O41 0.1078 (3) 0.4142 (2) 0.24196 (14) 0.0470 (6)

O42 0.1884 (3) 0.2272 (3) 0.18719 (14) 0.0566 (7)

H42 0.1615 0.2429 0.1436 0.085*

C41 0.1609 (3) 0.3196 (3) 0.24838 (18) 0.0349 (7)

C42 0.2078 (3) 0.2956 (3) 0.33083 (17) 0.0318 (7)

H42A 0.2007 0.2044 0.3209 0.038*

(7)

supporting information

sup-4 Acta Cryst. (2002). E58, o95–o97

H41A 0.1331 0.3433 0.4306 0.051*

H41B 0.0178 0.3220 0.3550 0.051*

H41C 0.1127 0.4384 0.3895 0.051*

C43 0.3651 (4) 0.3510 (4) 0.3754 (2) 0.0441 (8)

H43 0.3716 0.4404 0.3799 0.053*

C44 0.4689 (5) 0.2850 (6) 0.3252 (3) 0.0845 (16)

H44A 0.4392 0.2900 0.2700 0.127*

H44B 0.4678 0.1980 0.3222 0.127*

H44C 0.5650 0.3254 0.3519 0.127*

C45 0.4122 (4) 0.3429 (4) 0.4625 (2) 0.0593 (10)

H45A 0.3469 0.3844 0.4941 0.089*

H45B 0.5083 0.3833 0.4892 0.089*

H45C 0.4111 0.2558 0.4594 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

supporting information

sup-5 Acta Cryst. (2002). E58, o95–o97

C25 0.051 (2) 0.071 (3) 0.065 (3) −0.005 (2) 0.0113 (19) 0.011 (2) O31 0.0638 (15) 0.0398 (14) 0.0333 (12) −0.0064 (11) 0.0123 (11) 0.0049 (10) O32 0.094 (2) 0.0496 (15) 0.0270 (12) −0.0076 (14) 0.0201 (12) 0.0073 (11) C31 0.0393 (17) 0.0400 (19) 0.0255 (15) 0.0065 (14) 0.0091 (12) 0.0120 (13) C32 0.0403 (17) 0.0294 (15) 0.0249 (14) 0.0031 (12) 0.0093 (12) 0.0087 (12) N31 0.0425 (14) 0.0339 (14) 0.0265 (13) 0.0078 (11) 0.0094 (11) 0.0090 (11) C33 0.0415 (18) 0.0401 (18) 0.0410 (18) 0.0068 (14) 0.0084 (14) 0.0063 (14) C34 0.053 (3) 0.120 (4) 0.069 (3) −0.002 (3) 0.023 (2) 0.011 (3) C35 0.060 (2) 0.057 (2) 0.052 (2) 0.0129 (19) 0.0000 (18) 0.0101 (18) O41 0.0615 (15) 0.0510 (15) 0.0317 (12) 0.0209 (12) 0.0100 (11) 0.0193 (11) O42 0.0865 (19) 0.0593 (16) 0.0250 (12) 0.0283 (14) 0.0162 (12) 0.0136 (11) C41 0.0399 (17) 0.0360 (17) 0.0265 (15) 0.0073 (14) 0.0071 (13) 0.0084 (13) C42 0.0421 (17) 0.0314 (16) 0.0258 (15) 0.0119 (13) 0.0128 (12) 0.0115 (12) N41 0.0445 (15) 0.0340 (14) 0.0252 (12) 0.0060 (11) 0.0096 (11) 0.0113 (11) C43 0.0437 (18) 0.059 (2) 0.0350 (17) 0.0053 (16) 0.0086 (14) 0.0236 (16) C44 0.050 (2) 0.142 (5) 0.064 (3) 0.020 (3) 0.022 (2) 0.031 (3) C45 0.057 (2) 0.075 (3) 0.045 (2) 0.001 (2) −0.0009 (17) 0.0284 (19)

Geometric parameters (Å, º)

N1—O1A 1.226 (3) C24—H24A 0.96

N1—O1B 1.249 (3) C24—H24B 0.96

N1—O1C 1.266 (4) C24—H24C 0.96

N2—O2A 1.222 (4) C25—H25A 0.96

N2—O2B 1.246 (3) C25—H25B 0.96

N2—O2C 1.268 (4) C25—H25C 0.96

N3—O3A 1.224 (4) O31—C31 1.204 (4)

N3—O3B 1.251 (3) O32—C31 1.315 (4)

N3—O3C 1.268 (4) O32—H32 0.82

N4—O4A 1.218 (4) C31—C32 1.512 (4)

N4—O4B 1.246 (3) C32—N31 1.495 (4)

N4—O4C 1.272 (4) C32—C33 1.543 (4)

O11—C11 1.199 (4) C32—H32A 0.98

O12—C11 1.312 (4) N31—H31A 0.89

O12—H12 0.82 N31—H31B 0.89

C11—C12 1.517 (4) N31—H31C 0.89

C12—N11 1.488 (4) C33—C34 1.514 (6)

C12—C13 1.539 (5) C33—C35 1.519 (5)

C12—H12A 0.98 C33—H33 0.98

N11—H11A 0.89 C34—H34A 0.96

N11—H11B 0.89 C34—H34B 0.96

N11—H11C 0.89 C34—H34C 0.96

C13—C15 1.513 (6) C35—H35A 0.96

C13—C14 1.520 (5) C35—H35B 0.96

C13—H13 0.98 C35—H35C 0.96

C14—H14A 0.96 O41—C41 1.204 (4)

C14—H14B 0.96 O42—C41 1.314 (4)

(9)

supporting information

sup-6 Acta Cryst. (2002). E58, o95–o97

C15—H15A 0.96 C41—C42 1.515 (4)

C15—H15B 0.96 C42—N41 1.485 (4)

C15—H15C 0.96 C42—C43 1.540 (5)

O21—C21 1.197 (4) C42—H42A 0.98

O22—C21 1.315 (4) N41—H41A 0.89

O22—H22 0.82 N41—H41B 0.89

C21—C22 1.521 (4) N41—H41C 0.89

C22—N21 1.494 (4) C43—C45 1.516 (5)

C22—C23 1.535 (5) C43—C44 1.526 (5)

C22—H22A 0.98 C43—H43 0.98

N21—H21A 0.89 C44—H44A 0.96

N21—H21B 0.89 C44—H44B 0.96

N21—H21C 0.89 C44—H44C 0.96

C23—C25 1.519 (6) C45—H45A 0.96

C23—C24 1.520 (5) C45—H45B 0.96

C23—H23 0.98 C45—H45C 0.96

O1A—N1—O1B 121.4 (3) C23—C25—H25A 109.5

O1A—N1—O1C 121.2 (3) C23—C25—H25B 109.5

O1B—N1—O1C 117.4 (3) H25A—C25—H25B 109.5

O2A—N2—O2B 121.8 (3) C23—C25—H25C 109.5

O2A—N2—O2C 120.8 (3) H25A—C25—H25C 109.5

O2B—N2—O2C 117.4 (3) H25B—C25—H25C 109.5

O3A—N3—O3B 121.6 (3) C31—O32—H32 109.5

O3A—N3—O3C 121.1 (3) O31—C31—O32 125.1 (3)

O3B—N3—O3C 117.3 (3) O31—C31—C32 123.0 (3)

O4A—N4—O4B 122.4 (3) O32—C31—C32 111.9 (3)

O4A—N4—O4C 120.6 (3) N31—C32—C31 106.9 (2)

O4B—N4—O4C 117.0 (3) N31—C32—C33 110.7 (2)

C11—O12—H12 109.5 C31—C32—C33 110.9 (2)

O11—C11—O12 125.6 (3) N31—C32—H32A 109.4

O11—C11—C12 123.4 (3) C31—C32—H32A 109.4

O12—C11—C12 111.0 (3) C33—C32—H32A 109.4

N11—C12—C11 107.6 (2) C32—N31—H31A 109.5

N11—C12—C13 111.2 (2) C32—N31—H31B 109.5

C11—C12—C13 113.2 (3) H31A—N31—H31B 109.5

N11—C12—H12A 108.2 C32—N31—H31C 109.5

C11—C12—H12A 108.2 H31A—N31—H31C 109.5

C13—C12—H12A 108.2 H31B—N31—H31C 109.5

C12—N11—H11A 109.5 C34—C33—C35 109.4 (3)

C12—N11—H11B 109.5 C34—C33—C32 110.2 (3)

H11A—N11—H11B 109.5 C35—C33—C32 112.2 (3)

C12—N11—H11C 109.5 C34—C33—H33 108.3

H11A—N11—H11C 109.5 C35—C33—H33 108.3

H11B—N11—H11C 109.5 C32—C33—H33 108.3

C15—C13—C14 111.8 (4) C33—C34—H34A 109.5

C15—C13—C12 113.2 (3) C33—C34—H34B 109.5

(10)

supporting information

sup-7 Acta Cryst. (2002). E58, o95–o97

C15—C13—H13 106.9 C33—C34—H34C 109.5

C14—C13—H13 106.9 H34A—C34—H34C 109.5

C12—C13—H13 106.9 H34B—C34—H34C 109.5

C13—C14—H14A 109.5 C33—C35—H35A 109.5

C13—C14—H14B 109.5 C33—C35—H35B 109.5

H14A—C14—H14B 109.5 H35A—C35—H35B 109.5

C13—C14—H14C 109.5 C33—C35—H35C 109.5

H14A—C14—H14C 109.5 H35A—C35—H35C 109.5

H14B—C14—H14C 109.5 H35B—C35—H35C 109.5

C13—C15—H15A 109.5 C41—O42—H42 109.5

C13—C15—H15B 109.5 O41—C41—O42 125.4 (3)

H15A—C15—H15B 109.5 O41—C41—C42 122.7 (3)

C13—C15—H15C 109.5 O42—C41—C42 111.9 (3)

H15A—C15—H15C 109.5 N41—C42—C41 107.5 (2)

H15B—C15—H15C 109.5 N41—C42—C43 110.9 (3)

C21—O22—H22 109.5 C41—C42—C43 110.1 (3)

O21—C21—O22 125.4 (3) N41—C42—H42A 109.4

O21—C21—C22 123.7 (3) C41—C42—H42A 109.4

O22—C21—C22 110.9 (3) C43—C42—H42A 109.4

N21—C22—C21 107.0 (2) C42—N41—H41A 109.5

N21—C22—C23 110.8 (3) C42—N41—H41B 109.5

C21—C22—C23 113.8 (3) H41A—N41—H41B 109.5

N21—C22—H22A 108.4 C42—N41—H41C 109.5

C21—C22—H22A 108.4 H41A—N41—H41C 109.5

C23—C22—H22A 108.4 H41B—N41—H41C 109.5

C22—N21—H21A 109.5 C45—C43—C44 109.4 (3)

C22—N21—H21B 109.5 C45—C43—C42 112.3 (3)

H21A—N21—H21B 109.5 C44—C43—C42 111.0 (3)

C22—N21—H21C 109.5 C45—C43—H43 108.0

H21A—N21—H21C 109.5 C44—C43—H43 108.0

H21B—N21—H21C 109.5 C42—C43—H43 108.0

C25—C23—C24 111.3 (4) C43—C44—H44A 109.5

C25—C23—C22 113.5 (3) C43—C44—H44B 109.5

C24—C23—C22 110.7 (3) H44A—C44—H44B 109.5

C25—C23—H23 107.0 C43—C44—H44C 109.5

C24—C23—H23 107.0 H44A—C44—H44C 109.5

C22—C23—H23 107.0 H44B—C44—H44C 109.5

C23—C24—H24A 109.5 C43—C45—H45A 109.5

C23—C24—H24B 109.5 C43—C45—H45B 109.5

H24A—C24—H24B 109.5 H45A—C45—H45B 109.5

C23—C24—H24C 109.5 C43—C45—H45C 109.5

H24A—C24—H24C 109.5 H45A—C45—H45C 109.5

H24B—C24—H24C 109.5 H45B—C45—H45C 109.5

O11—C11—C12—N11 19.9 (4) O31—C31—C32—N31 33.1 (4)

O12—C11—C12—N11 −161.0 (3) O32—C31—C32—N31 −148.5 (3)

O11—C11—C12—C13 −103.4 (4) O31—C31—C32—C33 −87.7 (4)

(11)

supporting information

sup-8 Acta Cryst. (2002). E58, o95–o97

N11—C12—C13—C15 −74.5 (4) N31—C32—C33—C34 174.3 (3)

C11—C12—C13—C15 46.8 (4) C31—C32—C33—C34 −67.3 (4)

N11—C12—C13—C14 159.0 (3) N31—C32—C33—C35 52.2 (4)

C11—C12—C13—C14 −79.7 (4) C31—C32—C33—C35 170.7 (3)

O21—C21—C22—N21 22.6 (4) O41—C41—C42—N41 32.6 (4)

O22—C21—C22—N21 −158.5 (3) O42—C41—C42—N41 −148.8 (3)

O21—C21—C22—C23 −100.1 (4) O41—C41—C42—C43 −88.3 (4)

O22—C21—C22—C23 78.8 (4) O42—C41—C42—C43 90.2 (3)

N21—C22—C23—C25 −73.3 (4) N41—C42—C43—C45 54.6 (4)

C21—C22—C23—C25 47.3 (4) C41—C42—C43—C45 173.5 (3)

N21—C22—C23—C24 160.7 (3) N41—C42—C43—C44 177.4 (3)

C21—C22—C23—C24 −78.7 (4) C41—C42—C43—C44 −63.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O12—H12···O1Ci 0.82 1.87 2.636 (3) 155

N11—H11B···O21ii 0.89 2.18 2.907 (3) 138

N11—H11B···O4Aiii 0.89 2.53 3.014 (4) 115

N11—H11C···O4Biv 0.89 1.97 2.843 (4) 168

N11—H11A···O3Cv 0.89 2.02 2.914 (4) 179

N11—H11A···O3Bv 0.89 2.46 3.048 (4) 124

O22—H22···O4Cv 0.82 1.84 2.628 (3) 160

N21—H21C···O2Biv 0.89 1.96 2.840 (4) 168

N21—H21A···O1C 0.89 2.01 2.899 (3) 178

N21—H21A···O1B 0.89 2.50 3.061 (4) 122

N21—H21B···O31vi 0.89 2.20 2.920 (4) 138

N21—H21B···O2Avii 0.89 2.45 2.968 (4) 117

O32—H32···O2Cviii 0.82 1.88 2.660 (3) 160

N31—H31B···O41ii 0.89 2.13 2.885 (3) 143

N31—H31B···O3Aii 0.89 2.47 2.963 (4) 116

N31—H31A···O4C 0.89 2.08 2.946 (4) 165

N31—H31A···O4B 0.89 2.50 3.019 (4) 118

N31—H31C···O3Bv 0.89 1.97 2.835 (4) 163

O42—H42···O3C 0.82 1.91 2.667 (3) 152

N41—H41B···O11ix 0.89 2.11 2.877 (4) 144

N41—H41B···O1Avii 0.89 2.54 3.011 (4) 114

N41—H41C···O1B 0.89 1.97 2.832 (4) 163

N41—H41A···O2C 0.89 2.09 2.954 (3) 165

N41—H41A···O2B 0.89 2.47 3.004 (4) 119

References

Related documents

Under the remaining standard assumptions of mixture spaces, the following representation theorem is proven; a rational, independent, and continuous preference relation over

Five temperature extreme in- dices including temperature anomaly, mean percentages of warm days, warm nights, cold days and cold nights, and two rainfall extreme indices including

Defining the combined groups of Armenians and Azeri applicants as “non - Georgians” (NGE), we also calculate the difference in callback rates between Georgians and non-Georgians,

The description of an unseen image is generated using a template- based generation model that leverages the VDR predicted over the top-N objects extracted from an object detector..

Specifically, we consider unsupervised induction of semantic roles from sentences an- notated with automatically-predicted syntactic dependency representations and use a

Since there is not sufficient annotated data to learn the attachment preferences of the target domain words, we attack this problem using a model of

Recent research tries to address these issues, by re-structuring training data parse trees to bet- ter suit syntax-based SMT training (Wang et al., 2010), or by moving

Like the previous comparative sentence extraction task, we also conducted experiments for type classification using the same features (continuous POS tags sequences