• No results found

–3, –6, –9, –12 6

N/A
N/A
Protected

Academic year: 2020

Share "–3, –6, –9, –12 6"

Copied!
34
0
0

Loading.... (view fulltext now)

Full text

(1)

4.1 Prime and Composite Numbers

1. 2, 4, 6, 8 2. 9, 18, 27, 36 3. 12, 24, 36, 48 4. 90, 180, 270, 360 5. –3, –6, –9, –12 6. –10, –20, –30, –40 7. yes

8. no 9. no

10. yes 11. yes 12. no 13. yes 14. no 15. yes

16. 2, 4, 5, 10

17. 2, 3, 5, 6, 9, 10 18. none

(2)

Section 4.1 19. 2, 3, 4, 6

20. 1, 2, 7, 14

21. 1, 2, 4, 5, 10, 20 22. 1, 7, 49

23. 1, 2, 4, 8, 16, 32 24. 1, 3, 7, 9, 21, 63 25. 1, 3, 5, 15, 25, 75 26. neither

27. prime 28. prime

29. prime

30. composite 31. prime

32. composite 33. prime

34. composite 35. prime

36. prime

37. composite 38. composite

(3)

Section 4.1 39. prime

40. composite

41. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

42. 2 + 5 + 7

43. 5 + 13 + 17; 3 + 13 + 19;

5 + 11 + 19; 7 + 11 + 17 44. 1 (mod 7)

45. 2 (mod 7) 46. 6 (mod 7) 47. 3 (mod 7)

48. 4 (mod 7) 49. 2 (mod 7) 50. 5 (mod 7)

51. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

52. 7 (mod 11) 53. 8 (mod 11) 54. 0 (mod 11) 55. 9 (mod 11) 56. 4 (mod 11)

(4)

Section 4.1 57. 7 (mod 11)

58. 6 (mod 11) 59. 2 (mod 11) 60. yes

61. yes; 0

62. 2, since 1 + 2 = 0 (mod 3).

63. –32 64. 14

65. –8 66. 2 67. –8 68. 3 69. 5 70. –2 71. –6 72. 7

(5)

4.2 Prime Factorization

1. 42 2. 60 3. 18 4. 110 5. 100 6. 315 7. 3 · 11 8. 22 · 7 9. 2 · 3 · 11

10. 2 · 32 · 5 11. 22 · 32 12. 26

13. 32 · 7 14. 23 · 5 15. 72 16. 675 17. 5,488 18. 588

(6)

Section 4.2 19. 12,375

20. 5,915 21. 52 · 7

22. 22 · 7 · 11 23. 32 · 31 24. 33 · 5 25. 3 · 7 · 11 26. 2 · 33 · 11 27. 2 · 32 · 11 28. 2 · 3 · 72

29. 2 · 132 30. 3 · 52 · 7 31. s = 3 32. n = 7 33. c = 11 34. y = 17 35. t = 7 36. y = 5

37. no; check sum = 240 [ 0 (mod 11)

(7)

Section 4.2 38. yes; check sum = 242 K 0

(mod 11)

39. yes; check sum = 132 K 0 (mod 11)

40. 10 41. 7

42. It’s invalid; the check sum now = 138 [ 0 (mod 11) 43. Identity Property of

Multiplication

44. Distributive Property

45. Commutative Property of Multiplication

46. Identity Property of Addition

47. –19 48. 8 49. 16 50. –9 51. –4 52. –1

(8)

4.3 Greatest Common Factor

1. 2 2. 4 3. 14 4. 5 5. 1 6. 9 7. 10 8. 7 9. 6

10. 12 11. 7 12. 20 13. 14 14. 12 15. 2 16. 27 17. 5 18. 6

(9)

Section 4.3 19. 4

20. 9 21. 14 22. a2b 23. 3c3d4 24. 2j4 25. m15 26. 5s2 27. 4x3y 28. yes

29. no 30. yes 31. 36 32. 33 33. 100 34. 1 35. 6 36. 20

37. invalid; 44 [ 0 (mod 10) 38. no; 46 [ 0 (mod 10)

(10)

Section 4.3 39. yes; 50 K 0 (mod 10)

40. yes; 40 K 0 (mod 10) 41. 1,100

42. –600 43. 4,900 44. –6,200

45. n – 16 = 52 46. –28n = 252 47. n + 97 = 26 48. n – 319 = 498 49. 19n = 456 50. n – 38 = 63

(11)

4.4 Least Common Multiple

1. 15 2. 12 3. 30 4. 20 5. 30 6. 24 7. 450 8. 2,205 9. 588

10. 525 11. 1,615 12. 96 13. 646 14. 144 15. 8,575 16. 11,628 17. 28

18. 60

(12)

Section 4.4 19. 75

20. 252 21. 294 22. 1,260 23. 20 24. 24 25. 80 26. 300 27. 360 28. 324

29. a3b5 30. 36c4d7 31. 12g3h3j5 32. m18n2p6 33. 200r3s3t2 34. 576x5y7z4

35. GCF: 12; LCM: 144 36. GCF: 6; LCM: 72 37. 1

(13)

Section 4.4 38. There is none; both lists of

multiples are infinite.

39. GCF; divide the numerator and the denominator by 50, the GCF.

40. LCM; the least common denominator, 24, is the LCM of 6 and 8.

41. UMMB UM IB 17 XU IB BPM KTCJPWCAM WV 13 11 ABMMT ZWIL 42. KPWKWTIBM KPQX

KWWSQMA IVL UQTS QV ZWWU 11 14 12.

43. Bring 36 doughnuts to the meeting.

44. Sir Bean is the Green Knight of Camelot.

45. no 46. yes; 2 47. yes; 61 48. no

49. yes 50. yes 51. yes

(14)

Section 4.4 52. yes

53. x ≤ –24 54. x < 15 55. x < –18 56. y < 40

(15)

4.5 Arithmetic Sequences

1. arithmetic

2. common difference 3. recursive

4. explicit 5. 2

6. 7 7. 23 8. 44

9. 6, 13, 20, 27, 34

10. –8, –5, –2, 1, 4 11. –10, –6, –2, 2, 6 12. 20, 12, 4, –4, –12 13. 2, 7, 12, 17, 22 14. –1, 7, 15, 23, 31 15. –3, 2, 7, 12, 17 16. 6, 1, –4, –9, –14 17. –1, 4, 9, 14, 19

18. –1, –6, –11, –16, –21

(16)

Section 4.5 19. 3, 34, 65, 96, 127

20. a1 = 3; an = an – 1 + 4 21. a1 = –6; an = an – 1 + 6 22. a1 = –2; an = an – 1 – 4 23. a1 = 30; an = an – 1 – 12 24. a1 = –2; an = an – 1 + 8 25. a1 = 4; an = an – 1 – 2 26. an = 4n + 3

27. an = 10n – 13 28. an = –3n + 14

29. an = –5n + 1 30. an = 6n – 14 31. an = 9n + 10

32. a1 = –16; d = 13;

a50 = 621; a89 = 1,128 33. a1 = 2; d = 7;

a50 = 345; a89 = 618 34. a1 = 8; d = –5;

a50 = –237; a89 = –432 35. a1 = 10; d = –6;

a50 = –284; a89 = –518

(17)

Section 4.5 36. a1 = –25; d = 4;

a50 = 171; a89 = 327 37. a1 = 60; d = –15;

a50 = –675; a89 = –1,260

38. 19 39. 34 40. 3 41.

42. I love popcorn and peanut butter.

43. JM VJZKNZ VNAN KDAZNZ, QNLLRAZ VDXGO AJON

(18)

Section 4.5 44. 84

45. 36

5

46. 75 47. –25 48. –37

49. 3 50. 125 51. –13 52. 8 53. –6

(19)

4.6 Geometric Sequences

1. geometric

2. common ratio 3. 2

4. 4 5. 128 6. 2,048 7. –6 8. 2 9. –48

10. –192

11. 3, 6, 12, 24, 48

12. –2, –6, –18, –54, –162 13. 6, 24, 96, 384, 1,536 14. –10, 30, –90, 270, –810 15. recursive

16. 2, 8, 32, 128, 512 17. –1, 3, –9, 27, –81 18. –3, 6, –12, 24, –48

(20)

Section 4.6 19. 6, 30, 150, 750, 3,750

20. –20, –10, –5, –2.5, –1.25 21. –1, 5, –25, 125, –625 22. 3, 18, 108, 648, 3,888 23. a1 = 3; an = 2an – 1

24. a1 = –6; an = 3an – 1 25. a1 = –2; an = –4an – 1 26. a1 = 60; an = 0.5an – 1 27. a1 = –2; an = 5an – 1 28. a1 = 4; an = –2an – 1

29. geometric; r = 2 30. arithmetic; d = 2 31. neither

32. arithmetic; d = 10 33. neither

34. geometric; r = 1

2

35. 9 ft.; 6.75 ft.; 5.0625 ft.

36. r = 0.75 37. 43.5 ft.

(21)

Section 4.6 38. Theoretically, never;

practically, when you can no longer see the bounce.

39. 3.8 × 101 40. 1.42 × 105 41. –2.9 × 10–4 42. 8.45 × 106

43. 540 adult tickets, 560 children's tickets

44. 3 lb of each type of candy 45. prime

46. composite 47. composite 48. prime

(22)

Problem Solving 4—Find a Pattern

1. 1, 4, 9, 16; n2 2. 1 + 3 + 5 + 7 + 9 + 11

= 36

1 + 3 + 5 + 7 + 9 + 11 + 13

= 49

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 = 81

1 + 3 + … + (2n – 1) = n2; if n = 20, n2 = 400

(23)

Problem Solving 4 3. 512 problems; 2(n – 1)

4. 15, 21, 28, 36; ( 1)

2 n n +

5. 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 = 396;

99; 4; it is half the number of addends; multiply them:

4(99) = 396

6. 55; 5,050; ( 1)

2 n n +

7. 15; yes

8. add the two prior terms;

34, 55, 89

(24)

4.7 Bases

1. 19 2. 30 3. 8 4. 38 5. 366 6. 25 7. 15 8. 10 9. 6

10. 19 11. 477 12. 22 13. 300 14. 39 15. 215

16. 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000

(25)

Section 4.7 17. 1, 2, 3, 10, 11, 12, 13, 20,

21, 22, 23, 30, 31, 32, 33, 100

18. 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10

19. 2245 20. 4035 21. 21325 22. 31325 23. 310105 24. 2114435

25. 100002 26. 1000112 27. 10002 28. 1100112 29. 11001112 30. 1102

31. 10003 32. 2136 33. 2407 34. 3328

(26)

Section 4.7 35. 304

36. 27258 37. 415 38. 112 39. 3,013 40. 504 41. 7512 42. 20212 43. 37C16 44. 31E16

45. 1,200 46. 13,000 47. 2,100 48. 3,100 49. 8

50. –36 51. 8 52. 2

(27)

4.8 Operations in Bases

1. 4435 2. 115 3. 425 4. 1205 5. 10035 6. 2056 7. 47 8. 48 9. 102

10. 245 11. 1108 12. 326 13. 1018 14. 11002 15. 1000102 16. 11023 17. 1011102 18. 60027

(28)

Section 4.8 19. 415

20. 3428 21. 1768 22. 2115 23. 112 24. 10506 25. 125A15 26. 9D14 27. 154012 28. A111

29. 127312 30. 1BB12 31. 150E16 32. 22316

33. Answers will vary; possible answer: Change both

numbers to base 10 and then add.

34. 91 35. 324 36. 804

(29)

Section 4.8 37. 607

38. at least $1.43/lb.

39. not more than 27 spools 40. Dale: at least 15;

Lance: at least 21

41. at least $1.31 per pair

42. 2, 4

43. 2, 3, 5, 6, 9, 10 44. 2

45. 2, 4 46. none

47. 2, 3, 5, 6, 10

(30)

Math and Scripture 4

1. 483 yr.

2. Jerusalem 3. house of God 4. house of God

5. allow volunteers to return to Jerusalem and take a

freewill offering to use to buy animals, meal, and wine for the offerings

6. build the walls and gates 7. Messiah is cut off (killed) 8. 38 AD (actually AD 37

since there is no year 0) 9. 31 AD (actually AD 30) 10. within one year

(31)

Chapter 4 Review

1. 1, 2, 3, 4, 6, 12 2. 1, 3, 9, 27

3. 1, 2, 4, 7, 8, 14, 28, 56 4. 1, 2, 3, 4, 6, 7, 12, 14, 21,

42, 84 5. prime

6. composite 7. composite 8. prime

9. 2, 4, 5, 8, 10

10. 2, 3, 6 11. 5

12. none

13. Every composite integer greater than one can be written as a product of

prime factors in exactly one way (though the order of the factors may vary).

14. 2 · 29 15. 22 · 3 · 5

(32)

Chapter 4 Review 16. 22 · 32 · 7

17. 23 · 11

18. 32 · 52 · 13 19. 32 · 5 · 7 20. 2

21. 18 22. 15 23. 1 24. no 25. yes

26. 165 27. 2,952 28. 18 29. 600

30. LCM: 1,890; GCF:

6; 270 · 42 = 11,340;

LCM · GCF = 11,340;

they are equal

31. a sequence in which the consecutive terms differ by a constant value called the common difference

(33)

Chapter 4 Review 32. a sequence in which the

consecutive terms differ by a constant multiplier called the common ratio

33. A recursive definition defines the terms of a sequence based on the previous terms, but an explicit definition defines the terms of a sequence based on the number of the term.

34. 6, 9, 12, 15, 18

35. –8, 16, –32, 64, –128

36. –4, –7, –10, –13, –16 37. 1, 2, 4, 8, 16

38. 6, 10, 14, 18, 22 39. 2, –6, 18, –54, 162 40. a1 = 2; an = an – 1 + 4 41. a1 = 9; an = 2an – 1 42. an = 4n

43. an = 9(2)n – 1 44. 8

45. 11112

(34)

Chapter 4 Review 46. AD816

47. 110012 48. 405 49. 4648

50. God used multiplication in His representation of 490 years as 70 weeks of years.

References

Related documents

– ETCs with the business model similar to Assurance Wireless and Safelink Wireless will have significant changes to their process starting in September 2012... State of Texas

They describe the basics of isps, la towards caching and direct traffic typically a global service higher with one peering a agreement is in which the intent behind peers..

An Arithmetic sequence is a sequence where every term after the first is obtained by adding a constant called the common difference while Geometric sequence is

Local government agencies, or non-profit organizations yes Support public access sites yes Provide computer, software and Internet training yes A Community

Farhi, Non trivial lower bounds for the least common multiple of some finite sequences of integers. Friedlander and H.Iwaniec, Equidistribution of roots of a quadratic congruence

Therefore, there is need to study the barriers to and surgical uptake.The aim of the study is to identify barriers to both minor and major surgical uptake in Ekiti

Reception Honoring: Newly Admitted Texas Lawyers &amp; Newly Elected Judges Sponsored by: Thurgood Marshall School of Law, TMSL Alumni Association, Texas Trial Lawyers

All teachers and support staff undertake induction on taking up a post and this includes a meeting with the SENDCO to explain the systems and structures in place around the