• No results found

Fractional Hermite Hadamard inequalities for (α,m) logarithmically convex functions

N/A
N/A
Protected

Academic year: 2020

Share "Fractional Hermite Hadamard inequalities for (α,m) logarithmically convex functions"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Fractional Hermite-Hadamard inequalities for

(

α

,

m

)

-logarithmically convex functions

Jianhua Deng

1

and JinRong Wang

1,2*

*Correspondence:

wjr9668@126.com

1Department of Mathematics,

Guizhou University, Guiyang, Guizhou 550025, P.R. China 2School of Mathematics and

Computer Science, Guizhou Normal College, Guiyang, Guizhou 550018, P.R. China

Abstract

By means of two fundamental fractional integral identities, we derive two classes of new Hermite-Hadamard type inequalities involving Riemann-Liouville fractional integrals for once and twice differentiable (

α

,m)-logarithmically convex functions, respectively. The main novelty of this paper is that we use powerful series to describe our estimations.

MSC: 26A33; 26A51; 26D15

Keywords: Hermite-Hadamard type inequalities; Riemann-Liouville fractional integrals; (

α

,m)-logarithmically convex functions

1 Introduction

Fractional calculus was introduced at the end of the nineteenth century by Liouville and Riemann, but the concept of non-integer calculus, as a generalization of the traditional in-teger order calculus, was mentioned already in  by Leibnitz and L’Hospital. The sub-ject of fractional calculus has become a rapidly growing area and has found applications in diverse fields ranging from physical sciences and engineering to biological sciences and economics. For more recent development on fractional calculus, one can see the mono-graphs [–].

Due to the wide application of fractional integrals and importance of Hermite-Hadamard type inequalities, some authors extended to study fractional Hermite-Hadamard type in-equalities according to the Hermite-Hadamard type inin-equalities for functions of different classes. For example, see for convex functions [, ] and nondecreasing functions [], form-convex functions [–] and (s,m)-convex functions [], for functions satisfying

s-e-condition [] and the references therein.

Very recently, the authors [] raised the new concept of (α,m)-logarithmically convex functions and established some interesting Hermite-Hadamard type inequalities of such functions. The main results can be improved if we replaceEi,i= , , , by suitable series.

Motivated by [, , ], we study Hermite-Hadamard type inequalities for (α,m )-logarithmically convex functions involving Riemann-Liouville fractional integrals. Thus, the purpose of this paper is to establish fractional Hermite-Hadamard type inequalities for (α,m)-logarithmically convex functions.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts.

(2)

Definition .(see []) LetfL[a,b]. The symbolsRLJaα+fandRLJbαf denote the left-sided

and right-sided Riemann-Liouville fractional integrals of the orderαR+and are defined by

RLJaα+f

(x) = 

(α) x

a

(xt)α–f(t)dt (a<xb)

and

RLJbαf

(x) = 

(α) b

x

(tx)α–f(t)dt (≤ax<b),

respectively. Here(·) is the gamma function.

Definition .(see []) The functionf : [,b]→R+is said to be (α,m)-logarithmically convex if for everyx,y∈[,b], (α,m)∈(, ]×(, ], andt∈[, ], we have

ftx+ ( –t)yf(x)tαf(y)m(–).

The following inequalities results will be used in the sequel.

Lemma .(see []) Forα> and k> ,we have

I(α,k) := 

–ktdt=k

i=

(–)i–(lnk)

i–

(α)i

<∞,

where

(α)i=α(α+ )(α+ )· · ·(α+i– ).

Moreover,it holds

I(α,k) –k

m

i=

(–lnk)i– (α)i

≤ |

lnk|

α√π(m– )

|lnk|e m– 

m– .

Lemma .(see []) Forα> and k> ,z> ,we have

J(α,k) := 

( –t)α–ktdt=

i=

(lnk)i– (α)i

<∞,

H(α,k,z) := z

–ktdt=zαkz

i=

(–zlnk)i– (α)i

<∞.

Lemma . For t∈[, ],we have

(3)

Proof Letf(t) =tn+ ( –t)nforn,t[, ]. Clearly,f(·) is increasing on the interval [, ] and decreasing on the interval [, ]. So,f(t)≤f() = –nfor allt[, ]. Then we have

the first statement. Similarly one can obtain the second one.

3 The first main results

In this section, we apply the fractional integral identity from Sarikayaet al.[] to derive some new Hermite-Hadamard type inequalities for differentiable (α,m)-logarithmically convex functions.

Lemma .(see []) Let f : [a,b]→R be a differentiable mapping on(a,b).If fL[a,b],

then the following equality for fractional integrals holds:

f(a) +f(b)

 –

(α+ ) (ba)α RLJ

α

a+f(b) +RLJbαf(a)

=ba

( –t)αtαfta+ ( –t)bdt. ()

By using Lemma ., one can extend to the following result.

Lemma . Let f : [a,b]→R be a differentiable mapping on (a,b)with a<mbb.If fL[a,b],then the following equality for fractional integrals holds:

f(a) +f(mb)

 –

(α+ ) (mba)α RLJ

α

a+f(mb) +RLJmbαf(a)

=mba

( –t)αtαfta+m( –t)bdt. ()

Proof This is just Lemma . on the interval [a,mb]⊂[a,b]. By using Lemma ., we can obtain the main results in this section.

Theorem . Let f : [,b]→R be a differentiable mapping. If|f| is measurable and

(α,m)-logarithmically convex on[a,b]for some fixedα∈(, ], ≤a<mbb,then the following inequality for fractional integrals holds:

f(a) +f(mb)– (α+ ) (mba)α RLJ

α

a+f(mb) +RLJmbαf(a)≤Ik,

where

Ik=

(mba)|f(b)|m

α

i=

(–lnk)i–αi

[α;i]

kk –α

+α

i(–lnk)i– [α;i– ]

k–α+ +

k–αα+–

k

for k= ,

Ik=|

f(b)|m(mba)(α– )

(α+ )α for k= ,

k= |f

(a)|

(4)

and

[α; ] := , [α;i] := (α+ )(α+ )· · ·(+ ), iN.

Proof (i) Case :k= . By Definition ., Lemma . and Lemma ., we have

f(a) +f(mb)– (α+ ) (mba)α RLJ

α

a+f(mb) +RLJmbαf(a)

mba

( –t)αtαfta+m( –t)bdt

mba

( –t)αtαf(a)tαf(b)mmtαdt

≤(mba)|f(b)|m

( –t)αtαktαdt

≤(mba)|f(b)|m

 

( –t)αtαktαdt

+(mba)|f

(b)|m

 

( –t)αtαktαdt

≤(mba)|f(b)|m

 

( –t)αtαktα+k(–t)αdt

≤(mba)|f(b)|m

 

( –t)αk+ ( –t)αk(–t)α

dt

+(mba)|f

(b)|m

 

tαktαtαk(–t)αdt

≤(mba)|f(b)|m

 

( –t)αk

dt

+(mba)|f

(b)|m

 

( –t)αk(–t)αdt

–(mba)|f

(b)|m

 

k

dt–(mba)|f

(b)|m

 

k(–t)α

dt

≤(mba)|f(b)|m

 

–αtαktαdt+(mba)|f

(b)|m

 

tαktαdt

–(mba)|f

(b)|m

 

tαktαdt–(mba)|f

(b)|m

 

( –t)αktαdt

≤(mba)|f(b)|m

 

–αtαktαdt+(mba)|f

(b)|m

 

tαktαdt

–(mba)|f

(b)|m

 

tαktαdt–(mba)|f

(b)|m

 

 –tαktαdt

≤(mba)|f(b)|m

 

k

dt–(mba)|f

(b)|m

 

k

(5)

+ –α(mba)|f

(b)|m

 

ktαdt–(mba)|f

(b)|m

 

ktαdt

≤(mba)f(b)m

 

tαktαdt– (mba)f(b)m

tαktαdt

+ –α(mba)f(b)m

ktαdt–(mba)|f

(b)|m

 

ktαdt

≤(mba)f(b)m

α

 α

t(α+)–ktdt– (mba)|f(b)|m·  α

 α

t(α+)–ktdt

+ –α(mba)f(b)m· 

α

 α

–ktdt(mba)|f

(b)|m

 ·  α   α

–ktdt

≤(mba)|f(b)|m

α

 α

t(α+)–ktdt

 α

t(α+)–ktdt

+

α(mba)|f(b)|m

α

 α

–ktdt(mba)|f

(b)|m

α

 α

–ktdt

≤(mba)|f(b)|m

α

t(α+)–ktdt– 

 α

t(α+)–ktdt

+

α(mba)|f(b)|m

α

 α

–ktdt

–(mba)|f

(b)|m

α

–ktdt

 α

–ktdt

≤(mba)|f(b)|m

α ki=

(–lnk)i– (α+ )i

–   αα+

kα

i= (–

αlnk)i–

(α + )i

+

α(mba)|f(b)|m

α  αα

kα

i=

(–αlnk)i–

(α)i

–(mba)|f

(b)|m

α ki=

(–lnk)i– (

α)i

–  αα

kα

i=

(–αlnk)i–

(

α)i

≤(mba)|f(b)|m

α ki=

(–lnk)i–αi

[α;i] –k –α

i=

(–lnk)i–αi

[α;i]

+k –α

(mba)|f(b)|m

α

i=

αi(–lnk)i– [α;i– ]+

–(mba)|f

(b)|m

α ki=

αi(–lnk)i– [α;i– ] –k

–α

i=

αi(–lnk)i– [α;i– ]α+

≤(mba)|f(b)|m

α

i=

(–lnk)i–αi

[α;i]

kk –α

+α

i(–lnk)i– [α;i– ]

k–α

+ +

k–α

α+ –

k

.

(6)

(ii) Case :k= . By Definition ., we have

f(a) +f(mb)– (α+ ) (mba)α RLJ

α

a+f(mb) +RLJmbαf(a)

mba

( –t)α

tαfta+m( –t)bdt

mba

( –t)αtαf(a)tαf(b)mmtαdt

≤(mba)|f(b)|m

( –t)αtαdt

≤(mba)f(b)m

( –t)α

tαdt

≤|f(b)|m(mba)(α– ) (α+ )α .

The proof is completed.

Theorem . Let f : [,b]→R be a differentiable mapping and <q<∞.If|f|qis

mea-surable and(α,m)-logarithmically convex on[a,b]for some fixedα∈(, ], ≤a<mbb,then the following inequality for fractional integrals holds:

f(a) +f(b)– (α+ ) (ba)α RLJ

α

a+f(b) +RLJbαf(a)≤Ik,

where

Ik=

(mba)|f(a)| qαq

 – –

+  

p

i=

(mqln|f(b)|–qln|f(a)|)i–αi

[α;i– ]

q

for k= ,

Ik=

(ba)|f(b)|m q

 – –

+  

p

for k= 

and k=||ff(b(a)|)mq|q ,p+q= .

Proof (i) Case :k= . By Definition ., Lemma ., and using the Hölder inequality, we have

f(a) +f(mb)– (α+ ) (mba)α RLJ

α

a+f(b) +RLJmbαf(a)

mba

( –t)αtαfta+m( –t)bdt

mba

( –t)αtαpdt

p

fta+m( –t)bqdt

q

=mba

 

( –t)αtαpdt

p

fta+m( –t)bqdt

q

mba –p

 

( –t)tdt

p

fta+m( –t)bqdt

(7)

=mba –p

 – –

+  

p

fta+m( –t)bqdt

q

mba q

 – –

+  

p

f(a)qtαf(b)mqmqtαdt

q

≤(mba)|f(b)|m q

 – –

+  

p

ktαdt

q

≤(mba)|f(b)|mqαq

 – –

+  

p

k

i=

(–lnk)i– (

α)i

q

≤(mba)|f(a)| qαq

 – –

+  

p

i=

(–lnk)i– (α)i

q

≤(mba)|f(a)| qαq

 – –

+  

p

i=

(mqln|f(b)|–qln|f(a)|)i–αi

[α;i– ]

q

.

The proof is done.

(ii) Case :k= . By Definition ., Lemma ., and using the Hölder inequality, we have

f(a) +f(b)– (α+ ) (ba)α RLJ

α

a+f(b) +RLJbαf(a)

ba q

 – –

+  

p

f(a)qtαf(b)mqmqtαdt

q

≤(ba)|f(b)|m q

 – –

+  

p

.

The proof is done.

4 The second main results

In this section, we apply a fractional integral identity to derive some new Hermite-Hadamard type inequalities for twice differentiable (α,m)-logarithmically convex func-tions.

We need the following result.

Lemma .(see []) Let f : [a,b]→R be a twice differentiable mapping on(a,b)with a<mbb.If fL[a,b],then the following equality for fractional integrals holds:

f(a) +f(mb)

 –

(α+ ) (mba)α RLJ

α

a+f(mb) +RLJmbαf(a)

=(mba) 

 

 – ( –t)α+tα+

α+  f

ta+m( –t)bdt.

(8)

Theorem . Let f : [,b]→R be a differentiable mapping. If|f| is measurable and

(α,m)-logarithmically convex on[a,b]for some fixedα∈(, ], ≤a<mbb,then the following inequality for fractional integrals holds:

f(a) +f(mb)– (α+ ) (mba)α RLJ

α

a+f(mb) +RLJmbαf(a)≤Ik,

where

Ik=|

f(a)|(mba)(α– )

α+(α+ )

i=

(ln|f(b)|–αln|f(a)|)i–

[α;i– ] for k= ,

Ik=

(ba)|f(b)|m

(α+ )

 – 

+p+  

p

for k= 

and k=|f|f(b(a))|m| .

Proof (i) Case :k= . By Definition ., Lemma . and Lemma ., we have

f(a) +f(mb)

 –

(α+ ) (mba)α RLJ

α

a+f(mb) +RLJmbαf(a)

≤(mba) 

 – ( –t)α+tα+

α+  f

ta+m( –t)bdt

≤(mba) 

 – ( –t)α+tα+

α+  f

(a)

f(b)mmtαdt

≤(mba)|f(b)|m (α+ )

 ––αtα+tα+k

dt

≤(mba)|f(b)|m(α– ) α+(α+ )

ktαdt

≤(mba)|f(b)|m(α– ) α+α(α+ )

–ktdt

≤(mba)|f(b)|m(α– ) α+α(α+ ) k

i=

(–lnk)i– (

α)i

≤|f(a)|(mba)(α– ) α+α(α+ )

i=

(mln|f(b)|–ln|f(a)|)i–αi

[α;i– ] ≤|f(a)|(mba)(α– )

α+(α+ )

i=

(ln|f(b)|–αln|f(a)|)i– [α;i– ] .

The proof is done.

(ii) Case :k= . By Definition ., Lemma ., we have

f(a) +f(mb)– (α+ ) (mba)α RLJ

α

a+f(mb) +RLJmbαf(a)

≤(mba) 

 – ( –t)α+tα+

α+  f

(a)

(9)

≤(mba)|f(b)|m (α+ )

 ––α

+–+dt

≤(mba)|f(b)|m(α– ) α+(α+ ) .

The proof is done.

Theorem . Let f : [,b]→R be a differentiable mapping and <q<∞.If|f|qis

mea-surable and(α,m)-logarithmically convex on[a,b]for some fixedα∈(, ], ≤a<mbb,then the following inequality for fractional integrals holds:

f(a) +f(mb)– (α+ ) (mba)α RLJ

α

a+f(mb) +RLJmbαf(a)≤Ik,

where

Ik=

(mba)|f(a)| (α+ )

 – 

p

i=

(mqαln|f(b)|–ln|f(a)|)i– [α;i– ]

q

for k= ,

Ik=

(mba)|f(b)| (α+ )

 – 

p

for k= 

and k=||ff(b(a))||mqq , p+q= .

Proof (i) Case :k= . By Definition ., Lemma ., Lemma ., and using the Hölder inequality, we have

f(a) +f(mb)– (α+ ) (mba)α RLJ

α

a+f(mb) +RLJmbαf(a)

≤(mba) 

 – ( –t)α+tα+

α+  f

ta+m( –t)bdt

≤(mba) (α+ )

 – ( –t)α+–+pdt

p

fta+m( –t)bqdt

q

≤(mba) (α+ )

 – 

p

f(a)qtαf(b)mqmqtαdt

q

≤(mba)|f(b)|m (α+ )

 – 

p

ktαdt

q

≤(mba)|f(a)| (α+ )αq

 – 

p

i=

(–lnk)i– (

α)i

q

≤(mba)|f(a)| (α+ )αq

 – 

p

i=

(mqln|f(b)|–qln|f(a)|)i–αi

[α;i– ]

q

≤(mba)|f(a)| (α+ )

 – 

p

i=

(mqαln|f(b)|–ln|f(a)|)i– [α;i– ]

q

(10)

where we use the following inequality:

 – ( –t)α+–+p≤ – ( –t)α+++p

≤ ––αp

=  –  .

The proof is done.

(ii) Case :k= . By Definition ., Lemma ., and using the Hölder inequality, we have

f(a) +f(mb)– (α+ ) (mba)α RLJ

α

a+f(mb) +RLJmbαf(a)

≤(mba) 

 – ( –t)α+tα+

α+  f

ta+m( –t)bdt

≤(mba) (α+ )

 – ( –t)α+–+pdt

p

fta+m( –t)bqdt

q

≤(mba) (α+ )

 – 

p

f(a)qtαf(b)mqmqtαdt

q

≤(mba)|f(b)|m (α+ )

 – 

p

.

The proof is done.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

This work was carried out in collaboration between all authors. JRW raised these interesting problems in this research. JD and JRW proved the theorems, interpreted the results and wrote the article. All authors defined the research theme, read and approved the manuscript.

Acknowledgements

The authors thank the referee for valuable comments and suggestions which improved their paper. This work is supported by the National Natural Science Foundation of China (11201091) and Key Support Subject (Applied Mathematics) of Guizhou Normal College.

Received: 10 June 2013 Accepted: 19 July 2013 Published: 5 August 2013 References

1. Baleanu, D, Machado, JAT, Luo, ACJ (eds.): Fractional Dynamics and Control. Springer, New York (2012)

2. Diethelm, K: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics. Springer, Berlin (2010) 3. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier,

Amsterdam (2006)

4. Lakshmikantham, V, Leela, S, Devi, JV: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

5. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993) 6. Michalski, MW: Derivatives of Noninteger Order and Their Applications. Dissertationes Mathematicae, vol. CCCXXVIII.

Inst. Math., Polish Acad. Sci., Warsaw (1993)

7. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)

8. Tarasov, VE: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2011)

9. Sarikaya, MZ, Set, E, Yaldiz, H, Ba¸sak, N: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model.57, 2403-2407 (2013)

(11)

11. Wang, J, Li, X, Zhu, C: Refinements of Hermite-Hadamard type inequalities involving fractional integrals. Bull. Belg. Math. Soc. Simon Stevin (2013, in press)

12. Set, E: New inequalities of Ostrowski type for mappings whose derivatives ares-convex in the second sense via fractional integrals. Comput. Math. Appl.63, 1147-1154 (2012)

13. Wang, J, Deng, J, Feˇckan, M: Hermite-Hadamard type inequalities forr-convex functions via Riemann-Liouville fractional integrals. Ukr. Math. J. (2013, in press)

14. Zhang, Y, Wang, J: On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals. J. Inequal. Appl.2013, 220 (2013)

15. Wang, J, Li, X, Feˇckan, M, Zhou, Y: Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl. Anal. (2012). doi:10.1080/00036811.2012.727986

16. Wang, J, Deng, J, Feˇckan, M: Explorings-e-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals. Math. Slovaca (2013, in press)

17. Bai, R, Qi, F, Xi, B: Hermite-Hadamard type inequalities for them- and (α,m)-logarithmically convex functions. Filomat

27, 1-7 (2013)

doi:10.1186/1029-242X-2013-364

References

Related documents

Drinking vessel preferences in older nursing home residents: optimal design and potential for increasing fluid

Repeated-measures two-way ANOVA showed that there are not significantly differences in IBG changes, between control and test group which were treated with dry extract of PVP in female

Here, vertical handover (handover between different technologies) solutions are: Mobile IP, IP Multicast, Media Independent Handover (MIH), Fast Mobile IPv6 Handover

Our study have shown that methanol: ethyl acetate (1:9) of flower bud extract of Peltophorum pterocarpum has significant effect in lowering fasting blood

3: AVERAGE PLASMA CONCENTRATION – TIME CURVE OF 3DMT (ACTIVE METABOLITE OF THIOCOLCHICOSIDE) AFTER SINGLE DOSE ADMINISTRATION OF REFERENCE AND TEST FORMULATIONS

This paper intends not only to make an inventory of the available maps and plans produced during the period between late 18 th and early 20 th centuries available

The negative correlation co-efficient recorded in most parts of Ghana suggest that, at a time when there is an increase in land surface temperature, there is also a

ABSTRACT: In distribution side STATCOM is used to improve quality of power, hence that STATCOM is called D-STATCOM, In D-STATCOM compensation depends upon a