VOL. 16 NO. 2 (1993) 259-266
FIXED
POINTS FOR PAIRS OF
MAPPINGS IN d-COMPLETE
TOPOLOGICAL SPACES
TROYL.HICKSDepartment
ofMathematics University of Missouri- RollaRolla, MO65401 U.S.A. and B.E.RHOADES
Department
of Mathematics Indiana University Bloomington,IN47405 U.S.A.(Received October 7, 1991 and in revised form March 12, 1992)
ABSTRACT.Several importantlnetricspacefixedpoint theoremsareprovedforalnrgeclass
of non-metric spaces.
In
some cases themetricspaceproofs need onlyminor changes. Thisissurprisingsince thedistance functionused need notbe symmetric and neednot sa.tisfy the
triangular inequality.
KEY
WORDS AND PHRASES.Commuting,compatible, d-complete topologicalspaces,fixed points, pairsof mappings.1991 SUBJECT
CLASSIFICATION
CODE. 47H10,54H25.1. INTRODUCTION.
Let
(X,t)
be atopological spaceand d:X xX
[0, cx)
such thatd(x,y)
0 if and onlyifx y.X
issaid tobed-completeif,,oo__
d(x,,,x,,+l)
<
cimpliesthatthesequence isconvergent in(X, t). In
ametric space, such asequence isaCauchSr
sequence.T" X
X
isw-continuousatx, if x,, x impliesTx,,
Tx.Definition. Asymmetricon aset Xisareal-valuedfunction donX
X
such that:(1)
d(x,y)>_
0andd(x,y) 0ifand onlyifx y;and()
d(,u)
d(u,).
Let dbe a symmetricon a set
X
andfor any e>
0 and any xX,
letS(x,e)
{y
X
d(x,y)
<
e}.
We definea topology t(d)onX
byU_
t(d)
ifand only ifforeach xU,
someS(x,
e) C_ U.A
symmetric d is asemi-metric if for each xX
and each>
O,
S(z,
e) is aneighborhood ofx in the topology t(d).
A
topological spaceX
is said to be symmetrizable(semi-metrizable)
ifitstopology isitduced byasymmetric(semi-metric)
onX.The d-complete synunctrizable
(semi-metrizable)
spaces formanimportant class ofex-amples ofd-complete topological spaces. \Vegive other examples. Let
X
be aninfinite set.260 T.L. HICKS AND B.E. RHOADES
,/fl)r Xsuch that
<
tdandthe metrictopologytd isnon-discrete. Now(X,t)
is d-conplete.iJc..
d(a’,,x,,+l) <
cxz implies that{x,}
is ad-Cauchy sequence. Thus, x, x in d andlmrefore in the topology t. See
[4]
for the construction oftd. It should also be noted that,Jy COml,letequasi-metric space
(X,d)
(d(x,y)
d(y,x))
is a d-completetopological space. Tlmc are several competing definitions for a Cauchy sequence, butd(xn,xn+l)
<
williq)ly that
{x,
isaCauchysequence foranyreasonabledefinition. One reasonabledefinition is dcriw’d from requiring that the filtergenerated
by{x,}
be a Cauchy filter in thequasi-fiformitygeneratedby d. Thisgives
{x,}
isaCauchysequence iffor each e>
0thereexistspositive integer
no
,(e)
andxx(e)in X
suchthat{x,’n
>
x0}
C_{g
X" d(z,y) <
e}.
Tlw metric space definition alsoholdsifd(x,,x,+a)
<
c. Some fundamentaltheoremsford-c,,mplctctopologicalspacesaregivenin
[4]
and[5].
2. RESULTS. The resultsthroughCorollary2.2axegeneralizationsoftheorems due toJungck
[7].
Even thoughonlyminorchangesareneededintheproofs, theyaregiven for completeness.LEMMA
2.1. Let(X,t)
be ad-complete topologicalspace.If
there exists c(0,1)
such thatd(y,,,y,+)<_
cd(y,_,y,)
for
atl n, then{Yn}
converges to apoint inX.On-1
eROOF.
(u.,u.+) <
.--(u,,u=)
gieI.=
a(U.,U.+l) _<
(Ul,U=)E.=
The resultfollowssinceXis d-complete.THEOREM2.1. Let
(X,t)
be aHausdorff
d-complete topologicalspace andf
XX
a w-continuousfunction.
Thenf
has afixed
pointinX
if
and onlyif
there existsc(0,1)
and aw-continuousfunction
g:X X whichcommutes withf
andsatisifes
(1)
9(X)
Cf(X)
andd(gx,gy)<_
ad(fx,fy)
for
altz,y X. Indeed,f
and 9 have aunique commonfixed
pointif (1)
holds.PROOF. Suppose
f(a)
aforsomea X. Putg(x)
afor all x X. Theng(fx)
a and f(gx)f(a)
a. Also, g(x) af(a)
for allxX
so thatg(X)
C_f(X).
Forany,,
(O,),d(gz,gy)
d(a,a)
0<
,
d(fz,fy).
Since g isw-continuous,(1)
holds.Supposethereexistsc and gsuchthat
(1)
holds. Let x0e
Xandlet x, besuch that(2)
.f(xn)
9(xn-).
Now(1)
and(2)
givesd(fxn,fxn+x)
d(gxn-l,gxn)
d(fx,_,fxn).
Lemma 2.1 gives p in
X
suchthatf(x,)
p. 9 w-continuous impfies that lim9fx, 9P. Since9x,, p, thew-continuity off
impliesthat limfgx, fp. Thereforep isacoincidence point off
and9- Clearly, fgP9fP.
f(fP)
f(9P)
9(fP)
9(9P)
andd(9P, 9(9P))
d(fp, f(9p))
d(9P, O(9P)).
Hence,
9(P)
9(9P).
Thus9(P)
9(9P)
f(gP),
d9(P)
isacooned point off
and9.Ifx
f(x)
9(z)
and yf(y)
9(Y),
then(1)
givesd(x,y)
d(gx,9y)
d(fx,fy)
d(x,y) orz y.
COROLLARY 2.1. Let
(X,t)
be aHausdorff
d-complete topological space andf
and g commuting mappingsfrom
X
toX. Supposef
andg arew-continuous andg(S)
C_f(X).
If
there exists(0,1)
and apositive integer k such thatthen
f
and9 have aunique commonfized
point.PROOF. Clearly,
g
commutes withf
andg’(X)
C_g(X)
C_f(X).
Applyingthetheoremt,,gk
andf
gives a uniquepX
withp--g’(p)
f(p).
Sincef
and g comnmtc 9(p),.l(.fp)
f(g(p))
.,:l’(gp)
or g(p) is a common fixed point off
andgk.
Uniqueness gives9(P) 1’
f(P).
Letting
f
i, the identity, gives a generalization of Banach’s theorem. If we also let k= 1, weget Banach’stheoremin thisnew setting.COROLLARY
2.2. Let n be a positive integer and let k>
1.If
g is a surjective w-contm.,.o.usself
mapof
aHaudorff
d-complete topologicalspaceX
such thatd(a".,
anu) >_
d(z,U)
Io
art
,
Ue
X,
theng has a uniquefized
point.PROOF. Let
f
g2,
and a-
in Corollary 2.1. Nowd(x,y)
<
od(g"x,g"y)
.gives d(g"z,g’y)<_
od(g2"x,g2’y)
od(fz,fy), g surjectiveimpliesg(X)C_f(X).
THEOREM 2.2 Let
(X,t)
be aHausdorff
d-complete topologicalspace.Suppose
f
andg are. commutingw-continuous selfmapsof
X
such thatg(X)
C_f(X)
and(a)
d(g"x, g"y)<
d,d(fx,
fy)for
eachn andfor
allx,y inX,
where Then:()
f,f,..,
arefized
?on
of
ff. ]fp,
tenp
{f,f,...,).
If
f
f.
thenf
f+
for
ec
1.()
If
limf
"
(5)
If
I
inaddition,f
is the identity, then pfor
eachx inX.PROOF.
Since limd,, 0, thereexistsa k withd <
1. Thend(g
’x,
gy)
<_ dd(fx,
fy).
From
Corollary2.1,f
andghaveauniquecommonfixed point p.Toprove
(2),
fixxand sety gx in(a).
Thend(g’x,g"+z)
<_ d,d(fx,
fgx),
which givesZ
d(g’x’
g"+’
x)
<_
d(fx, fgx)
Z
d(fx,
gfx)<
co.n=l n=l
X
is d-complete, so there exists an such that x,, g"x Y.. Since g is w-continuous x,,+ g(x,,)y..
Clearly262 T.L. HICKS AND B.E. RHOADES
To prove
(3),
g(fky)
fk(g2)
fk.
for each k>
1. Ifp.
then 0< d(1,,.i’)
d(gp, g2)<
dd(fp, f.i’)dd(p,f),
and pf.
Thus 0<
d(p,]’) d(gp, gf.,’) d,d(fp,f2)
dd(p,fe)
andpf2.
By induction pf"
foranyn 1.If
fh"
f2"
thcn 0 <d(f:r,.f2.)
d(gf,gf2)
dd(f2,f3)
andf2
f.’.
By iMuction.f
fa+2-
foreach’t 1.To prove
(4),
9f"
gy andgf"f"9
f"
y and 9Y Y.f"+;
Y and.["+ii"
ff"
fy,sofy y. From(1)
y p.Toprove
(5),
n+r--I n+r--I
(".,+rx)
e(.,+)
(f.,.t)
k=n
T&ing thelimit asr yields
(",)
e(I,I)
.
If
f
is the identity,gha uniquefixed point from(1).
But(2)
gives g2 2. Therefore.i:=p.
Altman
[2]
calledf-X
X
ageneralizedcontractionprovidedd(fz,fy)
Q(d(x,y))for
allx,gX
whercQ
satisfiesthe following:() 0
< (t)
<
fon
e (0,t,],
(b) g(t)
t/(t- Q(t))
is non-increasing,(c)
f2’
g(t)dt <
,
and(d) Q
isnon-decreasing.Heassumes
(X,d)
is ametric space andprovesthat foranyxo
GX, xn
f’xo
xf(x).
Ve usehis definition in themore
generM
setting to obtMn thefollowing.THEOREM 2.3. Let
(X,t)
be ad-completeHausdorff
topologicalspace andf
X
X aw-continuous generalized contraction. LetXo EX
and put x, --wf’xo
f(xn-1).
Thenlimz, z and x
f(x).
PROOF. Put
sa
d(xo,xl)
ands,+lQ(sn)
forn_>
1. Using(a), (b),
and(c),
Altmanshows that theseries
n__
s,generatedbyQ
isconvergent.By
induction,d(x,,xn+,)
d(fxn_,,fx,)
< O(d(x,,_,,x,)) < O(s,)
,5n+l.Thus,
-:+,
d(x,,,x+,
<
cx and limx, x exists,f
w-continuous gives x,+f(xn)
f(x).
Thus,f(z)
x.Ifonereplaces topological bysymmetrizableinthetheorem,
f
isforcedto bew-continuous.Even
though Altman asserted uniqueness of the fixed point, examples exist[11]
that showotherwise.
Ournext resultis thed-completeanalogueofTheorem 2.1 ofPark
[9].
(i) there exists a.sequence
{x,}
C X such thatu,+l := gu,,u2,+ := hu,+ and has a cluster point znX,
(ii)
g andhg arew-continuous at,
(i,)
G(x)
:=d(x,gz),H(x) :=d(z, hx)
are orbitallycontinuous at,
and(i’v) g andh satisfy
d(gx,hy) < d(x,y)
for
each distinct z and y in{h-,}
satisfying either x hy ory gx, then(1)
g orh has afixed
potnt ,n{-7,}
or(2)
is a commonfixed
pointof
g and h and u, as oo.The proofis thesame asthat of Theorem2.1 of
[9].
COROLLARY2.3. Letg andh be w-continuousselfinaps
of
ad-completespaceX
satis-fyn.q
d(hz,gy)
<_
max{d(z,y),
d(z,hz),
d(y,gy), d(y,hz)}
for
allx,y inX,
"where 0<
k<
andd(x,gx)
andd(x, hx)
are orbitallycontinuous. Theng orh has afixed
point org andh havea unique commonfixed
point.PROOF.
Let
u,+ hu,,u.,+2 gu2,+. Thus,from thecontractivedefinition,d(u2,+,u2n+2) <_ kmax{d(u2n, u2n+a),d(u2n, u2n+l),
d(.+, .+), d(.+
,
u.+ },
whichimplies that
d(u,+,,u,,+) <
kd(u2,,,u,+a).
Therefore{u,}
is Cauchy, hencecon-vergesto apoint
.
ThehypothesesofTheorem 4arenowsatisfied.The uniqueness ofacommonfixed point follows from thecontractivedefinition.
Wenowdemonstrate that several resultsin the literaturefollowasspecialcasesof Theorem
2.4. Whileourlist is notexhaustive, itindicates thegeneralityofthe theorem.
COROLLARY2.4.
[3,
Theorem1].
LetT,
T
be twoselfmapsof
aHausdorff
F-complete spaceX, F" X
X
---,[0, oo)
a continuou symmetric mapping such thatF(x,y)
0for
x y and,for
each pairof
distinctx,y inX,
F(Tx,Ty) <
max{[F(x,y),F(x,Tx),F(y,Ty)]
Umin[F(y,Ty),F(y,Tx)]},
andfor
someXo inX the sequence{x,} defined
byx2n+ Tx2n,x2,,+2 Tx2n+, has subsequence converging to apoint inX.If
T
andT2T
orT
andT
T2
arecontinuous atthen is a
fixed
pointof
T1
andT2 (or
T
orT2
has afixed
point). PROOF.F(Tx,TTlx)
<
max{[F(x, Tz),F(x,Tlx),F(Tlx,
TTx)]
Umin[F(
T
x,TT
x),
F(
TI
x,T
xmax{r(x,Tx),F(Tx,TTx)}
which implies that
F(Tz,TTx) < F(z,
TlZ),
andcondition(iv)
ofTheorem 2.3issatisfied. With gT,
hT,
theremainingconditionsof Theorem2.4 aresatisfied.264 T.L. HICKS AND B.E. RHOADES
Ifwenow set g
T,
hT1
then, from the contractivedefinition,F(T1T2x, T2x) <
max{[F(T2x, x), F(T2x, T1T:x), F(x, Tx)]
U
min[F(x,T2x),F(x,
T1T:x)]}
max{F(T2x, T,Tx),F(x,Tx)},
which implies that
F(TITx,T:z)
<
F(x,Tx),
and again thehypothesesofTheorem 2.4 a.,’,’ satisfied.COROLLARY2.5.
[S,
Theorem1].
Letf
and g be w-continuousselfmapsof
ad-complete L-spaceX,
withd(z,x)
0 andd(x,y)
d(y,x)
for
each z,y inX.If f
and g satisfymin
d2(f
x,gy), d(x,y)d(fx,gy),
d(y,gy)
-min{d(x,fx)d(y,gy), d(x,gy)d(y,f
x)}
<_
qd(x,fx)d(y,gy)
for
all x, inX,
and 0<
q<
1, thenf
andg havea commonfixed
point,(or
f
org has afixed
po,nt).PROOF. Asin
[S],
itcanbeshown that{x,,}
converges,where{x,,}
isdefinedbyX2n+l .fx2n,X2n+2 gx2n+lSettingy
fx
in thecontractive definitionyieldso1"
min{d2(f
x,gfx),
d(x,fx)d(f
x,gyx),
d2(f
x,gfx)}
i{d(,y)d(y,gy),d(,gy)d(y,Y)} <_
qd(, fz)d(fz,gfz),
rnin{d2(fx,gfx),d(x,
fx)d(fx,gfx)} <
qd(x,fx)d(fx,gfx).
If theminimum isd2(fx,gfx),
thenwehaved(fx,gfx)
<
qd(x,fx)d(fx,gfx),
whichimpliesthat either
fx
is afixedpoint ofg,ord(fx,gfx)
<
qdix,fx
).
If the minimumis
d(x,fx)d(fx,gfx),
either x isafixedpoint off,
fx
is afixedpoint ofg,or
d(fx,gfx)
<_
qd(x,fx).
Therefore theconditionsof Theorem2.4 aresatisfied, except for(iii).
However,
forthis contractive definition(iii)
is notneeded. Asin[8], {x,,}
convergesto a point u inX. Sincef
isw-continuous andX2n+lfX2n,
it follows thatufu.
Similarly,COROLLARY
2.6.[1,
Theorem1]
Let S,T
be orbitallyw-continuous selfmapsof
ad-complete
L-space
X,
with d(x,y) 0iff
x y.If
for
some 0<
cr<
1 andfor
each x,y inX,
d(Sx,
Ty)
<_ a{a(x,
sx)a(y,
Ty)}
/:and
d(x, Sx),d(x, Tx)
are orbitally continuous, then S andT
have a unique commonfixed
point(or
S orT has afixed
point).PROOF. Nowthat thecontra(’tivedefinitionimplies that
,,max{d(x,
Sz),d(y,
Ty)},
and the result follows fromCorollary2.3.COROLLARY
2.7.[10,
Theorem1].
Let
X
be an F-completeHausdorff
space, Tl,T.
continuousselfmaps
of
X. LetF" X
xX
IR+,
F
continuous andsuch thatF(x,x)
0for
allx inX
andF(Tx,Ty) <
a,E(x,y)+
a,F(x,Tx) +
aaF(y,Ty)
for
each distinct x,y inX,
wherep andq arepositive integers, a,>_
O,a+
a2 -t"aa <
1.ff
for
some XoX,
the sequence{x,}
CX
defined
byx2n+lTz.,x2.+2
Tz2.+,
has aconvergentsubsequeuce, then
(T
orT2
has afixed
point)orT
andT2
have aunique common.fixed
poini.PROOF. Sety
Tx
togetF(Tx,TTx)
<
a,F(x,Tx)
+
a:F(x,Tx)
+
aaF(Tx,TTx),
or
F(T TIT)
<
+
F(,
T),
1 aaandthe conditions of Theorem 2.4aresatisfied with
f
T’,
gT
q.
The uniqueness followsas in
[10].
REMARK.
The wordsinparenthesesinCorollaries4-7 have been addedbythe presentauthors, inorder forthetheoremstobe correctly stated.266 T.L. HICKS AND B.E. RHOADES
REFERENCES
B. Ahmad and Fazal-ur-Retnnan, Fixedpoint theorems in
L-spaces.
Math. Japonica36(1991),
225-228.2. M. Altman,
An
integraltestforseriesandgeneralizedcontractions. Amer. Math. Monthly82
(1975),
827-829.3. H.Chatterjeeand BaradaK.
Ray,
Onfurtherextensionofatheorem ofEdelstein. Indian J. Pure Appl. Math. 11(1980),
256-257.Troy
L. Hicksand WilsonR.
Cfisler,A
noteonTI
topologies. Proc.Amer.
Math. Soc.46,
(1974),
94-96.Troy L.
Hicks, Fixed point theorems for d-complete topological spaces I. Int.J.
Math. and Math. Sci.,to appcar.Troy
L. HicksandB.E. Rhoades, Fixedpointtheoremsford-completetopological spacesII. Math. Japonica,toappear.
Gerald
Jungck,
Compatible mappings andcommonfixed points. Int. J. Math. and Math. Sci__.=9(1986),
771-779.8.
B.G.
Pachpatte, Commonfixedpoint theorems forcertainmappingsinL-spaces.
J.
M.A.C.T.
13(1980),
55-58.9. SehiePark,Fixedpoints andperiodicpoints ofcontractivepairs of maps. Proc. Collegeof
Nat. Sci., SeoulNational Univ. 5
(1980),
9-22.10.
11.
Barada
K. Ray
and H. Chatterjee, Someresults on fixed points in metric and Banach spaces. Bull. L’Acad. Pol. des Sci. 25(1977),
1243-1247.B.
Watson,
B.A. Meade and C.W. Norris, Note on a theorem of Altman. IndianJ. Pure Appl. Math. 17(1986)
1092-1093.Mathematical Problems in Engineering
Special Issue on
Modeling Experimental Nonlinear Dynamics and
Chaotic Scenarios
Call for Papers
Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.
Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.
This proposed special edition of the Mathematical
Prob-lems in Engineering aims to provide a picture of the
impor-tance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophis-ticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.
Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www .hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System athttp:// mts.hindawi.com/according to the following timetable:
Manuscript Due February 1, 2009 First Round of Reviews May 1, 2009 Publication Date August 1, 2009
Guest Editors
José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br
Elbert E. Neher Macau, Laboratório Associado de
Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São Josè dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br
Celso Grebogi, Department of Physics, King’s College,
University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk
Hindawi Publishing Corporation http://www.hindawi.com