• No results found

Experimental Data for Assesments

N/A
N/A
Protected

Academic year: 2020

Share "Experimental Data for Assesments"

Copied!
43
0
0

Loading.... (view fulltext now)

Full text

(1)

EPJ Web of Conferences 14, 03002 (2011) DOI: 10.1051/epjconf/20111403002

© Owned by the authors, published by EDP Sciences, 2011

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly cited.

“ Fundamentals of Thermodynamic Modelling

of Materials ”

November 15-19, 2010 INSTN – CEA Saclay, France

Organized by

Bo SUNDMAN bo.sundman@cea.fr Constantin MEIS constantin.meis@cea.fr

PROFESSOR & TOPIC

Jean Marc

JOUBERT

ICMPE-CMTR, CNRS Thiais

Experimental Data

for Assesments

(2)



  

 ­ €‚€ƒ „…€…

• 

(3)

3XUSRVHRIWKLVOHFWXUH

QRWDOLVWRIWKHH[SHULPHQWDOWHFKQLTXHV

HPSKDVLVRQOHVVZHOONQRZQWHFKQLTXHV

DVVHVVPHQWRULHQWHG

FRPPHQWVRQWKHGHFLVLRQVWREHWDNHQ

DGRSWDSUHVHQWDWLRQGLIIHUHQWIURPWKHRQHRIWKHERRN

(4)

2XWOLQH

• ZKLFKW\SHRIGDWD • TXDOLWDWLYHTXDQWLWDWLYHH[SHULPHQWDOGDWD • XVDEOHQRWXVDEOHGDWD • WKHUPRG\QDPLFGDWD • SKDVHHTXLOLEULXPGDWD • SURFHGXUHIURPOLWHUDWXUHVHDUFKWRWKHEHJLQQLQJRIWKHDVVHVVPHQW • JHQHUDOFRPPHQWV

:KLFKW\SHRIGDWD

• DOOW\SHRIPHDVXUHPHQWVWKDWDUHTXDQWLWDWLYHO\UHODWHGWRDQ\ WKHUPRG\QDPLFGDWD HQWURS\ HQWKDOS\

VSHFLILF KHDW S

FKHPLFDO SRWHQWLDO

PRODU YROXPH

YROXPHH[SDQVLRQ α

LVRWKHUPDO FRPSUHVVLELOLW\ κ

i N p T G S , ∂ ∂ − = i N p T G T G TS G H , ∂ ∂ − = + = i N T p G V , ∂ ∂ − = i j N T i i N G µ ≠ ∂ ∂ − = , i N p p T G T C , 2 2 ∂ ∂ − = i N T p G V ∂ ∂ ∂ = α 2 1 i N T p G

V 2 ,

(5)

:KLFKW\SHRIGDWD

• EXWDOVRSKDVHHTXLOLEULXPGDWDZKLFKDUHQRWGLUHFWO\UHODWHGWR

WKH*LEEVHQHUJ\RIDJLYHQSKDVHEXWUDWKHUWRWKHFKHPLFDO SRWHQWLDOVRIWKHHOHPHQWV LQ VHYHUDOFRH[LVWLQJSKDVHV

• EXWDOVRPRUHH[RWLFGDWDOLNHVLWHRFFXSDQFLHVWKDWDUHUHODWHG WR

WKHGLIIHUHQFHRIWKH*LEEVHQHUJ\RIWKHRUGHUHGFRPSRXQGV DSSHDULQJLQWKHFRPSRXQGHQHUJ\IRUPDOLVP

• EXWDOVRQRQTXDQWLWDWLYHGDWD

• DOOWKHVHDUHTXDQWLWDWLYHGDWDWRµIHHG¶ WKHDVVHVVPHQWDQGKHOSWR

DVVHVVWKH*LEEVHQHUJ\

2XWOLQH

• ZKLFKW\SHRIGDWD

• TXDOLWDWLYHTXDQWLWDWLYHH[SHULPHQWDOGDWD

• XVDEOHQRWXVDEOHGDWD

• WKHUPRG\QDPLFGDWD

• SKDVHHTXLOLEULXPGDWD

• SURFHGXUHIURPOLWHUDWXUHVHDUFKWRWKHEHJLQQLQJRIWKHDVVHVVPHQW

(6)

0 20 40 60 80 100 0

500 1000 1500 2000 2500 3000

Zr-Re

bcc

hcp

Zr21Re25

C14

χ

hcp

T

e

m

p

e

ra

tu

re

(

°C

)

Zr composition (at.%)

(7)

• GLVWULEXWLRQRIWKHHOHPHQWVRQWKHGLIIHUHQWVLWHVPHFKDQLVPWR H[SODLQWKHQRQVWRLFKLRPHWU\

FKRLFH RIWKHPRGHO

4XDOLWDWLYHGDWD

80 90 100

0 200 400 600 800 1000 1200 1400 1600

AB5+x

5.4

B at%

T

C)

LI\RXNQRZIURP FKHPLVWU\

FU\VWDOFKHPLVWU\

FRPSDULVRQZLWKDQRWKHUV\VWHP TXDOLWDWLYHPDVVGHQVLW\

SK\VLFDOSURSHUWLHV WKDWWKHPHFKDQLVPWRH[SODLQ WKHQRQVWRLFKLRPHWU\LV

VXEVWLWXWLRQDO $%% YDFDQF\

$YDF% LQWHUVWLWLDO

$%%YDF

50 55 60

homogeneity range

stoichiometric composition AB

A vacancies

A

1-x

B

substitution

B over A sites

A

1-x

B

1+x

m

a

s

s

d

e

n

si

ty

(8)

 ­€‚€ƒ‚„…† ‡ ˆ‰Š†

0.0 0.2 0.4 0.6 0.8 1.0 -2500

-2000 -1500 -1000 -500 0

M

ix

in

g

e

n

th

a

lp

y

(

J

/m

o

l)

Mole fraction B

4XDOLWDWLYHGDWD

• VKDSHRIWKHHQWKDOS\RIPL[LQJLQWKHOLTXLG

QXPEHURISDUDPHWHUV

0.0 0.2 0.4 0.6 0.8 1.0 -3000

-2500 -2000 -1500 -1000 -500 0

M

ix

in

g

e

n

th

a

lp

y

(

J

/m

o

l)

Mole fraction B

UHJXODU SDUDPHWHU PD\ EH VXIILFLHQW

DWOHDVWDVXEUHJXODU

(9)

(10)

2XWOLQH

• ZKLFKW\SHRIGDWD

• TXDOLWDWLYHTXDQWLWDWLYHH[SHULPHQWDOGDWD

• XVDEOHQRWXVDEOHGDWD

• WKHUPRG\QDPLFGDWD

• SKDVHHTXLOLEULXPGDWD

• SURFHGXUHIURPOLWHUDWXUHVHDUFKWRWKHEHJLQQLQJRIWKHDVVHVVPHQW

• JHQHUDOFRPPHQWV

 



(11)

2XWOLQH

• ZKLFKW\SHRIGDWD

• TXDOLWDWLYHTXDQWLWDWLYHH[SHULPHQWDOGDWD

• XVDEOHQRWXVDEOHGDWD

• WKHUPRG\QDPLFGDWD

• SKDVHHTXLOLEULXPGDWD

• SURFHGXUHIURPOLWHUDWXUHVHDUFKWRWKHEHJLQQLQJRIWKHDVVHVVPHQW

• JHQHUDOFRPPHQWV

7KHUPRG\QDPLFGDWD

(12)

7KHUPRG\QDPLFGDWD

.QXGVHQHIIXVLRQFHOO 9DSRXUSUHVVXUH

*DOYDQLFFHOOV &KHPLFDOSRWHQWLDOGDWD

'URSDQGVFDQQLQJFDORULPHWU\

GLUHFWUHDFWLRQFDORULPHWU\ VROXWLRQFDORULPHWU\

0L[LQJDQGUHDFWLRQHQWKDOS\ &DORULPHWULFGDWD





(13)







7KHUPRG\QDPLFGDWD

ERWKPHWKRGVDOORZWRPHDVXUH HQWKDOS\RIIRUPDWLRQ

HQWKDOS\RIPL[LQJRIVROLGVROXWLRQV

(14)

0 20 40 60 80 100 -40

-30 -20 -10 0

Mo-Pt system

MoPt

2

fcc

B

19

D

0

19

∆∆∆∆

H

f

(

k

J

/m

o

l.

a

t.)

Composition (at. % Pt)

ab initio [05Cur] (0 K)

ab initio [08Hug] (0 K) experimental (1526-1768 K) assessed (Calphad)

A

15

7KHUPRG\QDPLFGDWD

• QRZDGD\V HQWKDOSLHVRIIRUPDWLRQPD\EHXVHGDV

µH[SHULPHQWDO¶ WKHUPRG\QDPLFGDWDZLWKYHU\JRRGFRQILGHQFH

>)LRUDQLWREH SXEOLVKHG@

2XWOLQH

• ZKLFKW\SHRIGDWD

• TXDOLWDWLYHTXDQWLWDWLYHH[SHULPHQWDOGDWD

• XVDEOHQRWXVDEOHGDWD

• WKHUPRG\QDPLFGDWD

• SKDVHHTXLOLEULXPGDWD

• SURFHGXUHIURPOLWHUDWXUHVHDUFKWRWKHEHJLQQLQJRIWKHDVVHVVPHQW

(15)

0 20 40 60 80 100

0 500 1000 1500 2000 2500 3000

Zr-Re

bcc

hcp

Zr21Re25

C14

χ

hcp

T

e

m

p

e

ra

tu

re

(

°C

)

Zr composition (at.%)

0 20 40 60 80 100

0 500 1000 1500 2000 2500 3000

Zr-Re

bcc

hcp

Zr21Re25

C14

χ

hcp

T

e

m

p

e

ra

tu

re

(

°C

)

(16)



 





 



  

A Composition B

Te

m

p

e

ra

tu

re

Heating

A Composition B

Te

m

p

e

ra

tu

re

Cooling

(17)

0 20 40 60 80 100 600 800 1000 1200 1400 1600 1800 2000 863° C Liquid 1855° C (Er)

Zr)

T e m p e ra tu re ( ° C )

Atomic Percent Zirconium

Er Zr

Zr)

1529° C

solidus / liquidus (STA) other STA measurements

DSC / DTA measurements solubility limits (EPMA)

800 850 900 950 1000 1050 1100 1150 1200 -100 -50 0 50 100 Endothermic H e at f lux (µ V ) Temperature (°C) Heating T onset=1045°C

optical

pyrometer

0 20 40 60 80 100

600 800 1000 1200 1400 1600 1800 2000 863° C Liquid 1855° C (Er)

(αZr)

T e m p e ra tu re ( ° C )

Atomic Percent Zirconium

Er Zr

Zr)

1529° C

solidus / liquidus (STA) other STA measurements

DSC / DTA measurements solubility limits (EPMA)

600 800 1000 1200 1400 1600 1800 2000 melting pure Zr Er20Zr80

T e m p e ra tu re ( °C )

Time (arbitrary unit) incipient

melting

(18)



0 20 40 60 80 100

0 500 1000 1500 2000 2500 3000

Zr-Re

bcc

hcp

Zr21Re25

C14

χ

hcp

T

e

m

p

e

ra

tu

re

(

°C

)

(30$

KLJKHQHUJ\HOHFWURQV

;UD\

DQDO\]HGYROXPHa—P

(19)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Nb

Zr

Fe

(30$

KLJKHQHUJ\HOHFWURQV

;UD\

DQDO\]HGYROXPHa—P

VDPSOH

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Nb

Zr

Fe

(30$

KLJKHQHUJ\HOHFWURQV

;UD\

DQDO\]HGYROXPHa—P

(20)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Nb

Zr

Fe

(30$

KLJKHQHUJ\HOHFWURQV

;UD\

DQDO\]HGYROXPHa—P

VDPSOH

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Zr

(30$

KLJKHQHUJ\HOHFWURQV

;UD\

DQDO\]HGYROXPHa—P

(21)

• •







20 30 40 50 60 70 80 90 100 110 120

0 20000 40000

I

(c

o

u

n

ts

)

2 θ (°)

  ­€ ‚ƒ„

α

…

… 

(22)

20 30 40 50 60 70 80 90 100 110 120

0 20000 40000

I

(

c

o

u

n

ts

)

2 θ (°)

α







(23)

([DPSOH

α

0QVROLGVROXWLRQLQ0Q5H

CN12 CN16

CN16

CN13

α0QVWUXFWXUHRIWKH LQWHUPHWDOOLFχ SKDVH

>0DVVDOVNL/LQXV3DXOLQJ)LOH@

α

40 0

10000 20000 30000 40000 50000 60000 70000

In

te

n

s

it

y

(

c

o

u

n

ts

)

2

θ

θθ

θ

(°)

(24)

40 0

10000 20000 30000 40000 50000 60000 70000

In

te

n

s

it

y

(

c

o

u

n

ts

)

2

θ

θθ

θ

(°)

Re7 Re15

α

40 0

10000 20000 30000 40000 50000 60000 70000

In

te

n

s

it

y

(

c

o

u

n

ts

)

2

θ

θθ

θ

(°)

Re7 Re15 Re30

(25)

40 0

10000 20000 30000 40000 50000 60000 70000

In

te

n

s

it

y

(

c

o

u

n

ts

)

2

θ

θθ

θ

(°)

Re7 Re15 Re30 Re40

α

40 0

10000 20000 30000 40000 50000 60000 70000

In

te

n

s

it

y

(

c

o

u

n

ts

)

2

θ

θθ

θ

(°)

Re7 Re15 Re30 Re40 Re50

(26)

40 0

10000 20000 30000 40000 50000 60000 70000

In

te

n

s

it

y

(

c

o

u

n

ts

)

2

θθ

θ

θ

(°)

Re7 Re15 Re30 Re40 Re50 Re60

α

40 0

10000 20000 30000 40000 50000 60000 70000

In

te

n

s

it

y

(

c

o

u

n

ts

)

2

θ

θθ

θ

(°)

Re7 Re15 Re30 Re40 Re50 Re60 Re75

α

(27)

α

40 0

10000 20000 30000 40000 50000 60000 70000

In

te

n

s

it

y

(

c

o

u

n

ts

)

2

θ

θθ

θ

(°)

Re7 Re15 Re30 Re40 Re50 Re60 Re75 Re85

0 20 40 60 80 100

8.90 8.95 9.00 9.05 9.10 9.15 9.20

L

a

tt

ic

e

p

a

ra

m

e

te

r

)

Composition (at.% Re)

α

(28)

0 20 40 60 80 100 8.90

8.95 9.00 9.05 9.10 9.15 9.20

L

a

tt

ic

e

p

a

ra

m

e

te

r

)

Composition (at.% Re)

α

0 20 40 60 80 100

0 20 40 60 80 100

A

m

o

u

n

t h

c

p

R

e

(

w

t.

%

)

Composition (at.% Re)

 

 ­€‚ ƒ„……††ƒ†‡…ˆ





(29)

50 55 60

homogeneity domain

stoichiometric composition AB

A vacancies A1-xB

substitution B on A site A1-xB1+x

interstitial B

ABBx

C

e

ll

vo

lu

m

e

Composition (at.% B)

• •





(30)

α

20 30 40 50 60 70 80 90 100 110 120 0

20000 40000

I

(

c

o

u

n

ts

)

2 θ (°)

α

α

CN16

CN16

0 10 20 30 40 50 60 70 80 90 100

0.0 0.2 0.4 0.6 0.8 1.0

2a (CN 16) 8c (CN 16) 24g

1 (CN 13)

24g2 (CN 12)

R

e

o

c

c

u

p

a

n

c

y

Re composition (at.%)



 





(31)

0 10 20 30 40 50 60 70 80 90 100 0.0

0.2 0.4 0.6 0.8 1.0

2a (CN 16) 8c (CN 16) 24g1 (CN 13) 24g

2 (CN 12)

R

e

o

c

c

u

p

a

n

c

y

Re composition (at.%)

α

CN12 CN16

CN16

CN13



 

 



 

 

 

­€‚ ƒ€„…†††‡

2XWOLQH

• ZKLFKW\SHRIGDWD

• TXDOLWDWLYHTXDQWLWDWLYHH[SHULPHQWDOGDWD

• XVDEOHQRWXVDEOHGDWD

• WKHUPRG\QDPLFGDWD

• SKDVHHTXLOLEULXPGDWD

• SURFHGXUHIURPOLWHUDWXUHVHDUFKWRWKHEHJLQQLQJRIWKHDVVHVVPHQW

(32)

• OLWHUDWXUHVHDUFK

FKHPLFDODEVWUDFWV

,6,ZHERINQRZOHGJH VHDUFKE\VXEMHFW VHDUFKE\SDSHU SDS\UXV

3URFHGXUHWRFROOHFWDQGSURFHVVGDWD

IURPWKHOLWHUDWXUH

(33)

(34)

(35)

 ­­€ 

‚ ƒ ­ „

 …†‡ ­­ ˆ‰Šˆ‹ŒŽˆ‘€ ‹‘‘Ž ‡’…­€ „

‘‘

Š“

‚ ­‡  ‡     ­€

 ‡ 

‚ƒ”„•„­„‡­„

 …†– ‡ ­ ˆ ˆ‡­­ˆ‘‘ ˆ ‘€ ŒŒ

‡’…­€ „ ‘‘

Œ“

‚ ­­‡­‚­—  ­

ƒ­„•‚„˜„

 …†– ‡­ˆ­Œˆ€ˆƒ‘Š€ ‘Œ‹­ ŠŠ“Ž

‡’…­€ „ ŠŠ“

““‘

‚ ­­‡­‚­­€ ‚­­

 ™ „­š„­‚– „–€­– „  …†‡‚ˆ­‰‰ˆ‰ˆƒ Š€ Š‹­ ŠŠ‘Ž ‡’…­€ „

ŠŠ‘

‘‰“

‡  ƒ­›‚ ­­‡­‚­€  

­›œ–‡­Œ‹ŠŠ“Ž‘Š€‘Œž ƒ­„•‚„˜„

 …†– ‡­ˆ­“ˆ€ˆƒ € “‹ƒŠŠ‘Ž

‡’…­€ „ ŠŠ‘

“Š‰Š

 € ‡‡‡‚ ­­‡­ƒ‚­€

 ­

ƒ„™‚ƒ‡„‡‚„­ ƒ„‡‚ƒ„  …† ­‡ˆ“‹Žˆ € “‹ŠŠŽ ‡’…­€ „

(36)



(37)
(38)

(39)

• • • • 



1 nn 20 85BLA 4 148530 1485300 0.04131914 473 200 0.0431 14.853 1 nn 19 85BLA 4 128730 1287300 0.03790648 473 200 0.0394 12.873 1 nn 18 85BLA 4 108920 1089200 0.0340964 473 200 0.0353 10.892 1 nn 17 85BLA 4 89120 891200 0.03025601 473 200 0.0312 8.912 1 nn 16 85BLA 4 79220 792200 0.0281827 473 200 0.029 7.922 1 nn 15 85BLA 4 69310 693100 0.02610051 473 200 0.0268 6.931 1 nn 14 85BLA 4 59410 594100 0.02381882 473 200 0.0244 5.941 1 nn 13 85BLA 4 49510 495100 0.02143067 473 200 0.0219 4.951 1 nn 12 85BLA 4 39610 396100 0.01893456 473 200 0.0193 3.961 1 nn 11 85BLA 4 29710 297100 0.01613538 473 200 0.0164 2.971 1 nn 10 85BLA 4 19800 198000 0.01293061 473 200 0.0131 1.98 1 nn 9 85BLA 4 10000 100000 0.00891972 473 200 0.009 1 1 nn 8 85BLA 4 9000 90000 0.00852667 473 200 0.0086 0.9 1 nn 7 85BLA 4 8000 80000 0.00803492 473 200 0.0081 0.8 1 nn 6 85BLA 4 7000 70000 0.00754268 473 200 0.0076 0.7 1 nn 5 85BLA 4 6000 60000 0.00695134 473 200 0.007 0.6 1 nn 4 85BLA 4 5000 50000 0.00626056 473 200 0.0063 0.5 1 nn 3 85BLA 4 4020 40200 0.00566769 473 200 0.0057 0.402 1 nn 2 85BLA 4 2000 20000 0.00388485 473 200 0.0039 0.2 1 nn 1 85BLA 4 1000 10000 0.00269273 473 200 0.0027 0.1 weight phases exp nber ref symbole sigma (Pa) P (Pa) x(h) T (K) T (°C) capacity (D/M) P (bar)

Data to be entered in the pop file

85BLA

(40)





   ­ €‚ƒ„…†„‚

‡„‚€„ˆˆ‰

† Š€†‚Š„‹‚ŠŒŽ‘’“

† Š€†‚Š„Ž…‚”‰Ž…‚”­Œ„•€“ Š„€ –•€Œˆ €•Œ’—˜Œˆ­ „’„‡‘™„•€Œˆ ˆ

‹‡‚†‘Šˆ­ˆˆ ƒ‚„ƒ‚‘Š–

–™™„•€ˆ

šŒ“ ›› Š œ„ˆžˆ

Š ‚ ŠˆŸ

Š Š ¡Ÿ—Ž…‚”‰”­˜Œ“ Š Š ¡Ÿ—Ž…‚”‰¡‚”­˜Œ Š Š ¡Ÿ—Ž…‚”­‰”­˜Œ Š Š ¡Ÿ—Ž…‚”­‰¡‚”­˜Œ“ €‚ƒ„ ¡‚ƒ¢„Š

€ —˜ —˜ —˜  š

 “£““­ž­ ““““ “““  ƒ‚  

 “£““ž ­““““ ­“““  ƒ‚ ­ 

 “£““ž “­““ “­“  ƒ‚  

 “£““­“ ““““ “““  ƒ‚  

 “£““ž ““““ “““  ƒ‚ 

 “£““­ ““““ “““  ƒ‚ 

 “£“““ž ““““ “““  ƒ‚  

 “£““­ ž““““ ž“““  ƒ‚ 

 “£““žž­­ “““““ ““““  ƒ‚ ž 

 “£“­ž““ž ž“““ ž““  ƒ‚ “ 

(41)







-30 -25 -20 -15 -10 -5 0 5

M

IX

IN

G

E

N

T

H

A

L

P

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MOLE_FRACTION NB

[2] [3]

(42)



• 









• 

• 

• 

(43)

2XWOLQH

• ZKLFKW\SHRIGDWD

• TXDOLWDWLYHTXDQWLWDWLYHH[SHULPHQWDOGDWD

• XVDEOHQRWXVDEOHGDWD

• WKHUPRG\QDPLFGDWD

• SKDVHHTXLOLEULXPGDWD

• SURFHGXUHIURPOLWHUDWXUHVHDUFKWRWKHEHJLQQLQJRIWKHDVVHVVPHQW

• JHQHUDOFRPPHQWV

*HQHUDOFRPPHQWV

• XVHRULJLQDOGDWD

WKHRULJLQDOUDZQRQWUHDWHGGDWD WKHRULJLQDOSDSHUV

• SUREOHPRIH[SHULPHQWDOHUURUVDQGZHLJKWV

WKH\VKRXOGEHFKRVHQLQRUGHUWRGHVFULEHKRZJRRG\RX ZDQWWRILWDQH[SHULPHQW

XVHZHLJKWVDFFRUGLQJWRWKHQXPEHURIPHDVXUHPHQWV XVHJRRGVHQVHDQGUHDVRQLQJ

• WKHUHH[LVWVHYHUDOZD\VWRHQWHUDQH[SHULPHQWLQ3DUURW FKRVHWKHEHVWVXLWHG

• SUREOHPRIFRQIOLFWLQJGDWD

RQHLVULJKWRUERWKDUHZURQJ

GRQRWWU\WRILWFRQIOLFWLQJGDWDDWWKHVDPHWLPH

References

Related documents

This general question is broken down for the case of distributed generation and electricity networks. More specifically, it is analysed whether and how the standard model of

This paper presents Quality of experience framework for Cloud computing (QoC) for monitoring the Quality of Experience (QoE) of the end user using video

TEN Percentage of owned acres - MA Managerial ability (measured using the total economic expense ratio) + DA Debt to asset ratio +/- WC (Current assets minus

· This estimate constitutes a low estimate for emissions by junk mail, since it does not include several emissions that should be attributed to junk mail: embedded emissions from

payment rates for services reimbursed at higher rates in the physician office setting than in the hospital outpatient setting..  “38 of the 39 pathology

If a company is pushed into crisis, the experts of Heuk- ing Kühn Lüer Wojtek will provide advice on successful restructuring, which due to our holistic approach be- gins with

We argue that profits in the state-owned sector contributed substantially to rising corporate savings and benefited mainly managers and employees of SOEs, not their real

INITIAL RESULTS OF A PASSIVE MILLIMETER- WAVE IMAGER USED FOR CONCEALED WEAPON DETECTION BHU-2D-U.. Cheng Zheng * , Xianxun Yao, Anyong Hu, and