• No results found

Seismic Pushover Analysis

N/A
N/A
Protected

Academic year: 2021

Share "Seismic Pushover Analysis"

Copied!
170
0
0

Loading.... (view fulltext now)

Full text

(1)

Seismic'Pushover'Analysis:'Using'

AASHTO'Guide&Specifica,ons&for&

LRFD&Seismic&Bridge&Design!

Michael!D.!Keever,!California!Department!of!Transporta8on! Elmer!E.!Marx,!Alaska!Department!of!Transporta8on!and!Public!Facili8es! WenChuei!Phillip!Yen,!Federal!Highway!Administra8on! Jeffrey!Ger,!Federal!Highway!Administra8on! !

TRB!AFF!50!–!Seismic!Design!

1!

(2)

Part!1!Overview!

• 

Fundamentals,!hand!methods,!simple!computer!

approaches!for!AASHTO'Guide&Specifica,ons&for&

LRFD&Seismic&Bridge&Design&(SGS)!methodology!

!

!

• 

Workshop!focus!is!pushover!analysis!not!modeling!

and!seismic!/!capacity!design!

!

2!

(3)

Part!1!Overview!

• 

Flexural!mechanics!

• 

Genera8on!of!MomentCCurvature!(!M"#"

φ

")!

• 

Material!models!and!failure!strains!

• 

Hand!checking!M"#"

φ"

• 

Analy8cal!plas8c!hinge!length,!L

p"

• 

ForceCdisplacement!example!

• 

Hand!checking!forceCdisplacement"

• 

Implicit!SGS!displacement!equa8ons!

• 

Design!example!1!–!Two!circular!column!bent!

• 

Other!design!considera8ons!

• 

Design!example!2!–!Two!square!column!bent!

3!

(4)

But!Before!We!Begin!

• 

Name!

• 

Organiza8on!

• 

Primary!job!func8on!(design,!manage,!etc.)!

• 

Seismic!design!experience!

• 

Workshop!expecta8ons!and!objec8ves!

4!

(5)

Why!Pushover?!

• 

SGS!is!primarily!a!displacement!based!approach!

!

• 

More!ra8onal!approach!than!forceCbased!

method!of!AASHTO!LRFD!

• 

Seismic!Design!Category!D!(SDC!D)!requires!

pushover!analysis!

• 

Provides!for!a!beaer!understanding!of!bridge!

response!and!behavior!

! 5!

(6)

Flexural!Mechanics!

• 

Rela8onship!between!force,!shear,!moment,!

curvature,!slope!and!deflec8on!

!

– 

Integra-on"

– 

Moment!area!

– 

Energy!methods!

– 

S8ffness!methods!

!

! 6!

(7)

Force!C!Displacement!

=

P

dx

V

=

V

dx

M

load

P =

7!

(8)

Force!C!Displacement!

=

V

dx

M

EI

M

=

ϕ

8!

(9)

Force!C!Displacement!

I

E

M

=

ϕ

=

ϕ

dx

θ

=

Δ

θ

dx

9!

(10)

Example!C!Can8lever!

P

V =

P

L

P

M

o

=

I

E

L

P

I

E

M

o o

=

=

ϕ

2

L

o L

=

ϕ

θ

3

2

L

o L

=

Δ

ϕ

L

10!

(11)

Compa8bility!

• 

BernoulliCEuler!assump8on!–!sec8ons!that!are!plane!

(linear)!before!bending!remain!plane!ager!bending!

!

• 

Perfect!bond!between!the!steel!reinforcing!bars!and!

surrounding!concrete!

!

• 

Material!(cons8tu8ve!σCε)!models!are!

representa8ve!of!actual!material!response!

(confinement,!strain!hardening,!buckling,!spalling,!

cracking,!creep,!strainCrate,!shear,!etc.)!

!

! 11!

(12)

Moment!–!Curvature!(!M"#"

φ

)!

c

Park and Paulay 1975

d

(13)

Moment!–!Curvature!(!M"#"

φ

)!

•  Curvature,!φ,!is!calculated!as:!

" "φ ="εc"/"c"="εt"/"(D/2"–"c)""

(14)

Moment!–!Curvature!(!M"#"

φ

)!

•  From!equilibrium:! P!=!FSC!+!FCC!+!FCU!–!FST" •  Summing!moments!about!the!neutral!axis! M!=!CGSC*FSC!+!CGCC*FCC!+!CGCU*FCU!+!CGST*FST!+!P*(D/2!–!c)! 14!

(15)

Moment!–!Curvature!(!M"#"

φ

)!

(16)

Moment!–!Curvature!(!M"#"

φ

)!

SGS 2011 Predicted Response Elastic perfectly-plastic used in SGS 16!

(17)

Moment!–!Curvature!(!M"#"

φ

)!

• 

Actual!rela8onship!versus!idealized!

• 

First"yield"Moment!and!Curvature,!M

y"

and!

φ

y"

• 

Effec8ve!s8ffness,!E

ce

*!I

eff"

=!M

y"

/!

φ

y"

• 

Idealized"yield!Moment!and!Curvature,!M

p"

and"

φ

yi"

• 

Expected!nominal!moment,!M

ne"

at!

ε

c

"=!0.003"

• 

Balance!the!area!above!and!below!the!curve!

(18)

SGS!Material!Models!

• 

Concrete:!Mander!et!al!!model!for!unconfined!

and!confined!condi8on!

!

• 

Reinforcing"steel:!elas8c!C!perfectly!plas8c!with!

strain!hardening!

!

• 

Other:!prestressing!steel!(see!SGS)!

!

• 

Any!func8on!/!model!that!accurately!captures!

the!material!

σ

#

ε

!rela8onship!is!acceptable!

!

! 18!

(19)

• 

StressCstrain!rela8onship!for!concrete!

!

!

where:!

SGS!Material!Models!C!Concrete!

r cc c x r xr f f + − = 1 ' ! ! " # $ $ % & − − + = 2.254 1 7.94 2 ' 1.254 ' ' ' ' ' ce l ce l ce cc f f f f f f cc c x

ε

ε

= sec E E E r ce ce − =

(20)

SGS!Material!Models!C!Concrete!

! " # $ % & '' ( ) ** + , − + = 0.002 1 5 ' 1 ' ce cc cc f f

ε

' 1900 ce ce f E = cc cc f E

ε

' sec =

(con8nue)!

(21)

• 

Confinement!of!circular!columns!

SGS!Material!Models!C!Concrete!

s D Asp s ' 4 =

ρ

l l e l K f f f ' = 0.95 2 2 ' yh s yh sp l f s D f A f = =

ρ

(22)

• 

Confinement!of!rectangular!columns!

SGS!Material!Models!C!Concrete!

(

)

2 ) ( 8 . 0 2 ' e x y yh x y yh l f f K f

ρ

+

ρ

ρ

+

ρ

c sx x sH A =

ρ

c sy y sB A =

ρ

(23)

SGS!Material!Models!C!Concrete!

εc!=!strain!in!concrete!(IN/IN)! fc!=!stress!in!concrete!corresponding!to!strain!εc!(KSI)! f ce!=!expected!nominal!compressive!strength!(KSI)! fyh!=!nominal!yield!stress!of!transverse!reinforcing!(KSI)! εRsu!=!reduced!ul8mate!tensile!strain!of!transverse!bars!(IN/IN! Asx!=!total!area!of!transverse!bars!in!the! x !axis!(IN2)! Asy!=!total!area!of!transverse!bars!in!the! y !axis!(IN2)! Asp!=!area!of!hoop!/spiral!bar!for!circular!column!(IN2)! Hc!=!confined!core!dimension!in!the! y !axis!(IN)! Bc!=!confined!core!dimension!in!the! x !axis!(IN)! D !=!diameter!of!spiral!or!hoop!for!circular!column!(IN)! s!=!pitch!of!spiral!or!spacing!of!hoops!or!8es!(IN)!

(24)

SGS!Material!Models!C!Concrete!

(25)

• 

Effec8ve!confinement!of!circular!columns!

!

• 

Effec8ve!confinement!of!rectangular!columns!

SGS!Material!Models!C!Concrete!

cc c c N i d c i e d s b s d b w K

ρ

− ## $ % && ' ( − ## $ % && ' ( − ) * + , -. − =

= 1 2 ' 1 2 ' 1 6 ) ( 1 1 2 ' cc n e D s K

ρ

− # $ % & ' ( − = 1 ' 2 ' 1 Chen 2003 25!

(26)

SGS!Material!Models!C!Concrete!

s’!=!clear!distance!between!transverse!bars!=!s!–!dbh"!(IN)! dbh!=!diameter!of!transverse!reinforcing!bar!(IN)! D’!=!centerline!diameter!of!hoop!or!spiral!(IN)! ρcc!=!Ast!/!Acc" Ast!=!total!area!of!longitudinal!reinforcement!(IN2)! Acc!=!area!of!confined!concrete!core!(IN2)! n!=!1!for!con8nuous!spiral! n!=!2!for!individual!hoops!! wi’!=!clear!distance!between!adjacent!8ed!longitudinal!bars(IN)! bd!=!confined!core!dimension!in!the!longer!direc8on(IN)! dc!=!confined!core!dimension!in!the!shorter!direc8on!(IN)! N!=!number!of!spaces!between!longitudinal!bars! Chen 2003 26!

(27)

SGS!Failure!Strain!C!Concrete!

• 

Confined!concrete!crushing!strain!limit,!

ε

cu"

!

"

"

!

where:!

s

!=!transverse!reinforcement!ra8o!(

ρ

x

+

ρ

y

!for!rect.)!

"f

yh

"=!nominal!yield!stress!of!transverse!steel!

su

"=!rupture!strain!of!transverse!steel:!use!

ε

Rsu!

=!0.09

!

"f

cc

!=!confined!concrete!compressive!stress!

02 . 0 4 . 1 004 . 0 + ' < = cc su yh s cu f f

ε

ρ

ε

important!

(28)

SGS!Material!Models!C!Concrete!

• 

StressCstrain!curves!for!concrete!

(29)

SGS!Material!Models!C!Concrete!

• 

StressCstrain!curves!for!concrete!

!

!

!

!

!

!

!

!

• 

Limit!

ε

cu

!<!0.02!for!design!purposes!

Spalling! strain,!εsp,!!not! to!exceed! 0.005! Confined!concrete! crushing!strain,!εcu,!! cri8cal!component!

ε

cu 29!

(30)

SGS!Material!Models!C!Steel!

• 

Actual!stressCstrain!curve!for!reinforcing!steel!

(31)

SGS!Material!Models!C!Steel!

• 

Design!stressCstrain!curve!for!reinforcing!steel!

(32)

SGS!Material!Models!C!Steel!

• 

ASTM!A!706!Grade!60!v.!ASTM!A!615!Grade!60!

(33)

SGS!Material!Models!C!Steel!

• 

StressCstrain!rela8onship!for!reinforcing!steel!

ye s

ε

ε

sh s ye

ε

ε

ε

≤ ≤ R su s sh

ε

ε

ε

≤ ≤ s s s E f =

ε

ye s f f = ! ! " # $ $ % & '' ( ) ** + , − − − − = 2 ) ( 1 sh su s su ye ue ue s f f f f

ε

ε

ε

ε

(34)

SGS!Failure!Strains!C!Steel!

• 

Reinforcing!steel!failure!strain,!

ε

R

su

!!

Property Notation Bar Size ASTM A706 ASTM A615 Grade 60

Specified minimum yield stress (ksi) fy #3 - #18 60 60

Expected yield stress (ksi) fye #3 - #18 68 68

Expected tensile strength (ksi) fue #3 - #18 95 95

Expected yield strain εye #3 - #18 0.0023 0.0023

Onset of strain hardening #3 - #8 0.0150 0.0150

#9 0.0125 0.0125

εsh #10 - #11 0.0115 0.0115

#14 0.0075 0.0075

#18 0.0050 0.0050

Reduced ultimate tensile strain #4 - #10 0.090 0.060

#11 - #18 0.060 0.040

Ultimate tensile strain εsu #4 - #10 0.120 0.090

#11 - #18 0.090 0.060

R su ε

(35)

Moment!–!Curvature!(!M"#"

φ

)!

• 

QuasiCsta8c!cons8tu8ve!models!for!cyclic!response"

Kowalsky et al. 2010

(36)

• 

Find!the!M#

φ

!for!the!column!shown!below!

• 

ASTM!A!706!Grade!60 !

!!f

c

!=!4!KSI"

Moment!–!Curvature!Example!

D = 48 IN L =H o = 20 F T #5 hoop @ 4IN 20 #11 2 IN clr. 940 KIP 36!

(37)

Moment!–!Curvature!Example!

• 

Diameter,!D!=!48!IN!

• 

Gross!Area,!A

g

!=!π*D

2

/4!=!1810!IN^2!

• 

20!#11!!!A

st

"=!20*1.56!=!31.2!IN^2!

• 

ρ

l

!=!A

st

!/!A

g

"=!0.01724!=!1.724%!

• 

#5!spiral!(d

sp

!=!0.625!IN!and!A

sp!

=!0.31!IN^2)!!

• 

Hoop!spacing!=!4!IN!pitch!(s!=!4!IN)!

• 

Clear!cover,!cov!=!2!IN!over!transverse!bars!

• 

Core!diameter,!D =!D!–!2*cov!–!d

sp"

=!43.375!IN!

• 

ρ

s

"=!4*A

sp

!/!(D *!s)!=!0.00715!=!0.715%!

• 

ASTM!A!706!Grade!60!so!f

ye

!=!68!KSI,!f

ue

!=!95!KSI!

• 

f

c

!=!4!KSI!so!f

ce

!=!5.2!KSI!

(38)

Moment!–!Curvature!Example!

• 

Confined!concrete!crushing!strain!limit,!

ε

cu""

"

""

!

where:!

s

!=!4*A

sp

/(D *s)!=!0.00715!

"f

l"

=!K

e

*

ρ

s

*f

yh

/2!~!0.95*0.00715*60/2!=!0.204!KSI!

"f

yh

"=!60!KSI!(use!nominal!for!horizontal!steel)!

su

"=!

ε

Rsu"

=!0.09!for!#5!hoops!

!

!

!

• 

Spreadsheet"demo"then"check"with"commercial"

!

01232 . 0 4 . 1 004 . 0 + ' = = cc su yh s cu f f

ε

ρ

ε

49 . 6 254 . 1 2 94 . 7 1 254 . 2 ' ' ' ' ' ' = ! ! " # $ $ % & − − + = ce l ce l ce cc f f f f f f 38!

(39)

Moment!–!Curvature!Example!

• 

Spreadsheet!summary!

(40)

Moment!–!Curvature!Example!

•  How!is!idealized!M"#"φ!rela8onship!calculated?!

!

•  Elas8cCperfectly!plas8c!rela8onship!is!defined!as:! !

Mi!=!idealized!moment!values!=!minimum!of!EceIeff!or!Mp"

Mp"=!idealized!plas8c!moment! φ!!=!actual!calculated!curvature!from!M#φ!results!! EceIeff!=!effec8ve!s8ffness!at!first!yield!=!My!/!φy! Δ(Mφ)!=!difference!in!actual!and!idealized!=!(ΔM)*(Δφ) !! ! ! Σ!Δ(Mφ)!=!sum!of!difference!=!0!by!changing!Mp"! ! •  Spreadsheet"demo"then"check"with"commercial! ! 40!

(41)

Moment!–!Curvature!Example!

• 

Idealized!M"#"

φ

!rela8onship!(balanced!area)!

(42)

Moment!–!Curvature!Example!

(43)

Moment!–!Curvature!Example!

P = 940 K

φyi = 0.0001109 1/IN 2%

φu = 0.001073 1/IN 0.2%

Mp = 50460 K-IN 2%

EceIeff = 454.85E6 K-IN2 0.3%

Comparison"

φyi = 0.0001132 1/IN φu = 0.001075 1/IN

Mp = 51626 K-IN

EceIeff = 456.3E6 K-IN2

(44)

Approximate!Methods!

• 

the!use!of!curvature!(!

φ

)!in!design!is!uncommon!

!

• 

don t!have!a!good! feel !for!curvature!values!

!

• 

simple!method!to!check!the!computer!results!

!

• 

can!help!with!itera8ve!processes!

!

• 

use"these"approxima-ons"with"due"skep-cism!

! 44!

(45)

Approximate!Methods!C!

φ

yi

"

• 

For!a!rough!check!of!conven8onal!circular!

reinforced!concrete!column!sec8ons:

! ! ! !φyi"~!2.25*εye/12Bo!~!1/2300Bo!! " " " φyi"~!2.25*εye/D!~!1/190D!! ! where:! ! ! &φyi"=!idealized!yield!curvature!(1/IN)! ! ! !Bo"=!column!diameter!(FT)! " " "D"=!column!diameter!(IN)! ! ! !εye"=!expected!yield!strain!~!0.002345!(IN/IN)!! ! 45!

(46)

Approximate!Methods!C!

φ

yi

"

• 

For!a!rough!check!of!conven8onal!rectangular!

reinforced!concrete!column!sec8ons:

! ! ! ! φyi"~!2.1*εye/12Bo"~!1/2500Bo!! ! where:! ! ! &φyi"=!idealized!yield!curvature!(1/IN)! ! ! !Bo"=!column!width!in!loaded!direc8on!(FT)! ! ! !εye"=!expected!yield!strain!~!0.002345!(IN/IN)!! ! 46!

(47)

Approximate!Methods!C!

φ

u

"

• 

And!for!a!very"rough"check"of!conven8onal!

circular!or!rectangular!reinforced!concrete!

column!sec8ons!with!good!confinement:

! ! ! !φu!=!min!(εcu/cc"",!!εsuR/d#c)!!~!εsuR"/12Bo! where:! ! &φu!=!ul8mate!curvature!(1/IN)! ! ! !εcu"=!ul8mate!confined!concrete!strain!(1/IN)! ! ! !εsuR"=!reduced!ul8mate!tensile!strain!(IN/IN)! ! ! !cc"=!neutral!axis!to!edge!of!confined!core!(IN)! ! ! !d#c"=!neutral!axis!to!extreme!tension!bar!(IN)! ! ! !Bo"=!column!diameter!/!width!(FT)! 47!

(48)

Effec8ve!S8ffness!C!E

ce

*I

eff"

" Ece*Ieff"=!My"/"φy" where:!! !Ece!=!Expected!modulus!of!elas8city!for!concrete! !My!=!moment!at!first!yield!(expected!materials!at!first!yield)! !φy!=!curvature!at!first!yield!(expected!materials!at!first!yield)! ! So,! Ieff"=!My"/("φy"*Ece)" And!typically,!!

!0.7!<!Ieff!/!Ig!!<!0.3!

(49)

Approximate!Methods!–!I

eff"

/!I

g"

!

!

! Ieff/Ig!~!0.2!+!0.1*ρl"+!0.5*(P/f ce*Ag)! where:!! ! !ρl!=!longitudinal!reinforcement!ra8o!in!%!

! !!!!!=!Ast!/!Ag"*!100!<!3%!prac8cal!limit! ! !P!!=!axial!load!–!keep'below'0.2*Ag*f ce&

"

(50)

Approximate!Methods!C!M

p"

Mp"~"D3"*"[0.05!+!0.2*ρ l"+!P/(f ce*Ag)]! where:!" " "Mp"!=!idealized!plas8c!moment!for!circular!sec8on!(KCIN)!! ! !D!!!!!=!column!diameter!(IN)!!>!30!IN! ! !ρl!!!!=!longitudinal!reinforcement!ra8o!in!%!

! !!!!!!!!=!Ast!/!Ag"*!100!!<!4%!but!3%!is!prac8cal!limit! ! !P!!!!!=!axial!load!on!column!(K)!!!!<!!0.2!*"f ce*"Ag! ! !f ce!!=!expected!concrete!strength!(KSI)! ! !Ag!!!!=!gross!area!of!column!(IN^2)! ! •  Assumes!!ASTM!A!706!Grade!60!reinforcing!steel!and!f ce!=!5.2! " 50!

(51)

Approximate!Methods!C!M

p"

Mp"~"b*d2"*"[0.15!+!0.25*ρ l"+!1.5*P/(f ce*Ag)]! where:!" " "Mp"!=!idealized!plas8c!moment!for!rectangular!sec8on!(KCIN)!! ! !d!!!!!=!column!depth!in!direc8on!of!loading!(IN)!!>!30!IN! ! !b!!!!!=!column!width!(IN)!!>!30!IN!

! !ρl!!!!=!Ast!/!Ag"*!100!!=!longitudinal!reinforcement!ra8o!in!%!

! !P!!!!!=!axial!load!on!column!(K)!!!!<!!0.2!*"f ce*"Ag! ! !f ce!!=!expected!concrete!strength!(KSI)! ! !Ag!!!!=!b!*!d!=!gross!area!of!column!(IN^2)! ! •  Assumes!!ASTM!A!706!Grade!60!reinforcing!steel!and!f ce!=!5.2! " 51!

(52)

Moment!–!Curvature!Check!

• 

Diameter,!D!=!48!IN!

• 

I

g

!=!D

4

π/64!=!260576!IN

4!

• 

ρ

l

!=!A

st

!/!A

g

"=!0.01724!=!1.724%!

• 

Axial!Load!Ra8o,!ALR!=!P!/!(f

ce

*A

g

)!=!0.1!![P"~!940!K]!

• 

ε

ye

!=!f

ye

/E

s

"=!68/29000!=!0.002345!!!!!!

ε

Rsu

"=!0.06!(#11)!

φ

yi

"~2.25*0.00234/48!=!0.000110!1/IN!v.!

0.0001132"1/IN"

φ

u"

~!0.06/48!=!0.00125!1/IN!v.!

0.001075"1/IN"

I

eff

!~!(0.2+.1*1.724+0.5*0.1)*260576!=!0.42*260576!

"

"I

eff

!~!109963!IN

4

!v.!

105307"IN

4""""""""""

4%"

M

p

!~!48

3

(0.05+0.2*1.724+0.1)!

"

"M

p

!~!54713!KCIN!v.!

51626"K#IN""""""

6%

!

(53)

Moment!–!Curvature!Check!

Predicted Response Approximate Method Idealized Response XTRACT Response 53!

(54)

• 

Calculate!deflec8ons!using!MC

φ

!result!

• 

Elas8c!deforma8on!component,!

Δ

yi"

• 

Plas8c!deforma8on!component,!

Δ

p"

• 

Founda-on"deforma-on"component"–"important"

but"not"specifically"addressed"in"this"workshop"

• 

Conserva8ve!to!neglect!shear!deforma8ons"

!

Force!C!Displacement

"

54!

(55)

Force!C!Displacement

"

Park and Paulay 1975

Strain penetration

(56)

Force!C!Displacement

"

(57)

Force!C!Displacement

"

Caltrans SDC Version 1.7

(58)

Analy8cal!Plas8c!Hinge!Length!C"L

p"

• 

Approxima8on!used!to!simplify!analysis!

!

• 

Converts!(integrates)!curvature!to!rota8on!!

!

• 

Includes!a!moment!gradient!part!(integra8on)!

and!a!strain!penetra8on!part!(yielding!into!cap,!

foo8ng!or!shag)!

!

• 

Calibrated!to!the!failure!condi8on!only!and!

modifica8on!may!be!needed!for!full!strainC

displacement!response!

! 58!

(59)

Analy8cal!Plas8c!Hinge!Length!C"L

p"

•  Researchers!have!proposed!a!plas8c!hinge!length!mechanism! and!a!recommended!εcu! ! Baker: ! !Lp!=!0.33*(L/D)*c" " Maaock: ! !Lp=0.5*D+0.05*L "" " Sawyer: ! !Lp=0.25*D+0.075*L" " •  The!SGS!(and!others)!uses!an!analy8cal!plas8c!hinge!length! based!upon!the!work!of!Dr.!Priestley" 59!

(60)

Analy8cal!Plas8c!Hinge!Length!C"L

p"

L

p

!=!k!*!L!+!L

sp

!>!2!*!L

sp"

!

L

p

!=!0.08!*!L!+!0.15!*!f

ye

!*!d

bl

!>!0.3!f

ye

!*!d

bl

!

" !

where:!

!

k!=!0.2*(f

ue

/f

ye

!–!1)!≤!0.08!

!L!=!length!of!column!from!point!of!maximum!moment!!

! !!!!!!!to!the!point!of!moment!contraCflexure!(IN)!

!L

sp

!=!strain!penetra8on!component!=!0.15*f

ye

*d

bl

!!(IN)!

!f

ye

!=!expected!yield!stress!of!longitudinal!bars!(KSI)!

!f

ue"

=!expected!tensile!strength!(KSI)!

!d

bl

"=!diameter!of!longitudinal!column!bars!(IN)!

60! SGS 2011

(61)

Force!C!Displacement

"

Δcrack""~!!1/3*! φcr*L2! Δy""~!!1/3*!φy*(L+Lsp)2! Δ(M,"φ)"~!!Δy*(M/My)+!(φ!C!φy!)*Lp*(LCLp/2)! ! where:! ! ! !φy !=!curvature!at!first!yield! ! ! !L !=!column!height! ! !" "Lp !=!analy8cal!plas8c!hinge!length! " " "Lsp !=!strain!penetra8on! " " " φ !=!curvature!at!point!of!interest! " " "My !=!moment!at!first!yield! " " "M !=!moment!associated!with φ" " " "F !=!force!associated!with!Δ!=!M!/!L"

(62)

Force!C!Displacement

"

Δyi""~!!1/3*φ!yi*(L+Lsp)2!

ΔLC""=!Δyi!!+!Δp!!~!!Δyi!!+!(φu!C!φyi!)*Lp*(LCLp/2)!

! where:! ! ! !φyi !=!idealized!yield!curvature! ! ! !Δyi" "=!idealized!yield!displacement! ! ! !Δp" "=!plas8c!displacement!capacity! ! ! !L !=!column!height! ! !" "Lp !=!analy8cal!plas8c!hinge!length! " " "Lsp !=!strain!penetra8on! " " " φu !=!ul8mate!curvature! ! ! !ΔLC" "=!ul8mate!displacement! " " "Fp !=!plas8c!force!=!Mp!/!L!! "!

!

(63)

Force!C!Displacement

"

•  So!the!deforma8on!values!for!the!example!problem!are:! " Δyi""=!!1/3*0.0001132*(240+14.38)2!=!2.44!IN! ! ΔLC"=!!2.44!+!(0.001075!–!0.0001132!)*33.58*(240C33.58/2)!=!9.62!IN! ! where:! ! ! !φyi !=!0.0001132!1/IN! ! ! !L !=!20!FT!=!240!IN! " " "Lsp !=!0.15*68*1.41!=!14.38!IN! ! ! !"Lp !=!0.08*240!+!14.38!=!33.58!IN!>!28.8!IN! " " "φu !=!0.001075!1/IN! " " "Mp !=!Myi""=!Mu!=!51626!KCIN! ! ! !Fp !=!Mp!/!L!=!51626!/!240!=!215!KIP! ! ! !µD !=!ΔLC"!/!Δyi""=!9.62!/!2.44!=!3.94!

!

!

!

63!

(64)

• 

The!idealized!response!for!the!single!column!example!

Force!C!Displacement

"

Approximate! Mp,!φyi"and!φu" Predicted! Response!from! Spreadsheet! calculated!M-φ " Idealized! Spreadsheet! Mp,!φyi!and!φu" 64!

(65)

Approximate!Methods"

• 

As!with!M#

φ

,!we!prefer!a!simplified!method!to!

check!the!computer!results!

• 

simple!method!to!check!the!computer!results!

!

• 

could!use!the!closedCform!AASHTO!equa8ons!to!

start!but!they!are!developed!for!specific!target!

duc8lity!/!strain!limits!

• 

use"these"approxima-ons"with"due"skep-cism!

65!

(66)

Approximate!Methods!C!

Δ

yi

"

• 

For!a!rough!check!of!conven8onal!circular!

reinforced!concrete!column!sec8ons:

! " " "! !"""Δyi""~!!1/3*φyi*(12*L+0.15*fye*db)2!!~!!L2!/!42Bo!! ! !where:! !Δyi!=!idealized!yield!displacement!(IN)! ! !L!=!contraflexure!to!plas8c!hinge!distance!(FT)! ! !db!=!diameter!of!longitudinal!column!bar!(IN)! ! !φyi!=!idealized!yield!curvature!~!2.25*εye/Bo!(1/IN)! ! !Bo!=!column!diameter!(FT)! ! !fye!=!expected!yield!stress!(KSI)! 66!

(67)

Approximate!Methods!C!

Δ

yi

"

• 

For!a!rough!check!of!conven8onal!rectangular!

reinforced!concrete!column!sec8ons:

! ! !"""Δyi""~!!1/3*φyi*(12*L+0.15*fye*db)2!!~!!L2!/!45Bo!! ! !where:! !Δyi!=!idealized!yield!displacement!(IN)! ! !L"=!contraflexure!to!plas8c!hinge!distance!(FT)! ! !db!=!diameter!of!longitudinal!column!bar!(IN)! ! !φyi"=!idealized!yield!curvature!~!2.1*εye/12Bo!(1/IN)! ! !Bo!=!column!width!in!direc8on!of!loading!(FT)! ! !fye!=!expected!yield!stress!(KSI)! 67!

(68)

Approximate!Methods!C!

Δ

c

L"

• 

And!for!a!very"rough"check"of!conven8onal!

reinforced!concrete!columns!with!L/B

o

!>!4!:

!

!

!"""""ΔLC"~!"Δyi"+!(φu"C!φyi!)*Lp*(12*LCLp/2)!!~!!L2!/!10Bo"!

! !where:! !ΔLC!=!local!displacement!capacity!(IN)! ! !L"=!contraflexure!to!plas8c!hinge!distance!(FT)! ! !Lp!=!analy8cal!plas8c!hinge!length!(IN)! ! !φu!=!ul8mate!curvature!~"εsuR"/12Bo!(1/IN)!

& &φyi!=!idealized!yield!curvature!(1/IN)!

! !Bo"=!column!diameter!/!width!(FT)!

(69)

ForceCDisplacement!Check

"

• 

Diameter,!D"=!48!IN!=>"B

o

!=!4!FT!!

!

• 

Height,!L"=!H

o

"="20!FT!

!

• 

M

p

!~!54713KCIN/12!=!4560!KCFT!(see!previous!check)!

!

!

Δ

yi

""~!L

2!

/!42B

o!

=!20

2

/(42*4)!=!2.4!IN!v.

!2.4"IN

!

!

!

Δ

LC"

~!L

2!

/!10B

o"

=!20

2

/(10*4)!=!10!IN!v.

!9.6"IN

!

!

!

!F

p

!=!M

p"

/!L"=!4560/20!=!228!KIP!v.!

215"KIP

!

(70)

• 

Idealized!response!for!the!single!column!example!

Force!C!Displacement

"

Approximate! Mp,!Δyi"and!ΔLC" Spreadsheet! calculated! !Mp,!φyi!and!φu" 70!

(71)

What!about!Double!Curvature?!

• 

Effec8ve!column!height,!L,!is!taken!from!the!maximum!

moment!loca8on!to!the!contraflexure!point!

• 

Then!add!the!displacement!results!for!each!part!

L1" L2" SGS 2011 71!

(72)

What!about!Double!Curvature?!

Caltrans!SDC!Version!1.7!

(73)

What!about!Pile/Shag!Extensions?!

• 

For!fixed!head!condi8on,!the!effec8ve!column!

height!values,"L

1

!and!L

2

,"will!not!be!of!equal!length!

above!and!below!the!contraflexure!point!

!

• 

Calculate!

Δ

yi

!from!the!point!of!effec8ve!fixity,!L

S

,!for!

s8ffness!calcula8ons!(typically!3B

o

!<!L

S

!<!7B

o

)!

!

• 

Calculate!

Δ

p

"from!the!plas8c!hinge!loca8on,!L

M

,!

below!the!ground!line!(typically!1B

o

!<!L

M

!<!3B

o

)!

(74)

What!about!Pile/Shag!Extensions?!

F! F! F!

For Δyi For Δp

Caltrans!SDC!Version!1.7!

(75)

Concrete!Filled!Steel!Pipe!Piles!

(76)

What!about!PCΔ!Effects?!

Caltrans!SDC!Version!1.7! From!equilibrium!and! summing!moments! about!the!base!of!the! column:! ! Mp!=!Fp"*!Ho!+!P"*!Δ& 76!

(77)

• 

The!moment!leg!to!resist!lateral!forces!becomes,!!

!

M

p

!=!M

p

!–!P"*"

Δ "

"

F

P

"="M

P

"/"H

o" "

• 

But!when!using!an!idealized!elas8c!perfectlyCplas8c!

forceCdisplacement!rela8onship!check!

!

P

dl

"*

Δ

r

≤!0.25!*!M

p"

What!about!PCΔ!Effects?!

77!

(78)

What!about!PCΔ!Effects?!

Caltrans!SDC!Version!1.7!

(79)

What!about!PCΔ!Effects?!

• 

Adjusted!response!for!the!single!column!example!

Unadjusted! for!P-Δ" Adjusted!for! P-Δ" 79!

(80)

• 

Rearranging!the!P#

Δ

!limit!the!maximum!permissible!

deflec8on!for!the!single!column!example!

!

Δ

r

≤!0.25!*!M

p!

/!P

dl

!

"

Δ

r

≤!0.25!*!51626!KCIN

!

/!940!K!=!13.7!IN!

• 

In!this!case,!the!P#

Δ

!limit!is!greater!than!the!

calculated!

Δ

LC"

!value!

!

• 

With!more!confinement,!the!P#

Δ

!limit!may!govern!

What!about!PCΔ!Effects?!

80!

(81)

Local!Duc8lity!v.!Global!Duc8lity!

• 

Use!local"member!displacements!

!

Δ

DL"

"<!

Δ

CL

!!

!

µ

D

=!

Δ

DL

!!/!

Δ

yi""

!!

where:!

DL"

=!Local!member!deforma8on!demand!

CL"

=!Local!member!deforma8on!capacity!

"

µ

D

=!local!member!displacement!duc8lity!demand

"

yi""

=!idealized!yield!deforma8on!

81!

(82)

Local!Duc8lity!v.!Global!Duc8lity!

Caltrans!SDC!Version!1.7!

(83)

Local!Duc8lity!v.!Global!Duc8lity!

Caltrans!SDC!Version!1.7!

(84)

Implicit!SGS!Equa8ons

"

•  For!SDC!B!and!C,!closed#form!member!displacement!capacity! equa8ons!are!available! ! !SDC!B: ! !ΔLC"=!0.12Ho(C1.27*ln(x)C0.32)>0.12Ho" ! !SDC!C: ! !ΔLC"=!0.12Ho(C2.32*ln(x)C1.22)>0.12Ho!! ! !where:! ! !x!=!ΛBo/Ho! ! !Λ!=!fixity!factor,!pinCfix!=!1,!fixCfix!=!2! ! !Ho!=!clear!height!of!column!(FT)! ! !Bo!=!column!diameter!/!width!in!direc8on!of!loading(FT)! ! 84! SGS 2011

(85)

Implicit!SGS!Equa8ons

"

(86)

Implicit!SGS!Equa8ons

"

(87)

Implicit!SGS!Equa8ons

"

(88)

Implicit!SGS!Equa8ons

"

(89)

Implicit!SGS!Equa8ons

"

•  Assuming!SDC!B,!determine!the!permissible!deforma8on!for! the!example!problem" ! !ΔLC""=!0.12Ho(C1.27*ln(x)C0.32)!>!0.12*Ho! " "ΔLC""=!0.12*20"*"(C1.27*ln(0.2)C0.32)!=!4.1!IN! ! !where:! ! !x!=!ΛBo/Ho!=!1*4/20!=!0.2! ! !Λ!=!fixity!factor!for!pinCfix!=!1!for!this!example! ! !Ho!=!founda8on!to!top!of!pier!=!20!FT! ! !Bo!=!column!diameter!=!4!FT! ! 89!

(90)

Implicit!SGS!Equa8ons

"

•  Assuming!SDC!C,!determine!the!permissible!deforma8on!for! the!example!problem" ! !ΔLC""=!0.12Ho(C2.32*ln(x)C1.22)!>!0.12*Ho!! " "ΔLC""=!0.12*20"*"(C2.32*ln(0.2)C1.22)!=!6.0!IN! ! !where:! ! !x!=!ΛBo/Ho!=!1*4/20!=!0.2! ! !Λ!=!fixity!factor!for!pinCfix!=!1! ! !Ho!=!20!FT! ! !Bo!=!4!FT! ! 90!

(91)

Implicit!SGS!Equa8ons

"

• 

Prescrip8ve!detailing!for!SDC!B

! !

s!>!0.003! "ρw!>!0.002!

"0.03"*!Ag"">"Al!>!0.007!*!Ag"

• 

Prescrip8ve!detailing!for!SDC!C

! !

s!>!0.005! "ρw!>!0.004!

"0.03"*!Ag"">"Al!>!0.007!*!Ag"

! 91!

(92)

Other!Considera8ons

"

• 

Hollow!column!sec8ons!and!confinement!

• 

NonCprisma8c!and!flared!columns!

• 

Essen8ally!elas8c!response!

• 

Direc8onal!load!combina8ons!

• 

Uncoupling!the!deforma8on!verifica8on!

• 

Cold!climate!effects!on!material!proper8es!

• 

Frozen!soil!s8ffness

" ! 92!

(93)

Design!Example!1!

D = 48 IN H o = 24 F T #5 hoop @ 4IN 20 #11 2 IN clr. 940 KIP 940 KIP Z = 32 FT d = 4 FT

Rigid cap and footings

(94)

Design!Example!1!

•  Assume!that!the!point!of!contraflexure!is!at!column!midCheight! L1""=L"="Ho"/"2" L2""="L"="Ho"/"2" Caltrans!SDC!Version!1.7! 94!

(95)

Design!Example!1!

•  Use!approximate!methods!to!predict!expected!response! •  Diameter,!D"=!48!IN!=>"Bo!=!4!FT!! •  Height,!Ho"=!24!FT!so!for!the!transverse!direc8on,!L!=!12!FT! •  P!=!PDL!±!!PEQ"! •  PEQ!=!(Mp#L"+!Mp#R)!*!(1!+!d"/!Ho)!/!Z"""!"why?" •  Use!P!=!PDL!=!940!K!for!first!itera8on! •  Mp!~!54720KCIN/12!=!4560!KCFT!(see!previous!calcula8ons)! ! ! Δyi""~!2!*!L2/42Bo!=!2!*!122/(42*4)!=!1.71!IN! ! !ΔLC"~!2!*!L2/10Bo"=!2!*!122/(10*4)!=!7.2!IN! ! ! !Fp!=!(2*Mp#L!+!2*Mp#R)!/!Ho"~!4!*!Mp!/24!=!760!KIP"!"why?! ! 95!

(96)

Design!Example!1!

d /2 L = H o / 2 Moment'Diagram'–'slope'of'line'is'the'shear'–'shear'in'cap'beam'is'axial'force'in'column' Mp-L Mp-R Mp-L Mp-R Mp-L*(1 + d/Ho) Mp-R*(1 + d/Ho) Fp 96!

(97)

Design!Example!1!

•  Perform!a!second!itera8on!to!verify!ini8al!assump8ons! ! •  PEQ!=!(Mp#L+Mp#R)*(1+d/Ho)/!Z"~"2*54720*1.167!/12/32!~!332!K! •  P!=!PDL"±!PEQ""=!940!C/+!332!=!608K!and!1272K![compression]! •  Mp#L!~!(0.05+0.2*1.724+0.0643)!*!483!=!50808!KCIN! •  Mp#R!~!(0.05+0.2*1.724+0.130)!*!483!=!58612!KCIN!! •  PEQ!=!(Mp#L"+!Mp#R)*(1!+!d"/!Ho)!/!Z"" •  PEQ!=!(50808+58612)(1.167)/32/12!=!332!K!!! •  Fp!=!(2!*!Mp#L!+!2!*!Mp#R)!/!Ho"=!760!KIP!!! 97!

(98)

Design!Example!1!

•  Now!use!the!refined!analysis!to!determine!the!forceC displacement!response!of!the!pier! ! •  First!calcula8on!idealized!M#φ" •  Then!calculate!Lsp!and!Lp" •  Then!calculate!the!forceCdisplacement!for!each!column! •  Then!add!the!results!of!each!column!to!find!the!total!pier! response! ! 98!

(99)

Design!Example!1!

(100)

Design!Example!1!

•  Verify!that!the!axial!forces!are!reasonably!close!to!the!ini8al! es8mate!! ! "PEQ!=!(Mp#L"+!Mp#R)!*!(1!+!d"/!Ho)!/!Z"" " "PEQ!="(48172+55174)*1.167!/(12*32)!~!314!K!v.!332k! ! !P!=!PDL"C!PEQ""=!940!C!314!=!626K!v.!608K!–!close!enough!@!3%! ! !P!=!PDL"+!PEQ""=!940!+!314!=!1254K!v.!1272K!–!close!enough!@!2%! ! ! •  Use!the!ini8al!values!since!they!are!close! ! ! 100!

(101)

Design!Example!1!

• 

Order!or!hinge!forma8on!

H o = 24 F T 940 KIP 940 KIP Z = 32 FT Plastic Hinge Formation 101!

(102)

Design!Example!1!

• 

Order!or!hinge!failure!(maximum!strain!limit)!

H o = 24 F T 940 KIP 940 KIP Z = 32 FT Plastic Hinge Failure 102!

(103)

Design!Example!1!

•  For!the!leg!/!trailing!side!column:! " Δyi#L""=!!1/3*0.0001106*(144+14.38)2!=!0.92!IN! ! ΔLC#L"=!!0.92!+(0.0011844–!0.0001106!)*28.8*(144C28.8/2)!=!4.92!IN! ! where:! ! ! !φyi !=!0.0001106/IN! ! ! !L !=!Ho!/!2!=!24!FT!/!2!*!12!=!144!IN!! " " "Lsp !=!0.15*68*1.41!=!14.38!IN! ! ! !"Lp !=!0.08*144!+!14.38!=!25.9!IN!<!28.8!IN! " " "φu !=!0.0011844!1/IN! " " "Mp !=!48172!KCIN! ! ! !Fp#L !=!Mp!/!L!=!48172!/!144!=!335!KIP! 103!

(104)

Design!Example!1!

•  For!the!right!/!right!side!column:! " Δyi#R""=!!1/3*0.00011231*(144+14.38)2!=!0.94!IN! ! ΔLC#R"=!!0.94!+(0.0009898!–!0.00011231)*28.8*(144C28.8/2)!=!4.21!IN! ! where:! ! ! !φyi !=!0.00011231/IN! ! ! !L !=!Ho!/!2!=!24!FT!/!2!*!12!=!144!IN! " " "Lsp !=!0.15*68*1.41!=!14.38!IN! ! ! !"Lp !=!0.08*144!+!14.38!=!25.9!IN!<!28.8!IN! " " "φu !=!0.0009898!1/IN! " " "Mp !=!55174!KCIN! ! ! !Fp#R !=!Mp!/!L!=!55174!/!144!=!383!KIP! 104!

(105)

Design!Example!1!

LeH'Column' Right'Column'

Axial!compression,!P" 608! 1272!

Effec8ve!s8ffness,!(EI)eff" 4.36E9! 4.91E9!

Plas8c!moment,!Mp" 48172! 55174! Idealized!yield!curvature,!φyi" 0.00011060! 0.00011231! Ul8mate!curvature,!φu" 0.0011844! 0.0009898! Plas8c!curvature,!φp" 0.001074! 0.000877! Analy8cal!Plas8c!Hinge!Length,!Lp" 28.8! 28.8! Δyi!(per!half!of!column!height)! 0.92! 0.94! Δp"(per!half!of!column!height)! 4.00! 3.27! Δu!(per!half!of!column!height)! 4.92! 4.21! Plas8c!shear,!Fp" 335! 383! 105!

(106)

Design!Example!1!

•  Adding!the!columns!together!

(107)

Design!Example!1!

•  Total!effec8ve!lateral!force! ! ! ! !Fp!=!Fp#L!+!Fp#R""=!335K!+!383K!=!718!K!! ! ! •  Idealized!yield!displacement! !

! !Δyi"~!(2*Δyi#L!+!2*Δyi#R)!/"2!=!0.92!+!0.94!=!1.86!IN!

! ! •  Ul8mate!displacement!(first!hinge!failure!on!right)! ! ! ! !ΔLc!=!2!* ΔLc#R!!=!2!*!4.21!IN!=!8.42!IN! 107!

(108)

Design!Example!1!

Combined" Leg!/!Trailing! Column" Right!/! Leading! Column" 108!

(109)

Design!Example!1!

• 

Idealized!force!displacement!for!the!two!column!pier!

Approximate! Mp,!Δyi"and!ΔLC" Spreadsheet! Idealized! !Mp,!φyi!and!φu" 109!

(110)

•  The!maximum!deflec8on!based!on!P#Δ!limits! " Δr ≤!0.25!*!48172!KCIN!/!940!K!=!12.8!IN!!!(per!half)! •  And!as!a!check!using!SDC!C!deflec8on!(µD!!~!2.1!with!Lsp)! ! !ΔLC"=!0.12*24*(C2.32*ln(0.33)C1.22)!=!3.83!IN! •  And!the!displacement!duc8lity!capacity! ! ! ! !µD!<!ΔLc!/Δyi"=!8.42!/!1.86!=!4.5!

Design!Example!1!

110!

(111)

Capacity!Design

"

•  Designer!dictates!the!bridge!response!(e.g.,!column!hinge! response!mechanism!–!Type!I)! •  Preclude!all!failure!modes!that!would!prevent!the!forma8on!of! the!predicted!forceCdeflec8on!response!including:! –  Shear!failure!inside!and!outside!the!plas8c!hinge!region!(not! the!same!as!analy8cal!plas8c!hinge!length,!Lp)! –  ColumnCcap!and!columnCfoo8ng!joint!failure! –  Cap!beam,!foo8ng!or!shag!moment,!shear,!and!axial! overload!/!hinging! –  Foo8ng!overturning,!sliding,!uplig!and!rocking!failure! –  Any!other!failure!that!occurs!prior!to!reaching!ΔLC! ! 111!

(112)

Capacity!Design

"

•  Use!overstrength!plas8c!hinging!forces!for!connected!elements! ! Mpo!=!λmo*!Mp"" " •  λmo!=!1.2!for!ASTM!A!706!Grade!60!(must!use!in!SDC!D)!!

•  Associated!shear!forces,!Vpo,!and!axial/overturning,!λmo*!PEQ"! ! •  Use!for!!joints,!shear!in!hinges,!foo8ngs,!cap!beams,!etc.! ! •  May!use!expected!nominal!moment!resistance,!Mne!,for! capacity!design!of!caps,!foo8ngs,!shags!at!concrete! compression!strain!of!0.003!and!a!resistance!factor,!φ!,!of!1! 112!

(113)

Shear!Resistance!in!Plas8c!Hinges

"

! !

!

!

φ Vn!!=!φ (Vc"+!Vs)!>!Vpo"

where:!

"φ!=!resistance!factor!of!0.9!for!shear!in!plas8c!hinge!region!

"Pu!=!PDL!!!±!!λmo!*!PEQ"

!If!Pu!<!0!!(tension)!then!vc!=!0!otherwise! ! ! ! Vc!=!vc!*!Ae!! ! Ae!=!0.8!*!Ag" ! !" ! # $ % % ⋅ % ≤ % ( ( ) * + + , -+ % ⋅ = c c c g u c f f f A P v α α 047 . 0 11 . 0 min 2 1 032 . 0 SGS 2011 113!

(114)

Shear!Resistance!in!Plas8c!Hinges

"

For!circular!columns!with!spirals!or!hoops! ! ! ! ! ! n!=!number!of!individual!interlocking!spiral!or!!hoop!core!sec8ons!! fs!=!ρs*fyh!<!0.35! Asp!=!area!of!hoop!or!spiral!bar!(in.2)! fyh!=!yield!stress!of!spiral!or!hoop!reinforcement!(ksi)! D’!=!core!diameter!measured!from!center!of!spiral!or!hoop!(in.)! s"=!spacing!of!spiral!or!hoop!reinforcement!(in.)! ! ! ! 3 67 . 3 15 . 0 3 . 0 < ' = fs + D <

µ

α

e c yh sp s f A s D f nA V ' ' 25 . 0 2 "" ≤ # $ % % & ' = π SGS 2011 114!

(115)

Shear!Resistance!in!Plas8c!Hinges

"

For!rectangular!columns!with!8es! ! ! ! ! " Av!=!area!of!shear!reinforcement!in!the!direc8on!of!loading!(in.2)! fw!=!2*ρw*fyh!<!0.35! µD!=!displacement!duc8lity!demand! d"=!depth!of!sec8on!in!direc8on!of!loading!(in.)! fyh!=!yield!stress!of!8e!reinforcement!(ksi)! s"=!spacing!of!8e!reinforcement!(in.)! e c yh v s f A s d f A V 0.25 ' ≤ "" # $ %% & ' = 3 67 . 3 15 . 0 3 . 0 < ' = fw + D <

µ

α

SGS 2011 115!

(116)

Shear!Resistance!in!Plas8c!Hinges

"

φ*Vn!plas8c! hinge!shear! resistance" Vpo!overstrength! shear!in!plas8c! hinge!(λmo!=!1.2)" 116!

(117)

Shear!Resistance!in!Plas8c!Hinges

"

φ*Vn!plas8c! hinge!shear! resistance!–!limit!! 8.35!IN!on!right! column" Vpo!overstrength! shear!in!leg! plas8c!hinge! (λmo = 1.2)" Vpo!overstrength! shear!in!rights! plas8c!hinge!! (λmo = 1.2)" 117!

(118)

Joints!and!Connec8ons

"

• 

Average!principal!joint!stresses!are!used!as!

an!indicator!of!joint!performance!

!

• 

Take!cap!beam!forces!at!the!face!of!column!

(not!centerline)!including!λ

mo"

!

!

• 

Resultant!tensile!force!from!MC

φ

!analysis!or!

use!approximate!value!of!T!~!0.7!*!A

st!

*!f

ye" 118!

(119)

Splices!and!Transverse!Bars

"

• 

Plas8c!hinge!region!larger!than!analy8cal!

plas8c!hinge!length,!L

p"

• 

“No!Splice!Zone”!in!Plas8c!hinge!regions!

!

• 

May!reduce!transverse!reinforcing!outside!

plas8c!hinge!region!

• 

Development,!anchorage,!and!other!details!

119!

(120)

Design!Example!2!

Bo = 36 IN H o = 18 F T 4 legs #5 stirrups @ 4IN 24 #10 2 IN clr. 500 KIP 500 KIP Z = 24 FT d = 3 FT

Rigid cap and footings

B o

=

36

IN

Very high transverse

reinforcing for this example – likely hard to construct

(121)

Design!Example!2!

•  Use!approximate!methods!to!es8mate!forceCdisplacement! •  Width!and!depth,!Bo!=!3!FT!,!b!=!36!IN!and!d!=!36!IN!

•  Height,!Ho"=!18!FT!so!for!the!transverse!direc8on,!L!=!108!IN!

•  Longitudinal!bars!#10,!Lsp!=!13.0!IN,!Lp!=!25.9!IN,!ρl!=!2.35%!! " """""Mp"~"36*362"*"[0.15!+!0.25*2.35 "+!1.5*0.074]!~!39600!KCIN! !!!!!φyi"~!2.1*εye/12Bo"=!2.1*0.002345/36!=!0.0001368!1/IN! "φu"~!εsuR"/12Bo!=!0.09/36!=!0.002500!1/IN! !Δyi"~!1/3*φyi*(L+Lsp)2!=!0.0001368*(108+13)2/3!=!0.67!IN! ΔLC"~!Δyi!!+!(φu!C!φyi!)*Lp*(LCLp/2)! "ΔLC"!~!0.67!+!0.002363*25.9*(108C13)!=!6.50!IN! ! "Fp!=!(2*Mp#L!+!2*Mp#R)!/!Ho"~!4!*!Mp!/18/12!=!733!KIP! ! 121!

(122)

Design!Example!2!

•  Es8mate!the!axial!force!per!column! ! •  PEQ!=!(Mp#L+Mp#R)*(1+d/Ho)/!Z"~"2*39600*1.167!/12/24!~!321!K! •  P!=!PDL"±!PEQ""=!500!C/+!321!=!179K!and!821K![compression]! •  Mp#L!~"36*362"*"[0.15!+!0.25*2.35 "+!1.5*0.027]!~!36300!KCIN! •  Mp#R!~"36*362"*"[0.15!+!0.25*2.35 "+!1.5*0.122]!~!42900!KCIN! •  PEQ!=!(Mp#L"+!Mp#R)*(1!+!d"/!Ho)!/!Z"" •  PEQ!=!(36300+42900)(1.167)/24/12!=!321!K!v.!321K!!!OK! •  Fp!=!(2!*!Mp#L!+!2!*!Mp#R)!/!Ho"=!733K!v.!733K!!!OK! 122!

(123)

Design!Example!2!

Spreadsheet! Idealized&

(124)

Design!Example!2!

LeH'Column' Right'Column'

Axial!compression,!P" 185! 815!

Effec8ve!s8ffness,!(EI)eff" 2.44E8! 2.77E8!

Plas8c!moment,!Mp" 36442! 41280! Idealized!yield!curvature,!φyi" 0.0001494! 0.0001492! Ul8mate!curvature,!φu" 0.003611! 0.002682! Plas8c!curvature,!φp" 0.003461! 0.002533! Analy8cal!Plas8c!Hinge!Length,!Lp" 25.9! 25.9! Δyi!(per!half!of!column!height)! 0.73! 0.73! Δp"(per!half!of!column!height)! 8.52! 6.24! Δu!(per!half!of!column!height)! 9.25! 6.96! Plas8c!shear,!Fp" 337! 382! 124!

(125)

Design!Example!2!

•  Total!effec8ve!lateral!force! ! ! ! !Fp!=!Fp#L!+!Fp#R""=!337K!+!382K!=!720!K!!!OK! ! ! •  Idealized!yield!displacement! !

! !Δyi"~!(2*Δyi#L!+!2*Δyi#R)!/"2!=!0.73!+!0.73!=!1.46!IN!

! ! •  Ul8mate!displacement!(first!hinge!failure!on!right)! ! ! ! !ΔLc!=!2* ΔLc#R!!=!2!*!6.96!IN!=!13.9!IN! 125!

(126)

Design!Example!2!

Combined" Leg!/!Trailing! Column" Right!/! Leading! Column" 126!

(127)

•  The!maximum!deflec8on!based!on!P#Δ!limits" Δr ≤!0.25!*!36442!KCIN!/!500!K!=!18.2!IN!(per!half)!>!13.9!IN!!! •  And!as!a!check!using!SDC!C!deflec8on!(µD!!~!2.1!with!Lsp)! !ΔLC"=!0.12*18*(C2.32*ln(0.33)C1.22)!=!2.87!IN! •  And!the!displacement!duc8lity!capacity! ! !µD!<!ΔLc!/!Δyi"=!13.9!/!1.46!=!9.5!>>!6!"!exceeds!limit! ! •  Thus,!limi8ng!deflec8on!due!to!maximum!duc8lity!(SGS!4.9)! " "ΔLC"=!µD!*!Δyi""=!6!*!1.46!=!8.75!IN!"!maximum!

Design!Example!2!

127!

(128)

Design!Example!2

"

•  Now!check!the!shear!in!the!hinge!at!maximum!deflec8on" "" " " " "φ Vn!!=!φ (Vc"+!Vs)!>!Vpo" where:! "φ!=!resistance!factor!of!0.9!for!shear!in!plas8c!hinge!region! ! "Pu!=!PDL!!!±!!λmo!*!PEQ"~!122K!and!878K! ! ! !

"Ae!=!0.8!*!Ag"=!0.8!*!36!*!36!=!1036!IN2!

! !" ! # $ % % ⋅ % ≤ % ( ( ) * + + , -+ % ⋅ = c c c g u c f f f A P v α α 047 . 0 11 . 0 min 2 1 032 . 0 128!

(129)

Design!Example!2

"

For!rectangular!columns!with!8es! ! ! ! ! " "Av!=!4!*!0.31!=!1.24!IN2! "fw!=!2*ρw*fyh!=!1.17!>>!0.35!so!fw!=!0.35!"!maximum! "µD!=!6!maximum!so!α’"=!0.3!"!minimum!value!governs! "d"=!36!IN! "fyh!=!60!KSI! "s"=!4!IN! e c yh v s f A s d f A V 0.25 ' ≤ "" # $ %% & ' = 3 67 . 3 15 . 0 3 . 0 < ' = fw + D <

µ

α

129!

References

Related documents

Debió de adquirir gran fama por este viaje, ya que en 1800 todavía se le recuerda cuando en la Capilla Real de Granada se presentan dos músicos para la plaza de Maestro de seises:

NOW IS THE TIME FOR HEROES! MUTANTS & MASTERMINDS A G R E E N RONIN PRODUCTION Design & Development Steve Kenson Cover Art Ramón Pérez Editing Jon Leitheusser Executive Producer

ó9ê¶Ø/ô9Õ~Ú;çuցè9ÚÕAÙ%Ú;ïˆ×¼ê£ð~Ù%Øué¼Ø7ÕÇÖwêŸÚ åaååaååaååaåHååaåHååHåaååaååaååaåaå õ ä/å¬ò9å~ä

[r]

[r]

Ö %HÑ Ø ÓUÓ1ÜåÖlðÒç1ÖÝ1ÝLÜ éçoæ ç!ÑÓ1Ô Ó1éÐÖRÓ1ܹԂälÑ ç!ÐÜsî·éçfÑ ØóÑ

[r]

(ii) The ratio of visual signal level to coherent disturbances which are frequency- coincident with the visual carrier shall not be less than 47 decibels for coherent channel