• No results found

Observations on the Hyperbola, y2 = 14x2 + 16t, t >=0

N/A
N/A
Protected

Academic year: 2020

Share "Observations on the Hyperbola, y2 = 14x2 + 16t, t >=0"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Observations on the Hyperbola, y2 = 14x2 + 16t, t

>=0

2

14

2

16

,

0

x

t

y

t

G. Sumathi1, A. Niranjani2 1

Assistant Professor, 2M.Phil Scholar, PG and Research Department of Mathematics, Shrimati Indira Gandhi College, Trichy-2, Tamil Nadu, India.

Abstract: The binary quadratic equation

y

2

14

x

2

16

t representing hyperbola is considered for finding its integer solutions. A few interesting properties among the solutions are presented. Also, we present infinitely many positive integer solutions in terms of Generalized Fibonacci sequences of numbers, Generalized Lucas sequences of numbers.

Keywords: Binary Quadratic Integral Solutions, Generalized Fibonacci Sequences of Numbers, Generalized Lucas Sequences of Numbers, Integral Solutions.

AMS Mathematics Subject Classification:11D09 Notations

k

s

GF

n

,

: Generalized Fibonacci Sequences of rank n.

k

s

GL

n

,

: Generalized Lucas Sequences of rank n.



2

2

1

,

m

n

I

n

t

mn

6

]

)

5

(

)(

2

(

)

1

(

[

n

n

m

n

m

P

nm

)

1

(

Pr

n

n

n

1

2

)

1

(

,

mn

n

Ct

mn

1

1

6

n

n

S

n

I. INTRODUCTION

The binary quadratic equation of the form

y

2

Dx

2

1

where D non-square positive integer has been studied by various mathematics for its non-trivial integer solutions.

when D takes different integral values

1

,

2

,

4

. In

 

3

infinitely many Pythagorean triangles in each of which hypotenuse is four times the product of the generators added with unity are obtained by employing the

y

2

14

x

2

1

. In [5] a special Pythagorean

triangles is obtained by employing the integral solutions of

y

2

182

x

2

14

t.

In [6] different patterns of infinitely many Pythagorean triangles are obtained by employing the non-integral solutions of

4

14

2

2

x

y

. In this context one may also refer [7,8]. These results have motivated us to search for the integral solutions of

(2)

II. METHOD OF ANALYSIS

Consider the binary quadratic equation,

y

2

14

x

2

16

t

,

t

0

(1)

with least positive integer solutions of (1) ,

14

),

4

(

15

),

4

(

4

0

0

y

D

x

t t

To obtain the other solutions of (1), Consider the pellian equation is

1

14

2 2

x

y

(2) The initial solution of pellian equation is

15

(

4

)

~

),

4

(

4

~

0 0

t t

y

x

The general solution

x

n

,

y

n

of (2) is given by,

n

n

g

x

14

2

1

~

,

n

n

f

y

2

1

~

where,

1 1

)

14

4

15

(

)

14

4

15

(

n n

n

f

g

n

(

15

4

14

)

n1

(

15

4

14

)

n1

Applying Brahmagupta lemma between

x

0

,

y

0

and

x

~

n

,

~

y

n

the general solutions of equation (1) are found to be,

n t n

t

n

f

g

x

4

14

2

15

4

.

2

1

 (3)

n t n

t

n

f

g

y

.

4

2

14

4

2

15

1

 (4)

Thus (3) and (4) represent the non-zero distinct integer solutions of (1) The recurrence relation satisfied by the solution and are given by

x

n3

30

x

n2

x

n1

0

y

n3

30

y

n2

y

n1

0

[image:2.612.195.418.571.709.2]

Some numerical examples of and satisfying (1) are given in the Table 1 below,

Table 1: Numerical Examples N

n

x

y

n

0

4

(

4

t

)

)

4

(

15

t

1

3596

(

4

t

)

)

4

(

13455

t

2

107760

(

4

t

)

)

4

(

403201

t

3

3229204

(

4

t

)

)

4

(

12082575

t

4

96230160

(

4

t

)

)

4

(

(3)

A. A Few Interesting Relations Among The Solutions Are Given Below

1)

8

x

n1

240

x

n2

8

x

n3

0

2)

1118

x

n2

33750

x

n1

8

y

n1

0

3)

399842

x

n1

13358

x

n2

8

y

n2

0

4)

30

x

n1

898

x

n2

8

y

n3

0

5)

240

y

n1

2

x

n3

898

x

n1

0

6)

30

x

n1

30

x

n3

240

y

n2

0

7)

2

x

n1

898

x

n3

240

y

n3

0

8)

30

x

n2

2

x

n1

8

y

n2

0

9)

30

y

n3

898

y

n2

112

x

n1

0

10)

1399080

x

n1

374882

y

n1

2

y

n3

0

11)

30

x

n2

2

x

n3

8

y

n2

0

12)

2

x

n2

30

x

n3

8

y

n3

0

13)

30

x

n3

898

x

n2

8

y

n1

0

14)

30

y

n3

2

y

n1

112

x

n2

0

15)

30

y

n3

30

y

n1

3360

x

n2

0

16)

2

y

n3

30

y

n2

112

x

n2

0

17)

898

y

n2

30

y

n1

112

x

n3

0

18)

898

y

n3

2

y

n1

3360

x

n3

0

19)

448

y

n1

13440

y

n2

448

y

n3

0

20)

112

x

n3

30

y

n1

898

y

n2

0

B. Each Of The Following Expression Is A Nasty Number

1) t

4

.

4

1

]

4

.

48

5388

180

[

x

2n3

x

2n2

t

2)

[

180

161460

1440

.

4

]

4

.

120

1

2 2 4

2

t n

n

t

x

x

3)

[

180

672

12

.

4

]

4

1

2 2 2

2

t n

n

t

y

x

4)

[

180

20160

180

.

4

]

4

.

15

1

2 2 3

2

t n

n

t

y

x

5) t

3180

y

n

604128

x

n

3592

.

4

t

4

.

449

1

2 2 4

2 

6) t

3592

x

n

161460

x

n

48

.

4

t

4

.

4

1

3 2 4

(4)

7) t

3592

y

n

672

x

n

180

.

4

t

4

.

15

1

3 2 2

2 

8) t

3592

y

n

20160

x

n

12

.

4

t

4

1

3 2 3

2 

9) t

3592

y

n

604128

x

n

180

.

4

t

4

.

15

1

3 2 4

2 

10) t

161460

y

n

672

x

n

3592

.

4

t

4

.

449

1

4 2 2

2 

11) t

161460

y

n

20160

x

n

180

.

4

t

4

.

15

1

4 2 3

2 

12) t

161460

y

n

604128

x

n

12

.

4

t

4

1

4 2 4

2 

13) t

1440

y

n

48

x

n

48

.

4

t

4

.

4

1

3 2 2

2 

14) t

43152

y

n

48

y

n

1440

.

4

t

4

.

120

1

4 2 2

2 

15) t

43152

y

n

1440

y

n

48

.

4

t

4

.

4

1

4 2 3

2 

C. Each Of The Following Expressions Is A Cubical Integer

1)

898

3 3

30

3 4

2694

1

90

2

4

.

4

1

 

n

n

n

n

t

x

x

x

x

2)

30

3 5

26910

3 3

90

3

80730

1

4

.

120

1

 

n

n

n

n

t

x

x

x

x

3)

30

3 3

112

3 3

90

1

336

1

4

1

 

n

n

n

n

t

y

x

y

x

4)

30

3 4

3360

3 3

90

2

10080

1

4

.

15

1

 

n

n

n

n

t

y

x

y

x

5)

30

3 5

100688

3 3

90

3

302064

1

4

.

449

1

 

n

n

n

n

t

y

x

y

x

6)

898

3 5

26910

3 4

2694

3

80730

2

4

.

4

1

 

n

n

n

n

t

x

x

x

x

7)

898

3 3

112

3 4

2694

1

36

2

4

.

15

1

 

n

n

n

n

t

y

x

y

x

8)

898

3 4

3360

3 4

2694

2

10080

2

4

1

 

n

n

n

n

t

y

x

y

x

9)

898

3 5

100688

3 4

2694

3

302064

2

4

.

15

1

 

n

n

n

n

t

y

x

y

x

10)

26910

3

112

3 5

80730

1

336

3

4

.

449

1

 

n

n

n

n

(5)

11)

26910

3 4

3360

3 5

80730

2

10080

3

4

.

15

1

 

n

n

n

n

t

y

x

y

x

12)

26910

3 5

100688

3 5

80730

3

302064

3

4

1

 

n

n

n

n

t

y

x

y

x

13)

240

3 3\

8

3 4

720

1

24

2

4

.

4

1

 

n

n

n

n

t

y

y

y

y

14)

7192

3 3\

8

2 5

21576

1

24

3

4

.

120

1

 

n

n

n

n

t

y

y

y

y

15)

7192

3 4\

240

3 5

21576

2

720

3

4

.

4

1

 

n

n

n

n

t

y

y

y

y

D. Each Of The Following Expressions Is A Biquadratic Integer

1)

[

30

898

120

3592

24

.

4

]

4

.

4

1

2 2 3

2 4

4 5

4

t n

n n

n

t

x

x

x

x

2)

[

30

26910

120

107640

720

.

4

]

4

.

120

1

2 2 4

2 4

4 6

4

t n

n n

n

t

x

x

x

x

3) t

30

y

n

3360

x

n

120

y

n

13440

x

n

90

.

4

t

4

.

15

1

2 2 3

2 4

4 5

4 

4) t

30

y

n

112

x

n

120

y

n

448

x

n

6

.

4

t

4

1

2 2 2

2 4

4 4

4 

5) t

30

y

n

100688

x

n

120

y

n

402752

x

n

2694

.

4

t

4

.

449

1

2 2 4

2 4

4 6

4 

6) t

898

x

n

26910

x

n

3592

x

n

107640

x

n

24

.

4

t

4

.

4

1

3 2 4

2 5

4 6

4 

7) t

898

y

n

112

x

n

3592

y

n

448

x

n

90

.

4

t

4

.

15

1

3 2 2

2 5

4 4

4 

8) t

898

y

n

3360

x

n

3592

y

n

13440

x

n

6

.

4

t

4

1

3 2 3

2 5

4 5

4 

9) t

898

y

n

100688

x

n

3592

y

n

402752

x

n

90

.

4

t

4

.

15

1

3 2 4

2 5

4 6

4 

10)

t n

n n

n

t

26910

y

112

x

107640

y

448

x

2694

.

4

4

.

449

1

4 2 2

2 6

4 4

4 

11) t

26910

y

n

3360

x

n

107640

y

n

402752

x

n

90

.

4

t

4

.

15

1

4 2 4

2 6

4 5

4 

12) t

240

y

n

8

y

n

960

y

n

32

y

n

24

.

4

t

4

.

4

1

3 2 2

2 5

4 4

4 

13) t

7192

y

n

8

y

n

28768

y

n

32

y

n

720

.

4

t

4

.

120

1

4 2 2

2 6

4 4

4 

(6)

E. Each Of The Following Expression Is A Quintic Integer

1)

30

5 6

898

5 5

4490

3 3

150

4

8980

1

300

2

4

.

4

1

    

n

n

n

n

n

n

t

x

x

x

x

x

x

2)

30

5 7

26910

5 5

150

3 5

134550

3 3

300

3

269100

1

4

.

120

1

    

n

n

n

n

n

n

t

x

x

x

x

x

x

3)

    

5 5 5 3 3 3 2 1 1

5

112

560

150

1120

300

30

4

1

n n n n n n

t

y

x

y

x

y

4)

480

1

3360

5 5

150

3 4

16800

3 3

33600

1

150

2

4

.

15

1

    

n

n

n

n

n

n

t

y

x

y

x

x

y

5)

30

5 7

100688

5 5

150

3 4

503440

3 3

300

3

2013760

1`

4

.

449

1

    

n

n

n

n

n

t

y

x

y

x

y

x

6)

898

5 5

112

5 6

4490

3 3

560

3 4

8980

1

1120

2

4

.

15

1

    

n

n

n

n

n

n

t

y

x

y

x

y

x

7)

7 5 6 3 5 3 4 3 2

5

26910

4490

134550

8980

269100

898

4

.

4

1

n n n n n n

t

x

x

x

x

x

x

8)

898

5 6

3360

5 6

4490

3 4

16800

3 4

8980

2

33600

2

4

1

    

n

n

n

n

n

n

t

y

x

y

x

y

x

9)

898

5 7

100688

5 6

4490

3 5

503440

3 4

8980

3

2013760

2

4

.

15

1

    

n

n

n

n

n

n

t

y

x

y

x

y

x

10)

26910

5 5

112

5 7

134550

3 3

560

3 5

269100

1

2240

3

4

.

449

1

    

n

n

n

n

n

n

t

y

x

y

x

y

x

11)

26910

5 6

3360

5 7

134550

4

16800

3 5

269100

2

33600

3

4

.

15

1

    

n

n

n

n

n

n

t

y

x

y

x

y

x

12)

26910

5 7

100688

5 7

134550

5

503440

3 5

269100

3

2013760

3

4

1

    

n

n

n

n

n

n

t

y

x

y

x

y

x

13)

240

5 5

8

5 6

1200

3 3

40

3 4

1320

2

3640

1

4

.

4

1

    

n

n

n

n

n

n

t

y

y

y

y

y

y

14)

7192

5 5

8

5 7

3596

3 3

40

3 4

104284

1

80

3

4

.

120

1

    

n

n

n

n

n

n

t

y

y

y

y

y

y

15)

7192

5 6

240

5 7

35960

3 4

1200

3 5

71920

2

2400

3

4

.

4

1

    

n

n

n

n

n

n

t

y

y

y

y

y

y

16) The solution of (1) in terms of special integers namely, generalized Fibonaci

n

GF

and Lucas

GL

n are exhibited below,

)

1

,

30

(

)

4

(

60

)

1

,

30

(

)

4

(

2

1 1

1

n

t n

t

n

GL

GF

x

)

1

,

30

(

224

)

1

,

30

(

)

4

(

2

15

1 1

1

t n n

n

GL

GF

(7)

III. REMARKABLE OBSERVATION

1) Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbola

which are presented in table 2 below

Table 2: Hyperbolas

2) Employing linear combination among the solutions of (1), one may generate integer solutions for other choices of parabolas which are presented in table 3 below

Table 3: Parabolas

S.NO Parabola (X,Y)

1 2

 

2

4

8

56

4

t

X

Y

t

898

x

2n2

30

x

2n3

,

60

x

n1

2

x

n2

2

 

2

 

2

4

28800

14

4

120

t

X

Y

t

30

x

2n4

26910

x

2n2

,

7192

x

n1

8

x

n3

3

 

2

 

2

4

2

4

t

X

Y

t

112

x

2n2

30

y

2n2

,

30

x

n1

8

y

n1

4

 

2

 

2

4

403202

14

4

449

t

X

Y

t

30

y

2n4

100688

x

2n2

,

26910

x

n1

8

y

n3

5

 

2

 

2

4

32

14

4

4

t

X

Y

t

898

x

2n4

26910

x

2n3

,

7192

x

n2

240

x

n3

6

 

2

 

2

4

450

14

4

15

t

X

Y

t

30

y

2n3

3360

x

2n2

,

898

x

n1

8

y

n2

7

 

2

 

2

4

450

14

4

15

t

X

Y

t

898

y

2n2

112

x

2n3

,

30

x

n2

240

y

n1

8

 

2

 

2

4

2

14

4

t

X

Y

t

898

y

2n3

3360

x

2n3

,

898

x

n2

240

y

n2

9

 

2

 

2

4

450

14

4

15

t

X

Y

t

898

y

2n4

100688

x

2n3

,

26910

x

n2

240

y

n3

S.NO Hyperbola (X,Y)

1 2 2

 

2

4

64

224

Y

t

X

2 1

2

1

30

14

,

60

2

14

898

x

n

x

n

x

n

x

n

2 2 2

 

2

4

57600

14

Y

t

X

30

x

n3

26910

X

n1

,

7192

x

n1

8

x

n3

3 2 2

 

2

4

4

t

Y

X

112

x

n1

30

y

n1

,

30

x

n1

8

Y

n1

4 2 2

 

2

4

900

14

X

t

X

30

y

n2

3360

x

n1

,

898

x

n1

8

y

n2

5 2 2

 

2

4

806404

14

Y

t

X

30

y

n3

100688

x

n1

,

26910

x

n1

8

y

n3

6 2 2

 

2

4

64

14

Y

t

X

898

x

n3

26910

x

n2

,

7192

x

n2

240

x

n3

7 2 2

 

2

4

900

14

Y

t

X

898

y

n1

112

x

n2

,

30

x

n2

240

y

n1

8 2 2

 

2

4

4

14

Y

t

X

898

y

n2

3360

x

n2

,

898

x

n2

240

y

n2

9 2 2

 

2

4

900

14

Y

t

X

898

y

n3

100688

x

n2

,

26910

x

n2

240

y

n3

10 2 2

 

2

4

806404

14

Y

t

X

26910

y

n1

112

x

n3

,

30

x

n3

7192

y

n1

11 2 2

 

2

4

900

14

Y

t

X

26910

y

n2

3360

x

n3

,

898

x

n3

7192

y

n2

12 2 2

 

2

4

4

14

Y

t

X

26910

y

n3

100688

x

n3

,

26910

x

n3

7192

y

n3

13 2 2

 

2

4

12544

14

196

X

Y

t

240

y

n1

8

y

n2

,

30

y

n2

898

y

n1

14 2 2

 

2

4

5644800

14

196

X

Y

t

7192

y

n1

8

y

n3

,

30

y

n3

26910

y

n1

15 2 2

 

2

4

200704

224

(8)

11

 

2

 

2

4

450

14

4

15

t

X

Y

t

26910

y

2n3

3360

2n4

,

898

x

n3

7192

y

n2

12

 

2

 

2

4

2

14

4

t

X

Y

t

26910

2n4

100688

x

2n4

,

26910

x

n3

7192

y

n3

13

 

2

 

2

4

5644800

14

4

25320

t

X

Y

t

7192

y

2n2

8

y

2n4

,

30

y

n3

26910

y

n1

14

 

2

 

2

4

6272

14

4

784

t

X

Y

t

240

y

2n2

8

y

2n3

,

30

y

n2

898

y

n1

15

 

2

 

2

4

448

4

56

t

X

Y

t

7192

y

2n3

240

y

2n4

,

898

y

n3

26910

y

n2

3) Employing the following solutions (x,y), each of the following expressions among the special polygonal, pyramidal, star, pronic and centered polygonal number is congruent to under modulo 16

2

1 3 2

2 , 3

2 3

Pr

84

3

 

x x

y

y

P

t

P

2

2 3 2 2

1 5

1

504

1

12

x

X

y y

S

P

S

P

2

1 5 2

, 3

5

1

168

x x

y y

S

P

t

P

2

, 6

5 2

, 4

5

84

1

2

x

x

y y

Ct

P

Ct

P

2

, 4

5 2

3 3

3

1

1848

4

 

x x

n n

Ct

P

P

Pt

IV. CONCLUSION

To conclude, one may search for other choices of positive Pell equations for finding their integer solutions with suitable properties.

REFERENCES

[1] L.E.Dickson, History of Theory of numbers, Vol.2, Chelsea Publishing Company, New York,(1952) [2] L.J.Mordell, Diophantine Equations, Academic Press, New York, 1969.

[3] M.A.Gopalan and G.Janaki, Observation On

y

2

3

x

2

1

, Acta Ciancia Indica, XXXIVM(2) (2008) 639-696. [4] L.E.Dickson, History of Theory of numbers and Diophantine analysis, Vol 2, Dover publications, Newyork,(2005)

[5] Dr.G.Sumathi “Observations On the Hyperbola”

y

2

182

x

2

14

, Journal of mathematics and Informatics,Vol 11, 73-81, 2017.

[6] Dr.G.Sumathi “Observations on the Pell equation

y

2

14

x

2

4

”International Journal of Creative Research Thoughts, Vol 6, Issue 1,Pp1074-1084, March 2018.

[7] Dr.G.Sumathi “Observations on the Equation

y

2

312

x

2

1

” International Journal of Mathematics Trends and Technology, Vol 50, Issue4, 31-34, Oct 2017.

Figure

Table 1: Numerical Examples

References

Related documents

The conjunctival tumor was resected, and an amniotic membrane transplantation was performed for the bulbar conjunctival reconstruction.. The histopathological diagnosis suggested

Methods: We examined the association between socio-economic indicators (income and education) and sodium, using two outcome variables: 1) sodium consumption in mg/day, and 2)

Keywords; painting, ominous, mythology, landscape, light,

Van Hoof, Performance of Mitsui NaA type zeolite membranes for the dehydration of organic solvents in comparison with commercial Polymeric pervaporation membranes, Separation

Multivariate analysis showed that elevated baseline tALP and LDH levels were associated with higher risk of death, compared with other factors, in placebo patients who did not receive

She emphasized the necessity to introduce an economic assessment, including efficiencies, into the approach of the European Commission’s to vertical agreements and the resulting

Nous notons aussi que par cette approche nous obtenons des nouveaux elements nis pour lesquels des estimations d'erreurs optimales seront donnees.. Mentionnons que toutes