• No results found

Cell Cycle

N/A
N/A
Protected

Academic year: 2021

Share "Cell Cycle"

Copied!
68
0
0

Loading.... (view fulltext now)

Full text

(1)
(2)

KEY  CONCEPT    

Cells  have  dis2nct  phases  of  growth,  reproduc2on,  and   normal  func2ons.  

(3)

What  is  cell  cycle?  

• Cell  cycle  is  defined  as  a  period  from  

the  end  of  one  division  to  the  

beginning  of  next  division  of  a  

prolifera<ve  cell.  

(4)

Your body cells go through a cycle too. This cycle allows new cells to be created to heal or replace dead or

damaged cells.

(5)
(6)
(7)

Cell  division  <ming  

•  Different  cells  have  cell  cycles  of  different   lengths;  

Cell  type                        Cell  cycle  <me  

Nerve  Cells                  never   Human  Liver  Cells          1  year  

Red  blood  cell                4  months   Skin  cell                  2  weeks   Intes<nal  epithelial  cells      12  hours  

Yeast  cells                1.5  to  3  hours   Bacteria                  90  minutes  

(8)

The  cell  cycle  

•  The  cell  cycle  for  prokaryo<c   cells  is  a  quick  succession  of   growth,  DNA  replica<on,  and   cell  division.  Cell  division  in   prokaryotes  is  a  one-­‐step  

process  called  binary  fission   (shown  right).  

•  Eukaryo<c  cells  have  a  more   complex  cell  cycle  than  

(9)

How  is  the  eukaryo<c    

cell  cycle  divided?  

•  The  <me  between  cell  divisions   is  called  interphase.  The  length   of  interphase  varies  depending   on  cell  type.  

•  Eukaryo<c  interphase  is  divided   into  three  steps,  or  phases:  G1,  S,   and  G2.  

 

•  Eukaryo<c  cells  divide  during  the   M  phase  of  the  cell  cycle.  The  M   phase  consists  of  two  steps:  

(10)

Interphase  

•  The  stage  between  two   successive  cell  divisions   (the  ‘holding’  stage).  

•   Some  90  %  of  a  cell's   <me  in  the  normal  cell   cycle  may  be  spent  in   this  phase  

C  =  chroma<n   I  =  nucleolus  

(11)

Parts  of  Interphase  

•  G1  Phase  

–  Growing  

–  Synthesize  new  proteins  and   organelles  

–  Doing  their  jobs  

–  Longest  phase  of  cell  cycle  

•  S  Phase  

–  Chromosomes(DNA)  are   replicated  

–  Key  proteins  associated  with   replica<on  are  made  

(centromeres)  

•  G2  Phase  

–  Shortest  of  the  3  phases  of   interphase  

–  Organelles  and  molecules  for  cell   division  are  produced  (centrioles)   –  Check-­‐up  phase  before  mitosis  

(12)
(13)

What  happens  during  the  M  phase  

of  the  eukaryo<c  cell  cycle?  

•  The  M  phase  is  usually  much   shorter  than  interphase  and   results  in  two  daughter  cells.      

•  The  first  step  of  the  M  phase  is  

mitosis.  The  cell’s  nucleus  

divides  during  mitosis.  

•  The  second  step  of  the  M  phase   is  cytokinesis,  during  which  the   cell’s  cytoplasm  is  divided.  

(14)

What  are  the  steps  of  mitosis?  

•  Mitosis  consists  of  four  steps:        Prophase    

         Metaphase                    Anaphase    

(15)
(16)
(17)
(18)
(19)

Cytokinesis  

-­‐Cytoplasmic  

division  and  other   changes  exclusive  of   nuclear  division  that   are  a  part  of  mitosis   or  meiosis.    

(20)
(21)

The  Cell  Cycle  Control  System  

•  The  sequen<al  events  of  the  cell  cycle  are  directed   by  a  dis<nct  cell  cycle  control  system,  which  is  

similar  to  a  clock    

•  The  clock  has  specific  checkpoints  where  the  cell   cycle  stops  un<l  a  go-­‐ahead  signal  is  received  

(22)

Defini<on  of  Checkpoint  

n  Cell  cycle  is  a  highly  ordered  process:  the  

ini<a<on  of  later  event  depends  on  the   comple<on  of  earlier  events.  

n  The  control  mechanisms  that  enforce  this  

ordered  dependency  are  called  cell  cycle   checkpoint.  

(23)

G1  checkpoint   G1   S   M   M  checkpoint   G2  checkpoint   G2   Control   system  

(24)

24  

Control  of  the  Cell  Cycle  

The  cell  cycle  is  controlled  at  three  checkpoints:   1.  G1/S  checkpoint  

 -­‐the  cell  “decides”  to  divide   2.  G2/M  checkpoint  

 -­‐the  cell  makes  a  commitment  to  mitosis   3.  late  metaphase  (spindle)  checkpoint  

 -­‐the  cell  ensures  that  all  chromosomes  are   ahached  to  the  spindle  

(25)

Regula<on  of  the  Cell  Cycle:  

Cell  Cycle  Checkpoints  

E.g. Oocytes

Differentiating cells

• can  sister  chroma<ds  separate  correctly?  

• has  DNA  synthesis  been  completed   correctly?  

• commitment  to  mitosis  

(26)

•  For  many  cells,  the  G1  checkpoint  seems  to  be   the  most  important  one  

•  If  a  cell  receives  a  go-­‐ahead  signal  at  the  G1   checkpoint,  it  will  usually  complete  the  S,  G2,   and  M  phases  and  divide  

•  If  the  cell  does  not  receive  the  go-­‐ahead  signal,   it  will  exit  the  cycle,  switching  into  a  nondividing   state  called  the  G0  phase  

(27)

LE  12-­‐15  

G1   G1  checkpoint  

G1   G0  

If  a  cell  receives  a  go-­‐ahead   signal  at  the  G1  checkpoint,  the   cell  con2nues  on  in  the  cell   cycle.  

If  a  cell  does  not  receive  a  go-­‐ ahead  signal  at  the  G1  

checkpoint,  the  cell  exits  the  cell   cycle  and  goes  into  G0,  a  

(28)
(29)

Stop  and  Go  Signs:  Internal  and  External  

Signals  at  the  Checkpoints  

•  An  example  of  an  internal  signal    is  that  

kinetochores  not  ahached  to  spindle  microtubules   send  a  molecular  signal  that  delays  anaphase  

•  Some  external  signals  are  growth  factors,  proteins   released  by  certain  cells  that  s<mulate  other  cells   to  divide  

•  For  example,  platelet-­‐derived  growth  factor  (PDGF)   s<mulates  the  division  of  human  fibroblast  cells  in   culture  

(30)

How  do  cells  know  when  to  divide  and  

when  not  to?  

•  Internal  regulators  –  are  proteins  that  respond   to  events  inside  the  cell.  

– Some  proteins  make  sure  cells  do  not  enter  

mitosis  un<l  all  of  the  chromosomes  have  been   replicated.      

•  Two  types  of  regulatory  proteins  are  involved  in   cell  cycle  control:  cyclins  and  cyclin-­‐dependent   kinases  (Cdks)  

•  The  ac<vity  of  cyclins  and  Cdks  fluctuates  during   the  cell  cycle  

(31)

LE  12-­‐14   G1  checkpoint   G1   S   M   M  checkpoint   G2  checkpoint   G2   Control   system  

Proteins within the cell control the cell cycle

Signals affecting critical checkpoints determine whether the cell will divide (cyclins, kinases)

(32)

32  

Control  of  the  Cell  Cycle  

At  G1/S  checkpoint:  

 -­‐  G1  cyclins  accumulate  

 -­‐  G1  cyclins  bind  with  Cdc2  to  create  the  ac<ve   G1/S  Cdk  

 -­‐  G1/S  Cdk  phosphorylates  a  number  of   molecules  that  ul<mately  increase  the   enzymes  required  for  DNA  replica<on  

(33)

LE  12-­‐16b   Degraded   cyclin   G 2   checkpoint   Cdk   Cyclin  is   degraded   MPF   Cyclin   Cdk  

Molecular  mechanisms  that  help  regulate  the  cell  cycle   ac cum ula2 on   Cy cl in  

(34)

LE  12-­‐16a   MPF  ac2vity   G1   S   G2   M   S   G2   M   G1   M   Cyclin   Time  

Fluctua2on  of  MPF  ac2vity  and  cyclin  concentra2on   during  the  cell  cycle  

Rela 2v e   co ncen tr a2on  

(35)

External Factors that can Influence

Cell Division

1.  Chemical factors-

a.  Lack of nutrients inhibit cell division

b. Presence of specific growth

factors are needed for cell division

–  Platelet-derived Growth Factor

(PDGF) is required for division of fibroblasts used in healing

–  Receptors on plasma membrane

bind PDGF and trigger pathway to signal cell division

(36)

2.  Physical factors-

a.  Density-dependent inhibition

•  Cell division limited by quantities of nutrients and growth regulators

b. Anchorage-dependent inhibition •  Cells must attach to substratum

(surface)

•  Anchorage is signaled to cell-cycle control system by linkage between membrane proteins and elements of cytoskeleton

(37)

External  Regulators  

•  External  regulators  -­‐  Proteins  that  respond  to  events   outside  the  cell  are  called  external  regulators.    

•  External  regulators  direct  cells  to  speed  up  or  slow   down  the  cell  cycle.    

•  Growth  factors  are  among  the  most  important   external  regulators,  which  tell  cells  to  speed  up   division.    When  is  this  important?  

•  Molecules  found  on  the  surfaces  of  neighboring  cells   omen  have  an  opposite  effect,  causing  cells  to  slow   down  or  stop  their  cell  cycles.    

(38)

External Signals

(39)

Cells  anchor  to  dish  surface  and   divide  (anchorage  dependence).   When  cells  have  formed  a  complete   single  layer,  they  stop  dividing  

(density-­‐dependent  inhibi2on).  

If  some  cells  are  scraped  away,  the  

remaining  cells  divide  to  fill  the  gap  and   then  stop  (density-­‐dependent  inhibi2on).  

25  µm   Normal  mammalian  cells  

(40)

• 

Mitosis  occurs  only  if:  

– 

the  cell  is  large  enough    

– 

and  the  DNA  is  undamaged  

• 

If  the  DNA  is  damaged,  the  cell  

commits  suicide  –  so  it  doesn’t  

pass  on  bad  DNA  

(41)

How  DNA  

damage  

arrests  the  

(42)

Control of Cell Cycle

What happens when checkpoints fail? Cancer can occur

(43)

Cancer Cells have Escaped Cell-cycle

Control

Cancer cells do not respond normally to the body’s control mechanisms and divide excessively

1.  Density-independent—make their own growth factors and continue to divide uncontrolled (“immortal”)

(44)

LE  12-­‐18a  

Cells  anchor  to  dish  surface  and   divide  (anchorage  dependence).  

When  cells  have  formed  a  complete   single  layer,  they  stop  dividing  

(density-­‐dependent  inhibi2on).  

If  some  cells  are  scraped  away,  the  

remaining  cells  divide  to  fill  the  gap  and   then  stop  (density-­‐dependent  inhibi2on).  

25  µm   Normal  mammalian  cells  

(45)

LE  12-­‐18b  

Cancer  cells  do  not  exhibit   anchorage  dependence  

or  density-­‐dependent  inhibi2on.  

Cancer  cells  

(46)

Loss  of  Cell  Cycle  Controls  in  Cancer  Cells  

•  Cancer  cells  do  not  respond  normally  to  the   body’s  control  mechanisms  

•  Cancer  cells  form  tumors,  masses  of  abnormal   cells  within  otherwise  normal  <ssue  

•  If  abnormal  cells  remain  at  the  original  site,  the   lump  is  called  a  benign  tumor  

•  Malignant  tumors  invade  surrounding  <ssues   and  can  metastasize,  expor<ng  cancer  cells  to   other  parts  of  the  body,  where  they  may  form   secondary  tumors  

(47)

Abnormal cells that escape cell-cycle control are products of mutated or transformed normal cells

1.  May proliferate to form a tumor—an unregulated growing mass of cells within normal tissue

•  Benign tumor—if cells remain at the original site •  Malignant tumor—if mass impairs normal

function of one or more organs of the body »  Excessive proliferation

»  Cells with unusual number of chromosomes »  Aberrant metabolism

»  Detaches and migrates through body (metastasis)

(48)

Growth control in a normal cell

Signaling cell

Growth factor =

Growth factor binds to receptor Receptor sets off

a signal cascade to

nucleus

target cell enters S-phase and divides, eventually repairing wound target cell Nucleus

(49)

1. Cell might produce its own growth factor

Several ways to get faulty growth control in a cancer cell 2. Mutant receptor might turn on even without

binding growth factor 3.  Signal cascade might occur even without trigger

(50)
(51)
(52)
(53)

53  

What causes Cancer?

•  Cancer is caused by

alterations or mutations in the genetic code

•  Can be induced in somatic cells by: –  Carcinogenic chemicals –  Radiation –  Some viruses •  Heredity - 5%

(54)
(55)

55  

•  What  is  the  molecular  basis  of  cancer?  

•  Cancer  is  a  gene<c  disease.  

•  Muta<ons  in  genes  result  in  altered  proteins   – During  cell  division  

– External  agents   – Random  event  

•  Most  cancers  result  from  muta<ons  in  soma<c   cells  

•  Some  cancers  are  caused  by  muta<ons  in   germline  cells  

(56)

56  

What are the genes responsible for tumorigenic cell growth?

Normal

Cancer

Proto-oncogenes Cell growth

and proliferation Tumor suppressor genes

+

-Mutated or activated oncogenes Malignant transformation Loss or mutation of

Tumor suppressor genes

(57)

• Characteristics of Cancer Cells

• Cancer cells lack differentiation.

• Cancer cells have abnormal nuclei.

• Cancer cells form tumors.

• Cancer cells undergo metastasis and

angiogenesis.

(58)

• Unlike normal cells that differentiate into muscle or nerves cells, cancer cells have an abnormal form and are nonspecialized.

 

• Normal cells enter the cell cycle only about 50 times; cancer cells are immortal in that they can enter the cell cycle repeatedly.  

(59)

• The nuclei may be enlarged and may have an abnormal number of chromosomes.

 

• The chromosomes have mutated; some chromosomes may be duplicated or deleted.

 

• Gene amplification, extra copies of genes, is more frequent in cancerous cells.

 

• Whereas ordinary cells with DNA damage undergo apoptosis, cancer cells do not.  

(60)

• Normal cells are anchored and stop dividing when in contact with other cells; i.e., they

exhibit contact inhibition.  

• Cancer cells invade and destroy normal tissue and their growth is not inhibited.  

• Cancer cells pile on top of each other to form a tumor.  

(61)

• A benign tumor is encapsulated and does not invade adjacent tissue.

 

• Cancer in situ is a tumor in its place of origin but is not encapsulated—it will invade surrounding tissues.

 

• Many types of cancer can undergo metastasis, in which new tumors form which are distant from the primary tumor.

 

• Angiogenesis, the formation of new blood vessels, is required to bring nutrients and oxygen to the tumor.

 

• A cancer patient’s prognosis depends on whether the tumor has invaded surrounding tissue, whether there is lymph node involvement, and whether there are metastatic tumors

elsewhere in the body.  

(62)

LE  12-­‐19   Cancer  cell   Blood   vessel   Lymph   vessel   Tumor   Glandular   2ssue   Metasta2c   tumor   A  tumor  grows  from  a  

single  cancer  cell.   Cancer  cells  invade  neighboring  2ssue.   Cancer  cells  spread  through  lymph  and   blood  vessels  to   other  parts  of  the   body.  

A  small  percentage   of  cancer  cells  may   survive  and  establish   a  new  tumor  in  another   part  of  the  body.  

(63)

Cancer treatment:

Attack Actively Dividing Cells

•  Three treatments for cancer:

1.  Surgery 2.  Radiation

(64)

Phase-specific Chemotherapies 1.  Prevent cells from entering the S-phase

2.  Block the S phase

(65)

Phase  Specificity  of  Cytotoxic  Drugs  

Phase of cell cyle Effective agents

G1 Steroids, asparaginase

S phase Antimetabolites

G2 Bleomycin, etoposide

Mitosis Vinca alkaloids, taxanes

Phase non-specific Alkylating agents,

nitrosoureas, antibiotics, procarbazine, dacarbazine, platinums

(66)

But chemotherapy can’t discriminate between cancer cells and normal cells….

•  May affect all rapidly dividing cells •  Which cells divide rapidly?

(67)

Chemotherapy  Side  Effects  

•  Chemotherapy  targets  cells  which  are  dividing   rapidly.  

•  Chemotherapy  cannot  dis<nguish  between   normal  cells  and  cancer  cells  

•  Healthy  Cells  which  have  a  high  rate  of  growth   and  mul<plica<on  include  cells  of  the  bone  

(68)

References

Related documents

• Cells divide in a series of stages called the cell cycle. • During the cell cycle the DNA is copied and

 binding of PDGF to cell receptors stimulates cell division in fibroblast (connective tissue). 

• In plant cells, a cell plate forms from vesicles derived from the Golgi apparatus (these also contain material for building new cell wall).... THE

The results reveal a fundamental feature of cell cycle Transcription factors have been identified that have regulation in living cells: cell cycle transcriptional activa- roles

In the present section we apply the functional delta method in order to obtain consistent bootstrap procedures for the empirical copula process under a general assumption on a

The cell cycle is the life of a cell from the time it is first formed from a dividing parent cell until its own division into two daughter cells.. Concept 12.1 Most cell

The Faruqi/Gardy Group has proffered as its proposed lead plaintiff an individual who holds some 350 shares with a value at the current deal price of approximately $7,000. The

The crash data are compiled by the MassDOT Registry of Motor Vehicles (Registry) based on crash reports submitted by State and local police, other police departments and