• No results found

Weighted boundedness of a multilinear operator associated to a singular integral operator with general kernels

N/A
N/A
Protected

Academic year: 2020

Share "Weighted boundedness of a multilinear operator associated to a singular integral operator with general kernels"

Copied!
17
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Weighted boundedness of a multilinear

operator associated to a singular integral

operator with general kernels

Qiufen Feng

*

*Correspondence:

fengqiufen@126.com

Changsha Commerce and Tourism College, Changsha, 410116, P.R. China

Abstract

In this paper, we establish the weighted sharp maximal function inequalities for a multilinear operator associated to a singular integral operator with general kernels. As an application, we obtain the boundedness of the operator on weighted Lebesgue and Morrey spaces.

MSC: 42B20; 42B25

Keywords: multilinear operator; singular integral operator; sharp maximal function; weightedBMO; weighted Lipschitz function

1 Introduction and preliminaries

As the development of singular integral operators (see [–]), their commutators and mul-tilinear operators have been well studied. In [–], the authors prove that the commutators generated by singular integral operators andBMOfunctions are bounded onLp(Rn) for  <p<∞. Chanillo (see []) proves a similar result when singular integral operators are replaced by fractional integral operators. In [, ], the boundedness for the commutators generated by singular integral operators and Lipschitz functions on Triebel-Lizorkin and Lp(Rn) ( <p<) spaces is obtained. In [, ], the boundedness for the commutators

generated by singular integral operators and weightedBMOand Lipschitz functions on

Lp(Rn) ( <p<) spaces is obtained. In [], some singular integral operators with

gen-eral kernel are introduced, and the boundedness for the operators and their commutators generated byBMOand Lipschitz functions is obtained (see [, , ]). Motivated by these, in this paper, we study the multilinear operator generated by the singular integral operator with general kernel and the weighted Lipschitz andBMOfunctions.

First, let us introduce some notations. Throughout this paper,Qdenotes a cube ofRn with sides parallel to the axes. For any locally integrable functionf, the sharp maximal function off is defined by

M#(f)(x) =sup Qx

 |Q|

Q

f(y) –fQdy,

where, and in what follows,fQ=|Q|–

Qf(x)dx. It is well known that (see [, ])

M#(f)(x)≈sup Qxc∈Cinf

 |Q|

Q

f(y) –cdy.

(2)

Let

M(f)(x) =sup Qx

 |Q|

Q

f(y)dy.

Forη> , letM#

η(f)(x) =M

#(|f|η)/η(x) andM

η(f)(x) =M(|f|η)/η(x).

For  <η<n, p<∞and the non-negative weight functionw, set

,p,w(f)(x) =sup Qx

w(Q)–/n

Q

f(y)pw(y)dy

/p

.

We write,p,w(f) =Mp,w(f) ifη= .

TheApweight is defined by (see []), for  <p<∞,

Ap=

wLlocRn :sup Q

 |Q|

Q

w(x)dx

 |Q|

Q

w(x)–/(p–)dx

p– <∞

and

A=wLplocRn :M(w)(x)Cw(x), a.e..

Given a non-negative weight functionw, for p<∞, the weighted Lebesgue space Lp(Rn,w) is the space of functionsf such that

fLp(w)=

Rn

f(x)pw(x)dx

/p

<∞.

For  <β<  and the non-negative weight functionw, the weighted Lipschitz space Lipβ(w) is the space of functionsbsuch that

bLipβ(w)=sup

Q

w(Q)β/n

w(Q)

Q

b(y) –bQ p

w(x)–pdy

/p

<∞,

and the weightedBMOspaceBMO(w) is the space of functionsbsuch that

bBMO(w)=sup

Q

w(Q)

Q

b(y) –bQpw(x)–pdy /p

<∞.

Remark () It has been known that (see [, ]), forbLipβ(w),wAandxQ,

|bQbkQ| ≤CkbLip

β(w)w(x)w

kQ β/n.

() It has been known that (see [, ]), forbBMO(w),wAandxQ,

|bQbkQ| ≤CkbBMO(w)w(x).

() LetbLipβ(w) orbBMO(w) andwA. By [], we know that spacesLipβ(w)

(3)

Definition  Letϕbe a positive, increasing function onR+, and there exists a constant D>  such that

ϕ(t)≤(t) fort≥.

Letwbe a non-negative weight function onRnandfbe a locally integrable function onRn. Set, for ≤p<∞,

fLp,ϕ(w)= sup

x∈Rn,d>

ϕ(d)

Q(x,d)

f(y)pw(y)dy

/p

,

whereQ(x,d) ={yRn:|xy|<d}. The generalized weighted Morrey space is defined by

Lp,ϕRn,w =fLlocRn :fLp(w)<∞.

Ifϕ(d) =,δ> , thenLp,ϕ(Rn,w) =Lp,δ(Rn,w), which is the classical Morrey space (see

[, ]). Ifϕ(d) = , thenLp,ϕ(Rn,w) =Lp(Rn,w), which is the weighted Lebesgue space (see

[]).

As the Morrey space may be considered as an extension of the Lebesgue space, it is natural and important to study the boundedness of the operator on the Morrey spaces (see [–]).

In this paper, we study some singular integral operators as follows (see []).

Definition  LetT:SSbe a linear operator such thatTis bounded onL(Rn) and has

a kernelK, that is, there exists a locally integrable functionK(x,y) onRn×Rn\ {(x,y)

Rn×Rn:x=y}such that

T(f)(x) =

RnK(x,y)f(y)dy

for every bounded and compactly supported functionf, whereKsatisfies

K(x,y)C|xy|–n,

|y–z|<|x–y|

K(x,y) –K(x,z)+K(y,x) –K(z,x) dxC,

and there is a sequence of positive constant numbers{Ck}such that for anyk≥,

k|zy|≤|xy|<k+|zy|

K(x,y) –K(x,z)+K(y,x) –K(z,x) q

dy

/q

Ck

k|zy| –n/q,

where  <q<  and /q+ /q= . Moreover, letmbe a positive integer andbbe a function onRn. Set

Rm+(b;x,y) =b(x) –

|α|≤m

α!D

α

(4)

The multilinear operator related to the operatorTis defined by

Tb(f)(x) =

Rn

Rm+(b;x,y)

|xy|m K(x,y)f(y)dy.

Note that the classical Calderón-Zygmund singular integral operator satisfies Defini-tion  (see [–, , ]) and that the commutator [b,T](f) =bT(f) –T(bf) is a particular operator of the multilinear operatorTb ifm= . The multilinear operatorTbis a

non-trivial generalization of the commutator. It is well known that commutators and multilin-ear operators are of great interest in harmonic analysis and have been widely studied by many authors (see [–]). The main purpose of this paper is to prove the sharp maxi-mal inequalities for the multilinear operatorTb. As application, we obtain the weighted

Lp-norm inequality and Morrey space boundedness for the multilinear operatorTb.

2 Theorems and lemmas

We shall prove the following theorems.

Theorem  Let T be a singular integral operator as in Definition,the sequence{kCk} ∈l,

wA,  <η< ,q<r<∞and DαbBMO(w)for allαwith|α|=m.Then there exists a

constant C> such that,for any fC∞(Rn)andx˜Rn,

M#η

Tb(f) (x)˜ ≤C

|α|=m

DαbBMO(w)w(x)M˜ r,w(f)(x).˜

Theorem  Let T be a singular integral operator as in Definition,the sequence{kCk} ∈l,

wA,  <η< ,q<r<∞,  <β< and DαbLip

β(w)for allαwith|α|=m.Then there

exists a constant C> such that,for any fC∞(Rn)andx˜Rn,

M#η

Tb(f) (x)˜ ≤C

|α|=m

DαbLip

β(w)w(x)M˜ β,r,w(f)(x).˜

Theorem  Let T be a singular integral operator as in Definition,the sequence{kCk} ∈l,

wA,q<u<∞and DαbBMO(w)for allαwith|α|=m.Then Tbis bounded from

Lu(Rn,w)to Lu(Rn,w–u).

Theorem  Let T be a singular integral operator as in Definition,the sequence{kCk} ∈l,

wA, q<u<∞,  <D< n and DαbBMO(w)for all α with |α|=m. Then Tb is bounded from Lu,ϕ(Rn,w)to Lu,ϕ(Rn,w–u).

Theorem  Let T be a singular integral operator as in Definition,the sequence{kCk} ∈l,

wA,  <β< ,q<u<n/β, /v= /u–β/n and DαbLipβ(w)for allαwith|α|=m.

Then Tbis bounded from Lu(Rn,w)to Lv(Rn,w–v).

Theorem  Let T be a singular integral operator as in Definition,the sequence{kCk} ∈l,

wA,  <β< ,  <D< n,q<u<n/β, /v= /uβ/n and DαbLip

β(w)for allαwith |α|=m.Then Tbis bounded from Lu,ϕ(Rn,w)to Lv,ϕ(Rn,w–v).

(5)

Lemma (see [, p.]) Let <u<v<∞and for any function f ≥,we define that,for /r= /u– /v,

fWLv=sup

λ>

λxRn:f(x) >λ/v, Nu,v(f) =sup Q

fχQLu/χQLr,

where thesupis taken for all measurable sets Q with <|Q|<∞.Then

fWLvNu,v(f)≤v/(vu) /ufWLv.

Lemma (see []) Let T be a singular integral operator as in Definition,the sequence {Ck} ∈l.Then T is bounded on Lp(Rn,w)for wAp with <p<∞,and weak(L,L)

bounded.

Lemma (see [, ]) Let≤η<n, s<u<n/η, /v= /u–η/n and w∈A.Then

,s,w(f)Lv(w)CfLu(w).

Lemma (see []) Let <p,η<∞and w≤r<Ar.Then,for any smooth function f

for which the left-hand side is finite,

RnMη(f)(x)

pw(x)dxC

RnM

#

η(f)(x)pw(x)dx.

Lemma (see [, ]) Let <p<∞,  <η<∞,  <D< nand wA.Then,for any

smooth function f for which the left-hand side is finite,

(f)Lp(w)CM

#

η(f)Lp(w).

Lemma (see [, ]) Let≤η<n,  <D< n, s<u<n/η, /v= /uη/n and

wA.Then

,s,w(f)Lv(w)CfLu(w).

Lemma (see []) Let b be a function on Rnand DαALu(Rn)for allαwith|α|=m and

any u>n.Then

Rm(b;x,y)C|xy|m

|α|=m

 | ˜Q(x,y)|

˜ Q(x,y)

Dαb(z)udz

/u

,

whereQ is the cube centered at x and having side length˜ √n|xy|.

3 Proofs of theorems

Proof of Theorem  It suffices to prove forfC∞(Rn) and some constantC that the

following inequality holds:

 |Q|

Q

Tb(f)(x) –Cηdx

/η

C

|α|=m

(6)

Fix a cubeQ=Q(x,d) andx˜∈Q. LetQ˜ = √nQandb(x) =˜ b(x) –|α|=!(D

αb)

˜ Qxα,

thenRm(b;x,y) =Rm(b;˜ x,y) andDαb˜=Dαb– (Dαb)Q˜ for|α|=m. We write, forf=fχQ˜

andf=Rn\ ˜Q,

Tb(f)(x) =

Rn

Rm(b;˜ x,y)

|xy|m K(x,y)f(y)dy

|α|=m

α!

Rn

(x–y)αDαb(y)˜

|xy|m K(x,y)f(y)dy

+

Rn

Rm+(b;˜ x,y)

|xy|m K(x,y)f(y)dy

=T

Rm(b;˜ x,·)

|x–·|m f

T

|α|=m

α!

(x–·)αDαb˜ |x–·|m f

+Tb˜(f)(x),

then

 |Q|

Q

Tb(f)(x) –Tb˜(f)(x)ηdx

/η

C

 |Q|

Q T

Rm(b;˜ x,·)

|x–·|m f

ηdx

/η

+C

 |Q|

Q T

|α|=m

(x–·)αDαb˜ |x–·|m f

ηdx

/η

+C

 |Q|

Q

T˜b(f)(x) –Tb˜(f)(x)ηdx

/η

=I+I+I.

ForI, noting thatwA,wsatisfies the reverse of Hölder’s inequality,

 |Q|

Q

w(x)pdx

/p

C

|Q|

Q

w(x)dx

for all cubeQand some  <p<∞(see []). We takeu=rp/(r+p– ) in Lemma  and have  <u<randp=u(r– )/(r–u). Then by Lemma  and Hölder’s inequality, we get

Rm(b;˜ x,y)

C|xy|m

|α|=m

 | ˜Q(x,y)|

˜ Q(x,y)

b(z)˜ udz

/u

C|xy|m

|α|=m

| ˜Q|–/u

˜ Q(x,y)

Dαb(z)˜ uw(z)u(–r)/rw(z)u(r–)/rdz

/u

C|xy|m

|α|=m

| ˜Q|–/u

˜ Q(x,y)

Dαb(z)˜ rw(z)–rdz

/r

×

˜ Q(x,y)

w(z)u(r–)/(ru)dz

(7)

C|xy|m

|α|=m

| ˜Q|–/uDαbBMO(w)w(Q)˜ /r| ˜Q|(ru)/ru

×

 | ˜Q(x,y)|

˜ Q(x,y)

w(z)pdz

(ru)/ru

C|xy|m

|α|=m

DαbBMO(w)| ˜Q|–/uw(Q)˜ /r| ˜Q|/u–/r

 | ˜Q(x,y)|

˜ Q(x,y)

w(z)dz

(r–)/r

C|xy|m

|α|=m Dα

bBMO(w)| ˜Q|–/uw(Q)˜ /r| ˜Q|/u–/rw(Q)˜ –/r| ˜Q|/r–

C|xy|m

|α|=m

DαbBMO(w)w(Q)˜ | ˜Q|

C|xy|m

|α|=m b

BMO(w)w(x).˜

Thus, by theLs-boundedness ofT(see Lemma ) for  <s<randwAAr/s, we obtain

I≤ C |Q|

Q T

Rm(b;˜ x,·)

|x–·|m f

dx

C

|α|=m

DαbBMO(w)w(x)˜

 |Q|

Rn

T(f)(x)sdx

/s

C

|α|=m Dα

bBMO(w)w(x)˜|Q|–/s

Rn

f(x)s

dx

/s

C

|α|=m b

BMO(w)w(x)˜|Q| –/s

˜ Q

f(x)sw(x)s/rw(x)s/rdx

/s

C

|α|=m b

BMO(w)w(x)˜|Q| –/s

˜ Q

f(x)rw(x)dx

/r

˜ Q

w(x)s/(rs)dx

(rs)/rs

C

|α|=m

DαbBMO(w)w(x)˜|Q|–/sw(Q)˜ /r

w(Q)˜

˜ Q

f(x)rw(x)dx

/r

×

 | ˜Q|

˜ Q

w(x)s/(rs)dx

(rs)/rs  | ˜Q|

˜ Q

w(x)dx

/r

| ˜Q|/sw(Q)˜ –/r

C

|α|=m

DαbBMO(w)w(x)M˜ r,w(f)(x).˜

ForI, by the weak (L,L) boundedness ofT (see Lemma ) and Kolmogoro’s inequality (see Lemma ), we obtain

IC

|α|=m

 |Q|

Q

TDαbf˜ (x)ηdx

/η

C

|α|=m

|Q|/η– |Q|/η

T(Dαbf˜

)χQLη χQLη/(–η)

C

|α|=m

 |Q|T

(8)

C

|α|=m

 |Q|

Rn

Dαb(x)f(x)˜ dx

C

|α|=m

 |Q|

˜ Q

b(x) –Dαb

˜ Qw(x)

–/rf(x)w(x)/rdx

C

|α|=m

 |Q|

˜ Q

Dα

b(x) –Dαb Q˜ rw(x)–rdx

/r

˜ Q

f(x)r

w(x)dx

/r

C

|α|=m

 |Q|D

αb

BMO(w)w(Q)˜

/rw(Q)˜ /r

w(Q)˜

˜ Q

f(x)rw(x)dx

/r

C

|α|=m

DαbBMO(w)w(Q)˜

| ˜Q| Mr,w(f)(x)˜

C

|α|=m Dα

bBMO(w)w(x)M˜ r,w(f)(x).˜

ForI, noting that|xy| ≈ |xy|forxQandyRn\Q, we write Tb˜(f)(x) –Tb˜(f)(x)

Rn

Rm(b;˜ x,y) –Rm(b;˜ x,y)| K(x,y)|

|xy|mf(y)dy

+

Rn

|K(x,xyy)|m

K(x,y) |x–y|m

Rm(b;˜ x,y)f(y)dy

+

|α|=m

α!

Rn

K(x,|xy)(xy|my)α

K(x,y)(x–y)α |xy|m

Dαb(y)˜ f(y)dy

=I()(x) +I()(x) +I()(x).

ForI()(x), by the formula (see [])

Rm(b;˜ x,y) –Rm(b;˜ x,y) =

|γ|<m

γ!Rm–|γ|

Dγb;˜ x,x (x–y)γ

and Lemma , we have, similar to the proof ofI,

Rm(b;˜ x,y) –Rm(b;˜ x,y)C

|γ|<m

|α|=m

|xx|m–|γ||xy||γ|DαbBMO(w)w(x)˜

and

Rm(b;˜ x,y)C

|α|=m

|xx|mDαbBMO(w)w(x).˜

Thus, bywAAr, we get

I()(x)≤

k=

k+Q\˜ kQ˜

Rm(b;˜ x,y) –Rm(b;˜ x,y)|

K(x,y)| |xy|mf(y)dy

C

|α|=m

DαbBMO(w)w(x)˜

k=

k+Q\˜ kQ˜

|xx|

(9)

C

|α|=m

DαbBMO(w)w(x)˜

k= d (kd)n+

kQ˜

f(y)w(y)/rw(y)–/rdy

C

|α|=m

DαbBMO(w)w(x)˜

k= d (kd)n+

kQ˜

f(y)rw(y)dy

/r

×

kQ˜

w(y)–/(r–)dy

(r–)/r

C

|α|=m

DαbBMO(w)w(x)˜

k= d (kd)n+w

kQ˜ /r

×

w(kQ)˜

kQ˜

f(y)rw(y)dx

/r

|kQ˜|

kQ˜w(y)

–/(r–)dy

(r–)/r

×

 |kQ˜|

kQ˜ w(y)dy

/r

kQ˜wkQ˜ –/r

C

|α|=m

DαbBMO(w)w(x)M˜ r,w(f)(x)˜ ∞

k= –k

C

|α|=m

DαbBMO(w)w(x)M˜ r,w(f)(x).˜

ForI()(x), we take  <p<∞such that /p+ /q+ /r= . Recallingr>qandwAAr/p+, we get

I()(x)≤

k=

k+Q\˜ kQ˜

K(x,y) –K(x,y)|

Rm(b;˜ x,y)|

|xy|m f(y)w(y)

/rw(y)–/rdy

+

k+Q\˜ kQ˜

|xy|m

 |xy|m

K(x,y)Rm(b;˜ x,y)f(y)dy

C

|α|=m b

BMO(w)w(x)˜

k=

k+Q\˜ kQ˜

K(x,y) –K(x,y)

q

dy

/q

×

k+Q\˜ kQ˜

f(y)rw(y)dy

/r

k+Q\˜ kQ˜

w(y)p/rdy /p

+C

|α|=m Dα

bBMO(w)w(x)˜

k=

k+Q\˜ kQ˜

|xx|

|xy|n+f(y)w(y)

/rw(y)–/rdy

C

|α|=m b

BMO(w)w(x)˜

k=

CkkQ

–/q

wkQ˜ /r

×

w(kQ)˜

kQ˜

f(y)rw(y)dy

/r  |kQ˜|

kQ˜w(y)

p/rdy /p

×

 |kQ˜|

kQ˜w(y)dy

/r

kQ˜/r+/pwkQ˜ –/r

+C

|α|=m

DαbBMO(w)w(x)˜

k= d (kd)n+

×

kQ˜

f(y)rw(y)dy

/r

kQ˜

w(y)–/(r–)dy

(10)

C

|α|=m

DαbBMO(w)w(x)˜

k=

Ck+ –k

w(kQ)˜

kQ˜

f(y)rw(y)dy

/r

C

|α|=m

DαbBMO(w)w(x)M˜ r,w(f)(x).˜

Similarly, we have, forr<p<∞,  <s,s<∞with /p+ /q+ /r+ /s=  and /q+ /r+ /s= ,

I()(x)≤

|α|=m

k=

k+Q\˜ kQ˜

K(x,y) –K(x,y)|(x–y)

α|

|xy|m

×Dαb(y) –Dαb k+Q˜w(y)(–p)/pf(y)w(y)/rw(y)(p–)/p–/rdy

+

|α|=m

k=

k+Q\˜ kQ˜

K(x,y) –K(x,y)|(x–y)α| |xy|m

×Dαb k+Q˜ –

Dαb Q˜f(y)w(y)/rw(y)–/rdy

+

|α|=m

k+Q\˜ kQ˜

(x|xyy)|

(x–y)α |xy|m

K(x,y)f(y)b(y)˜ dy

C

|α|=m

k=

k+Q\˜ kQ˜

K(x,y) –K(x,y)qdy

/q

k+Q˜

f(y)rw(y)dy

/r

×

k+Q˜

b(y) –Dαb

k+Q˜

p

w(y)–pdy

/p

×

k+Q˜w(y)

–(/r–/p)sdy

/s

+C

|α|=m

k=

k+Q\˜ kQ˜

K(x,y) –K(x,y)

q

dy

/q

×

k+Q˜

f(y)rw(y)dy

/r

×Dαb k+Q˜

Dαb Q˜

k+Q˜w(y)s/rdy

/s

+C

|α|=m

k=

k+Q\˜ kQ˜

|xx| |x–y|n+

×f(y)b(y) –Dαb

k+Q˜w(y)/rw(y)–/rdy

+C

|α|=m

k=

k+Q\˜ kQ˜

|xx| |xy|n+

×f(y)Dαb k+Q˜

Dαb Q˜w(y)/rw(y)–/rdy

C

|α|=m

k=

CkkQ

–/q

DαbBMO(w)wkQ˜ /pwkQ˜ /r

×

w(kQ)˜

kQ˜

f(y)rw(y)dy

(11)

×

 |kQ˜|

kQ˜w(y)dy

/r–/p

 |kQ˜|

kQ˜ w(y)

–(/r–/p)sdy

/s

×kQ˜/s+/r–/pwkQ˜ –/r+/p

+C

|α|=m

k=

CkkQ

–/q

kDαbBMO(w)w(x)w˜ kQ˜ /r

×

w(kQ)˜

kQ˜

f(y)rw(y)dy

/r  |kQ˜|

kQ˜

w(y)dy

/r

×

 |kQ˜|

kQ˜w(y)

s/rdy

/s

kQ˜/s+/rwkQ˜ –/r

+C

|α|=m

k= d (kd)n+

kQ˜

Dαb(y) –Dαb kQ˜

r

w(y)–rdy

/r

×

k+Q˜

f(y)rw(y)dy

/r

+C

|α|=m

k= d (kd)n+kD

α

bBMO(w)w(x)˜

kQ˜w(y)

r/rdy /r

×

k+Q˜

f(y)rw(y)dy

/r

|α|=m

DαbBMO(w)

k= Ck

w(kQ)˜ |kQ˜|

w(kQ)˜

kQ˜

f(y)rw(y)dy

/r

+

|α|=m b

BMO(w)w(x)˜

k= kCkw(kQ)˜

kQ˜

f(y)rw(y)dy

/r

+C

|α|=m

DαbBMO(w)

k= –kw(

kQ)˜

|kQ˜|

w(kQ)˜

kQ˜

f(y)rw(y)dx

/r

+C

|α|=m

DαbBMO(w)w(x)˜

k= kk

w(kQ)˜

kQ˜

f(y)rw(y)dx

/r

C

|α|=m

DαbBMO(w)w(x)M˜ r,w(f)(x).˜

Thus

I≤C

|α|=m b

BMO(w)w(x)M˜ r,w(f)(x).˜

These complete the proof of Theorem .

Proof of Theorem  It suffices to prove forfC∞(Rn) and some constantCthat the following inequality holds:

 |Q|

Q

Tb(f)(x) –Cηdx

/η

C

|α|=m

DαbLip

(12)

Fix a cubeQ=Q(x,d) andx˜∈Q. Similar to the proof of Theorem , we have, forf=fχQ˜

andf=Rn\ ˜Q,

 |Q|

Q

Tb(f)(x) –Tb˜(f)(x)ηdx

/η

C

 |Q|

Q T

Rm(b;˜ x,·)

|x–·|m f

ηdx

/η

+C

 |Q|

Q T

|α|=m

(x–·)αDαb˜ |x–·|m f

ηdx

/η

+C

 |Q|

Q

T˜b(f)(x) –Tb˜(f)(x)ηdx

/η

=J+J+J.

ForJandJ, by using the same argument as in the proof of Theorem , we get

Rm(b;˜ x,y)

C|xy|m

|α|=m

| ˜Q|–/q

˜ Q(x,y)

Dαb(z)˜ qw(z)q(–r)/rw(z)q(r–)/rdz

/q

C|xy|m

|α|=m

| ˜Q|–/q

˜ Q(x,y)

Dα˜

b(z)rw(z)–rdz

/r

×

˜ Q(x,y)

w(z)q(r–)/(rq)dz

(rq)/rq

C|xy|m |α|=m

| ˜Q|–/qDαb

Lipβ(w)w(Q)˜

β/n+/r| ˜Q|(rq)/rq

×

 | ˜Q(x,y)|

˜ Q(x,y)

w(z)pdz

(rq)/rq

C|xy|m

|α|=m

DαbLip β(w)| ˜Q|

–/qw(Q)˜ β/n+/r| ˜Q|/q–/r

×

 | ˜Q(x,y)|

˜ Q(x,y)

w(z)dz

(r–)/r

C|xy|m

|α|=m

DαbLip β(w)| ˜Q|

–/qw(Q)˜ β/n+/r| ˜Q|/q–/rw(Q)˜ –/r| ˜Q|/r–

C|xy|m

|α|=m

DαbLip β(w)

w(Q)˜ β/n+ | ˜Q|

C|xy|m |α|=m

b

Lipβ(w)w(Q)˜ β/nw(x).˜

Thus

JC

|α|=m

DαbLip

β(w)w(Q)˜

β/nw(x)˜ |Q|–/s

Rn

f(x)sdx

/s

C

|α|=m

DαbLip

β(w)w(Q)˜

(13)

×

˜ Q

f(x)rw(x)dx

/r

˜ Q

w(x)s/(rs)dx

(rs)/rs

C

|α|=m

DαbLip

β(w)w(x)˜ | ˜Q|

–/sw(Q)˜ /r

w(Q)˜ –/n

˜ Q

f(x)rw(x)dx

/r

×

 | ˜Q|

˜ Q

w(x)s/(rs)dx

(rs)/rs  | ˜Q|

˜ Q

w(x)dx

/r

| ˜Q|/sw(Q)˜ –/r

C

|α|=m

DαbLip

β(w)w(x)M˜ β,r,w(f)(x),˜

JC

|α|=m

 |Q|

˜ Q

Dαb(x) –

Dαb Q˜w(x)–/rf(x)w(x)/rdx

C

|α|=m

 |Q|

˜ Q

Dαb(x) –Dαb Q˜ rw(x)–rdx

/r

˜ Q

f(x)rw(x)dx

/r

C

|α|=m

 |Q|D

αb

Lipβ(w)w(Q)˜

β/n+/rw(Q)˜ /rβ/n

w(Q)˜ –/n

˜ Q

f(x)rw(x)dx

/r

C

|α|=m

DαbLip β(w)

w(Q)˜

| ˜Q| ,r,w(f)(x)˜

C

|α|=m

DαbLip

β(w)w(x)M˜ β,r,w(f)(x).˜

ForJ, we have

Rm(b;˜ x,y) –Rm(b;˜ x,y)

C

|γ|<m

|α|=m

|xx|m–|γ||xy||γ|DαbLip

β(w)w(x)w˜

kQ˜

and

Rm(b;˜ x,y)C

|α|=m

|xx|mDαbLip

β(w)w(x)w˜

kQ˜ .

Thus, for  <p<∞with /p+ /q+ /r=  andr<p<∞,  <s,s<∞with /p+ /q+ /r+ /s=  and /q+ /r+ /s= , we obtain

Tb˜(f)(x) –Tb˜(f)(x)

Rn

Rm(b;˜ x,y) –Rm(b;˜ x,y)|

K(x,y)|

|xy|mf(y)dy

+

Rn

|K(x,xyy)|m

K(x,y) |xy|m

Rm(b;˜ x,y)f(y)dy

+

|α|=m

α!

Rn

K(x,|xy)(xy|my)α

K(x,y)(x–y)α |xy|m

Dαb(y)˜ f(y)dy

C

|α|=m

DαbLip β(w)w(x)˜

k=

wk+Q˜ β/n

k+Q\˜ kQ˜

|xx|

(14)

+C

|α|=m

DαbLip β(w)w(x)˜

k=

wk+Q˜ β/n

k+Q\˜ kQ˜

K(x,y) –K(x,y)qdy

/q

×

k+Q\˜ kQ˜

f(y)rw(y)dy

/r

k+Q\˜ kQ˜

w(y)p/rdy /p

+C

|α|=m

k=

k+Q\˜ kQ˜

|xx| |x–y|n+

Dαb(y) –Dαb k+Q˜f(y)dy

+C

|α|=m

k=

k+Q\˜ kQ˜

|xx| |xy|n+D

α

b k+Q˜

Dαb Q˜f(y)dy

+C

|α|=m

k=

k+Q\˜ kQ˜

K(x,y) –K(x,y)qdy

/q

k+Q˜

f(y)rw(y)dy

/r

×

k+Q˜

Dαb(y) –Dαb k+Q˜

p

w(y)–pdy

/p

k+Q˜w(y)

–(/r–/p)sdy

/s

+C

|α|=m

k=

k+Q\˜ kQ˜

K(x,y) –K(x,y)qdy

/q

k+Q˜

f(y)rw(y)dy

/r

×Dαb k+Q˜

Dαb Q˜

k+Q˜w(y)s/rdy

/s

C

|α|=m

DαbLip β(w)w(x)˜

k=

k d

(kd)n+w

kQ˜ β/n

kQ˜

f(y)rw(y)dx

/r

×

 |kQ˜|

kQ˜w(y)

–/(r–)dy

(r–)/r  |kQ˜|

kQ˜w(y)dy

/r

kQ˜wkQ˜ –/r

+C

|α|=m b

Lipβ(w)w(x)˜

k=

CkkQ

–/q

wkQ˜ β/n

kQ˜

f(y)rw(y)dx

/r

×

 |kQ˜|

kQ˜w(y)

p/rdy /p

 |kQ˜|

kQ˜w(y)dy

/r

kQ˜/p+/rwkQ˜ –/r

+C

|α|=m

k= d (kd)n+

kQ˜

b(y) –Dαb

kQ˜

r

w(y)–rdy

/r

×

kQ˜

f(y)rw(y)dy

/r

+C

|α|=m

DαbLip β(w)w(x)˜

k=

CkkQ

–/q

wkQ˜ β/n

kQ˜

f(y)rw(y)dx

/r

×

 |kQ˜|

kQ˜w(y)

–(/r–/p)sdy

/s

|kQ˜|

kQ˜ w(y)dy

/r–/p

×kQ˜/s+/r–/pwkQ˜ –/r+/p

+C

|α|=m b

Lipβ(w)w(x)˜

k=

kCkkQ

–/q

wkQ˜ β/n

kQ˜

f(y)rw(y)dy

/r

×

 |kQ˜|

kQ˜w(y)dy

/r  |kQ˜|

kQ˜ w(y)

s/rdy

/s

(15)

C

|α|=m

DαbLip β(w)w(x)˜

k=

kCk+ –k

×

w(kQ)˜ –/n

kQ˜

f(y)rw(y)dx

/r

+C

|α|=m

DαbLip β(w)

k=

kCk+ –k

w(kQ)˜ |kQ˜|

×

w(kQ)˜ –/n

kQ˜

f(y)r

w(y)dx

/r

C

|α|=m b

Lipβ(w)w(x)M˜ β,r,w(f)(x).˜

This completes the proof of Theorem .

Proof of Theorem Choose  <r<uin Theorem  and noticew–uA, then we have, by

Lemmas  and ,

Tb(f)Lu(w–u)

Tb(f) Lu(w–u)CM

#

η

Tb(f) Lu(w–u)

C

|α|=m b

BMO(w)wMr,w(f)Lu(w–u)

=C

|α|=m

DαbBMO(w)Mr,w(f)Lu(w)

C

|α|=m

DαbBMO(w)fLu(w).

This completes the proof of Theorem .

Proof of Theorem Choose  <r<uin Theorem  and noticew–uA, then we have, by

Lemmas  and ,

Tb(f)Lu(w–u)

Tb(f) Lu(w–u)CM#η

Tb(f) Lu(w–u)

C

|α|=m

DαbBMO(w)wMr,w(f)Lu(w–u)

=C

|α|=m

DαbBMO(w)Mr,w(f)Lu(w)

C

|α|=m

DαbBMO(w)fLu(w).

This completes the proof of Theorem .

Proof of Theorem Choose  <r<uin Theorem  and noticew–vA, then we have, by Lemmas  and ,

Tb(f)Lv(w–v)

Tb(f) Lv(w–v)CM

#

η

Tb(f) Lv(w–v)

C

|α|=m

DαbLip β(w)

(16)

=C

|α|=m

DαbLip β(w)

,r,w(f)Lv(w)

C

|α|=m

DαbLip β(w)fL

u(w).

This completes the proof of Theorem .

Proof of Theorem Choose  <r<uin Theorem  and noticew–vA, then we have, by

Lemmas  and ,

Tb(f)Lv(w–v)

Tb(f) Lv(w–v)CM

#

η

Tb(f) Lv(w–v)

C

|α|=m Dα

bLip β(w)

wMβ,r,w(f)Lv(w–v)

=C

|α|=m b

Lipβ(w)

,r,w(f)Lv(w)

C

|α|=m b

Lipβ(w)fL

u(w).

This completes the proof of Theorem .

Competing interests

The author declares that they have no competing interests.

Received: 24 December 2013 Accepted: 25 April 2014 Published:13 May 2014

References

1. Garcia-Cuerva, J, Rubio de Francia, JL: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 16. North-Holland, Amsterdam (1985)

2. Stein, EM: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993)

3. Torchinsky, A: Real Variable Methods in Harmonic Analysis. Pure and Applied Math., vol. 123. Academic Press, New York (1986)

4. Coifman, RR, Rochberg, R, Weiss, G: Factorization theorems for Hardy spaces in several variables. Ann. Math.103, 611-635 (1976)

5. Pérez, C: Endpoint estimate for commutators of singular integral operators. J. Funct. Anal.128, 163-185 (1995) 6. Pérez, C, Trujillo-Gonzalez, R: Sharp weighted estimates for multilinear commutators. J. Lond. Math. Soc.65, 672-692

(2002)

7. Chanillo, S: A note on commutators. Indiana Univ. Math. J.31, 7-16 (1982)

8. Lin, Y: Sharp maximal function estimates for Calderón-Zygmund type operators and commutators. Acta Math. Sci., Ser. A31, 206-215 (2011)

9. Paluszynski, M: Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ. Math. J.44, 1-17 (1995)

10. Bloom, S: A commutator theorem and weighted BMO. Trans. Am. Math. Soc.292, 103-122 (1985)

11. Hu, B, Gu, J: Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces. J. Math. Anal. Appl.340, 598-605 (2008)

12. Chang, DC, Li, JF, Xiao, J: Weighted scale estimates for Calderón-Zygmund type operators. Contemp. Math.446, 61-70 (2007)

13. Liu, LZ: Sharp maximal function estimates and boundedness for commutators associated with general integral operator. Filomat25(4), 137-151 (2011)

14. Garcia-Cuerva, J: WeightedHpspaces. Diss. Math.162, 1-63 (1979)

15. Peetre, J: On convolution operators leavingLp,λ-spaces invariant. Ann. Mat. Pura Appl.72, 295-304 (1966) 16. Peetre, J: On the theory ofLp,λ-spaces. J. Funct. Anal.4, 71-87 (1969)

17. Di Fazio, G, Ragusa, MA: Commutators and Morrey spaces. Boll. Unione Mat. Ital., A5, 323-332 (1991)

18. Di Fazio, G, Ragusa, MA: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal.112, 241-256 (1993)

19. Liu, LZ: Interior estimates in Morrey spaces for solutions of elliptic equations and weighted boundedness for commutators of singular integral operators. Acta Math. Sci., Ser. B25, 89-94 (2005)

(17)

21. Cohen, J, Gosselin, J: On multilinear singular integral operators onRn. Stud. Math.72, 199-223 (1982)

22. Cohen, J, Gosselin, J: A BMO estimate for multilinear singular integral operators. Ill. J. Math.30, 445-465 (1986) 23. Ding, Y, Lu, SZ: Weighted boundedness for a class rough multilinear operators. Acta Math. Sin.17, 517-526 (2001)

10.1186/1029-242X-2014-188

References

Related documents

term motor development was contained to the concept of motor fitness development as measured through recognized motor fitness components of agility the study was

Dietary habits: Using the same interview schedule, dietary pattern of the male tribal cancer patients was elicited by obtaining information with regards to their

There has been considerable interest in the development of novel compounds with anticonvulsant, antidepressant, analgesic, anti- inflammatory, anti platelet, anti

Primary data on post-harvest handling, storage &amp; gaps, increment in yield and yield loss, marketing, income, access to agricultural inputs, food shortage and

21.841/2004, that discipline the accountability of political parties, have been edited on the basis of the Corporate Law 6404/76 it is outdated, and that is why

Current available anticonvulsant drugs are able to efficiently control epileptic seizures in about 50% of the patients; another 25% may show improvement whereas the

In the investigation, synthesis of Ag-nano particles were prepared by using polysaccharide, isolated from leaves of Mentha piperita and characterized by using UV-VIS

Qualitative Tests for Cardamom: The cardamom oil obtained from steam distillation followed by hot soxlate extraction with petroleum ether were subjected to preliminary