Daehee Polynomials

Top PDF Daehee Polynomials:

A note on modified degenerate q Daehee polynomials and numbers

A note on modified degenerate q Daehee polynomials and numbers

Many authors studied the q-Daehee polynomials (1.5), the degenerate λ-q-Daehee poly- nomials of the second kind in [12, 33, 46]. In this paper, we defined the modified q-Daehee polynomials of the second kind (2.1), which are different from the q-Daehee polynomials (1.5), and the modified degenerate q-Daehee polynomials of the second kind (3.1), which are different from the modified q-Daehee numbers and polynomials in [31]. We obtained the interesting results of Theorems 2.1, 2.2, and 2.3, which are some identity properties related with the modified degenerate q-Daehee polynomials of the second kind (3.1) and also we obtained the results of Theorems 3.1, 3.2, and 3.3, which are some identities related with the modified q-Daehee polynomials of the second kind.

8 Read more

On the twisted Daehee polynomials with q parameter

On the twisted Daehee polynomials with q parameter

higher-order Bernoulli numbers and Bernoulli numbers of the second kind. In this paper, we give a p-adic integral representation of the twisted Daehee polynomials with q-parameter, and we derive some interesting properties related to the nth twisted Daehee polynomials with q-parameter.

10 Read more

Relationships between Mahler Expansion and Higher Order q-Daehee polynomials

Relationships between Mahler Expansion and Higher Order q-Daehee polynomials

In this paper, we derive multifarious relationships among the two types of higher order q-Daehee polynomials and p-adic gamma function via Mahler theorem. Also, we compute some weighted p-adic q-integrals of the derivative of p-adic gamma function related to the Stirling numbers of the both kinds and the q-Bernoulli polynomials of order k.

7 Read more

ON -ADIC GAMMA FUNCTION RELATED TO -DAEHEE POLYNOMIALS AND NUMBERS

ON -ADIC GAMMA FUNCTION RELATED TO -DAEHEE POLYNOMIALS AND NUMBERS

function via their Mahler expansions. We also derived two q-Volkenborn integrals of p-adic gamma function in terms of q-Daehee polynomials and numbers and q-Daehee polynomials and numbers of the second kind. Moreover, we discover q-Volkenborn integral of the derivative of p-adic gamma function. We acquire the relationship between the p-adic gamma function and Stirling numbers of the …rst kind. We …nally develop a novel and interesting representation for the p-adic Euler constant by means of the q-Daehee polynomials and numbers.

7 Read more

Barnes type Daehee of the first kind and poly Cauchy of the first kind mixed type polynomials

Barnes type Daehee of the first kind and poly Cauchy of the first kind mixed type polynomials

In this paper, by considering Barnes-type Daehee polynomials of the first kind as well as poly-Cauchy polynomials of the first kind, we define and investigate the mixed-type poly- nomials of these polynomials. From the properties of Sheffer sequences of these polyno- mials arising from umbral calculus, we derive new and interesting identities.

22 Read more

Degenerate, partially degenerate and totally degenerate Daehee numbers and polynomials

Degenerate, partially degenerate and totally degenerate Daehee numbers and polynomials

The totally degenerate Daehee numbers and polynomials are constructed by degener- ating both numerator and denominator of Daehee numbers and polynomials. From the generating function for the totally degenerate Daehee polynomials (), we can see that the totally degenerate Daehee polynomials are a Sheffer sequence. And we have the fol- lowing theorem.

14 Read more

Barnes type Daehee of the second kind and poly Cauchy of the second kind mixed type polynomials

Barnes type Daehee of the second kind and poly Cauchy of the second kind mixed type polynomials

In this paper, we introduce the mixed-type polynomials: Barnes-type Daehee polynomials of the second kind and poly-Cauchy polynomials of the second kind. From the properties of Sheffer sequences of these polynomials arising from umbral calculus, we derive new and interesting identities.

19 Read more

Applications on the Apostol Daehee numbers and polynomials associated with special numbers, polynomials, and p adic integrals

Applications on the Apostol Daehee numbers and polynomials associated with special numbers, polynomials, and p adic integrals

In this paper, by using p-adic Volkenborn integral, and generating functions, we give some properties of the Bernstein basis functions, the Apostol-Daehee numbers and polynomials, Apostol-Bernoulli polynomials, some special numbers including the Stirling numbers, the Euler numbers, the Daehee numbers, and the Changhee numbers. By using an integral equation and functional equations of the generating functions and their partial differential equations (PDEs), we give a recurrence relation for the Apostol-Daehee polynomials. We also give some identities, relations, and integral representations for these numbers and polynomials. By using these relations, we compute these numbers and polynomials. We make further remarks and

14 Read more

On \((h,q)\) Daehee numbers and polynomials

On \((h,q)\) Daehee numbers and polynomials

The p-adic q-integral (or q-Volkenborn integration) was defined by Kim (see [, ]). From p-adic q-integral equations, we can derive various q-extensions of Bernoulli polyno- mials and numbers (see [–]). In [], DS Kim and T Kim studied Daehee polynomials and numbers and their applications. In [], Kim et al. introduced the q-analogue of Daehee numbers and polynomials which are called q-Daehee numbers and polynomials. Lim con- sidered in [] the modified q-Daehee numbers and polynomials which are different from the q-Daehee numbers and polynomials of Kim et al. In this paper, we consider (h, q)- Daehee numbers and polynomials and give some interesting identities. In case h = , we cover the q-analogue of Daehee numbers and polynomials of Kim et al. (see []). In case h = , we have modified q-Daehee numbers and polynomials in []. We can find out vari- ous (h, q)-related numbers and polynomials in [, , ].

9 Read more

Operator Methods and SU(1,1) Symmetry in  the Theory of Jacobi and of Ultraspherical Polynomials

Operator Methods and SU(1,1) Symmetry in the Theory of Jacobi and of Ultraspherical Polynomials

We established a new operator identity for the general case of the Jacobi polynomials which is a kind of operator disentanglement and insofar it is related to reordering of non-commuting operators to normal ordering (all differential operators behind the multiplication operators) and is important and well known in quantum optics for the annihilation and creation operators of the Heisenberg- Weyl group and also in the theory of differential equations. Operator identities can be applied to arbitrary functions and they provide then function identities. In this way we could prove a kind of convolution theorem for the Jacobi poly- nomials with a certain similarity to the Vandermond convolution identity for binomial coefficients. Sometimes it was difficult to find out within the immense literature to polynomials whether or not a particular formula or approach is already known or is it novel and our main attention was directed to the correct- ness of the formulae.

50 Read more

Identities between harmonic, hyperharmonic and Daehee numbers

Identities between harmonic, hyperharmonic and Daehee numbers

In this paper, we have studied the harmonic, the hyperharmonic, the Daehee and the higher-order Daehee numbers which are different from the previous research articles. In Sect. 2, we present some elementary identities between the harmonic and the hyperhar- monic numbers. In Sect. 3, we study some relations and properties for the harmonic and the hyperharmonic numbers, the Daehee and the higher-order Daehee numbers. Addi- tionally, the derangement numbers and the Cauchy numbers are also studied in Sect. 3. In Sect. 4, we study a nonlinear differential equation arising from the generating function of the harmonic numbers and we give some identities of harmonic and hyperharmonic num- bers, the Daehee and higher-order Daehee numbers which are derived from this nonlinear differential equation.

12 Read more

Search | Preprints

Search | Preprints

Abstract. In this paper, we introduce a new class of (p, q)-analogue type of Fubini numbers and polynomials and investigate some properties of these polynomials. We establish summation formulas of these polynomials by summation techniques series. Furthermore, we consider some relationships for (p, q)-Fubini polynomials associated with (p, q)-Bernoulli polynomials, (p, q)-Euler polynomials and (p, q)-Genocchi poly- nomials and (p, q)-Stirling numbers of the second kind.

13 Read more

New Extension of Unified Family Apostol Type of Polynomials and Numbers

New Extension of Unified Family Apostol Type of Polynomials and Numbers

The purpose of this paper is to introduce and investigate new unification of unified family of Apostol-type polynomials and numbers based on results given in [1] [2]. Also, we derive some properties for these polynomials and obtain some relationships between the Jacobi polynomials, Laguerre polynomials, Hermite polynomials, Stirling numbers and some other types of genera- lized polynomials.

11 Read more

Hecke operators type and generalized Apostol-Bernoulli polynomials

Hecke operators type and generalized Apostol-Bernoulli polynomials

The Hecke operators have many applications in various spaces like the space of elliptic modular forms, the space of polynomials and others. Many mathematicians applied them to obtain applications in analytic number theory, harmonic analysis, theoretical physics, equidistribution of Hecke points on a family of homogeneous varieties, and cohomology. For instance, Hecke operators are used to investigate and study Fourier coefficients of modular forms, to explore other properties of the Hecke-eigenforms, which satisfy many interesting arithmetic relations. For more details on Hecke operators, see [, ]. Recently, the Hurwitz zeta functions and the Apostol-Bernoulli polynomials have been studied by many authors, for example, see (cf. [–], the others).

11 Read more

Identities on Genocchi Polynomials and Genocchi Numbers Concerning Binomial Coefficients

Identities on Genocchi Polynomials and Genocchi Numbers Concerning Binomial Coefficients

When it comes to Genocchi numbers, the most common thing comes to our mind is to research the relations between Genocchi numbers, Bernoulli numbers [14–16] and Euler numbers [14, 17]. Indeed, most researches on Genocchi numbers concern the relations between these three kinds of numbers (see for example [2–4, 18, 19]). In other words, there are many literatures that provide identities on these three kinds of numbers. Similarly, when it comes to Genocchi polynomials, the most common thing is to research on the relations between Genocchi polynomials, Bernoulli polynomials and Euler polynomials (see for example [2–4, 9, 18–21]). Even though when it comes to the generalized Genocchi numbers and generalized Genocchi polynomials, it is unavoidable to research the relations as above.

7 Read more

Fourier series of higher order Daehee and Changhee functions and their applications

Fourier series of higher order Daehee and Changhee functions and their applications

2. Berndt, BC: Periodic Bernoulli numbers, summation formulas and applications. In: Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975). Publication of the Mathematics Research Center, the University of Wisconsin, vol. 35, pp. 143-189. Academic Press, New York (1975) 3. Carlitz, L: A note on Bernoulli numbers and polynomials. Elem. Math. 29, 90-92 (1974)

13 Read more

Professor H  M  Srivastava: man and mathematician

Professor H M Srivastava: man and mathematician

Many mathematical entities and objects are attributed to (and named after) him. These entities and objects include (among other items) Srivastava’s polynomials and func- tions, Carlitz-Srivastava polynomials, Srivastava-Buschman polynomials, Srivastava- Singhal polynomials, Chan-Chyan-Srivastava polynomials, Erkuş-Srivastava polynomials, Srivastava-Daoust multivariable hypergeometric function, Srivastava-Panda multivari- able H-function, Singhal-Srivastava generating function, Srivastava-Agarwal basic (or q-) generating function, and Wu-Srivastava inequality in the field of higher transcendental functions; Srivastava-Owa, Choi-Saigo-Srivastava, Jung-Kim-Srivastava, Liu-Srivastava, Cho-Kwon-Srivastava, Dziok-Srivastava, Srivastava-Attiya and Srivastava-Wright oper- ators in the field of geometric function theory in complex analysis; Srivastava-Gupta operator in the field of approximation theory; the Srivastava, Adamchik-Srivastava and Choi-Srivastava methods in the field of analytic number theory; and so on.

5 Read more

10. Some series identities for some special classes of Apostol-Bernoulli and Apostol-Euler polynomials related to generalized power and alternating sums

10. Some series identities for some special classes of Apostol-Bernoulli and Apostol-Euler polynomials related to generalized power and alternating sums

(1.9) If we take a = 1, b = c = e in (1.7), (1.8) and (1.9) respectively, we have (1.4), (1.5) and (1.6). Obviously, when we set λ = 1, α = 1, a = 1, b = c = e in (1.7), (1.8) and (1.9), we have classical Bernoulli polynomials B n (x), classical Euler

15 Read more

The twisted Daehee numbers and polynomials

The twisted Daehee numbers and polynomials

We consider the Witt-type formula for the nth twisted Daehee numbers and polynomials and investigate some properties of those numbers and polynomials. In particular, the nth twisted Daehee numbers are closely related to higher-order Bernoulli numbers and Bernoulli numbers of the second kind.

9 Read more

Barnes type Daehee with λ parameter and degenerate Euler mixed type polynomials

Barnes type Daehee with λ parameter and degenerate Euler mixed type polynomials

In this paper, we consider the Barnes-type Daehee with λ -parameter and degenerate Euler mixed-type polynomials. We present several explicit formulas and recurrence relations for these polynomials. Also, we establish a connection between our polynomials and several known families of polynomials.

13 Read more

Show all 1223 documents...