• No results found

Trigonal Na4[UO2(CO3)3]

N/A
N/A
Protected

Academic year: 2020

Share "Trigonal Na4[UO2(CO3)3]"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

inorganic papers

i32

Ivana CõÂsarÏovaÂet al. Na4[UO2(CO3)3] DOI: 101107/S1600536801005992 Acta Cryst.(2001). E57, i32±i34 Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

Trigonal Na

4

[UO

2

(CO

3

)

3

]

Ivana CõÂsarÏovaÂ,a* Roman SkaÂla,b

Petr OndrusÏcand Milan DraÂbekd

aDepartment of Inorganic Chemistry, Charles

University, Hlavova 2030, CZ-12843 Praha 2, Czech Republic,bLAREM, Czech Geological Survey, Geologicka 6, CZ-15200 Praha 5, Czech Republic,cX-Ray Diffraction Lab, Czech Geological Survey, Geologicka 6, CZ-15200 Praha 5, Czech Republic, anddExperimental Petrology Lab, Czech Geological Survey, Geologicka 6, CZ-15200 Praha 5, Czech Republic

Correspondence e-mail: cisarova@natur.cuni.cz

Key indicators

Single-crystal X-ray study T= 293 K

Mean(O±C) = 0.006 AÊ Rfactor = 0.024 wRfactor = 0.062

Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2001 International Union of Crystallography Printed in Great Britain ± all rights reserved

Tetrasodium tricarbonatodioxouranate(VI), Na4[UO2(CO3)3],

crystallizes in the trigonal space group P3c1. Though the

symmetry differs from other similar compounds (e.g. the

NH4+, K+ and Tl+ salts) which are monoclinic, there is a

common structure motif consisting of UO2(CO3)3groups with

a trigonal outline when viewed along the shortest OÐUÐO bond pair. In Na4[UO2(CO3)3], there are three non-equivalent

Na atoms; Na1 (site symmetry 3) and Na2 (site symmetry 3) are in centres of face-sharing octahedra, which form a chain running parallel to thecaxis at each unit-cell corner, whereas the Na3 atom is surrounded by a deformed square pyramid of O atoms, forming edge-sharing triplets. The title compound has also a natural dimorph, namely the recently approved triclinic mineral cÏejkaite.

Comment

Recently, we have found a natural triclinic compound of

Na4[UO2(CO3)3] composition in JaÂchymov, the Czech

Republic. This natural triclinic material does not form crystals suitable for single-crystal study. We recognized that a compound of the same chemistry but with trigonal symmetry had been described by Douglass (1956), who determined the extinction symbol, unit-cell dimensions and also additional physical parameters. An attempt to prepare a synthetic analogue of our natural triclinic compound failed; instead, we synthesized a trigonal dimorph equivalent to the material of Douglass for which we report a complete structure.

There are chemically similar compounds ± NH4

-[UO2(CO3)3], K4[UO2(CO3)3] and Tl4[UO2(CO3)3] ± for

which the crystal structures are known (Grazianiet al., 1972; Andersonet al., 1980; Mereiter, 1986; respectively). All these materials crystallize in the monoclinic space groupC2/c. They share the common basic structural motif of UO2(CO3)3groups

with the compound we synthesized. This group is, in our case, built up from the asymmetric unit (Fig. 1) due to the threefold axis and contains three planar CO3 triangles sharing one of

their edges with the UO2O6polyhedron. The lengths of the

UÐO bonds oriented along the direction of thecaxis (U1Ð

O1 and U1ÐO2) are signi®cantly shorter compared to the UÐO distances in the medial plane of the UO2O6polyhedron

(U1ÐO11 and U1ÐO12) in the compound Na4[UO2(CO3)3].

The planes of the CO3 triangles attached to the UO2O6

polyhedron are inclined from the 001 plane. Atoms Na1 and Na2 are octahedrally coordinated by O13 atoms. The octa-hedra share a common face and form a chain of alternating polyhedra around Na1 and Na2 running parallel to thecaxis and situated at each unit-cell corner. The octahedron around Na1 is fairly regular, with quadratic elongation of 1.012 and

bond-angle s.u. of 6.87. On the contrary, the polyhedron

(2)

around Na2 departs signi®cantly from ideal geometry, which results in quadratic elongation of 1.121 and bond-angle s.u. of

18.78. The volumes of both octahedra are comparable; the

polyhedron around Na1 has a volume of 19.02 AÊ3 and that

around Na2 17.40 AÊ3. Atom Na3 has a coordination number

of 5; the polyhedron around it can be described as square pyramidal as = 0.15 (Addison & Reedijk, 1984). Three of these polyhedra build up edge-sharing triplets (Fig. 4). The shared edge is de®ned by the atoms O1ÐO2 and it runs parallel to the c axis (Fig. 2). The overall structure motif is apparent from Fig. 3. Triplets of polyhedra around Na3 atoms share vertices of their common edges with vertices of

UO2(CO3)3complexes adjacent to them in the [001] direction.

These complexes, in turn, share edges O11ÐO12 with laterally neighbouring square pyramids around Na3 atoms, building up

Figure 1

View of the asymmetric unit of Na4[UO2(CO3)3] with the

atom-numbering scheme. Displacement ellipsoids are at the 50% probability (PLATON; Spek, 1999).

Figure 2

Polyhedral presentation of an edge-sharing triplet of NaO5polyhedra.

Figure 3

Projection of the crystal structure of Na4[UO2(CO3)3] onto the 100 plane.

Note the chain of alternating octahedra around the Na1 and Na2 atoms parallel to [001] at the unit-cell edge. Colour-coding of polyhedra, red: UO2O6polyhedron; blue: planar CO3triangles; yellow: NaO6octahedra;

green: NaO5irregular square pyramid.

Figure 4

Polyhedral presentation of a single layer consisting of the UO2(CO3)3

complex, triplets of polyhedra around Na3 and octahedra around Na1 or Na2 found in the Na4[UO2(CO3)3] viewed down [001]. Colour-coding of

polyhedra, red: UO2O6polyhedron; blue: planar CO3triangles; yellow:

(3)

inorganic papers

i34

Ivana CõÂsarÏovaÂet al. Na4[UO2(CO3)3] Acta Cryst.(2001). E57, i32±i34

two-dimensional sheets parallel to 001 typical for this struc-ture. The sheets are stacked along [001] so that the next sheet is rotated by 60around [001] with respect to the adjacent one. Finally, each of three apical carbonate O13 atoms from any

UO2(CO3)3 complex is shared by the octahedron around

either Na1 or Na2 (depending on the height of the sheet along [001] in the unit cell) and also makes a vertex of laterally adjacent triplet of polyhedra around Na3 (Fig. 4). Using the approach of effective coordination numbers (Hoppe, 1979) and the program of Rieder (1993), we calculated effective coordination numbers (ECoNs) for central atoms as U1 = 2.24, Na1 = 6.00, Na2 = 6.12, Na3 = 4.76 and C1 = 2.94; for U1 and Na3 polyhedra, these ECoNs depart signi®cantly from their ideal values. This could be ascribed to substantial irre-gularity of individual polyhedra. Their irreirre-gularity results also in bond-valence sums departing from ideal values. Using the data of Brown & Altermatt (1985) and the program of Wills & Brown (1999), we calculated bond-valence sums as [central atom, bond valence sum in vu (valance units) and departure in percent from the ideal oxidation state] U1 6.59 [10], Na1 1.074 [7], Na2 1.02 [2], Na3 1.127 [13], C1 4.033 [1].

Experimental

Clear yellow hexagonal prismatic crystals up to 1 mm long of the title compound have been synthesized from synthetic triclinic Na4[(UO)2(CO3)3] powder by recrystallization in sealed silica glass

tubes under hydrothermal conditions at a pressure of about 20 MPa and a temperature of 408 K for 3 d. In addition to the crystals of the title compound, we recovered from the tube an orange powdered material which we identi®ed as containing sodium di- and heptaur-anates.

Crystal data

Na4[UO2(CO3)3]

Mr= 542.02 Trigonal,P3c1

a= 9.3380 (2) AÊ

c= 12.8170 (3) AÊ

V= 967.89 (4) AÊ3

Z= 4

Dx= 3.720 Mg mÿ3

MoKradiation

Cell parameters from 10 249 re¯ections

= 1±27.5 = 17.01 mmÿ1

T= 293 (2) K Bar, yellow

0.110.050.05 mm

Data collection

Nonius KappaCCD area-detector diffractometer

'and!scans to ®ll the Ewald sphere

Absorption correction: Gaussian (Coppens, 1970)

Tmin= 0.208,Tmax= 0.617

22 328 measured re¯ections

746 independent re¯ections 615 re¯ections withI> 2(I)

Rint= 0.090

max= 27.5

h=ÿ12!12

k=ÿ12!12

l=ÿ16!16

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.024

wR(F2) = 0.062

S= 1.07 746 re¯ections 60 parameters

w= 1/[2(F

o2) + (0.0358P)2 + 2.8258P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 2.33 e AÊÿ3

min=ÿ1.73 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0074 (5)

Table 1

Selected geometric parameters (AÊ,).

U1ÐO1 1.809 (8)

U1ÐO2 1.810 (7)

U1ÐO12 2.379 (4)

U1ÐO11 2.422 (4)

Na1ÐO13 2.440 (3)

Na2ÐO13 2.492 (4)

Na3ÐO12i 2.287 (4)

Na3ÐO13ii 2.320 (4)

Na3ÐO11 2.338 (4)

Na3ÐO1iii 2.486 (5)

Na3ÐO2iv 2.541 (5)

C1ÐO13 1.242 (5)

C1ÐO12 1.303 (7)

C1ÐO11 1.304 (6)

O1ÐU1ÐO2 180.000 (1)

O1ÐU1ÐO12 85.88 (10)

O1ÐU1ÐO11 93.52 (9)

O12ÐU1ÐO11 53.67 (12) O12iÐU1ÐO11 67.22 (12)

O12vÐU1ÐO11 173.15 (12)

O13viÐNa1ÐO13 96.58 (12)

O13viiÐNa2ÐO13viii 83.99 (15)

O13ixÐNa2ÐO13viii 148.55 (15)

O13viiÐNa2ÐO13 81.30 (12)

O13viiiÐNa2ÐO13 123.64 (16)

O13xÐNa2ÐO13 148.55 (15)

O12iÐNa3ÐO13ii 85.84 (15)

O12iÐNa3ÐO11 70.15 (16)

O13iiÐNa3ÐO11 155.48 (16)

O12iÐNa3ÐO1iii 136.50 (19)

O13iiÐNa3ÐO1iii 110.46 (13)

O11ÐNa3ÐO1iii 91.08 (11)

O12iÐNa3ÐO2iv 146.30 (18)

O13iiÐNa3ÐO2iv 109.34 (14)

O11ÐNa3ÐO2iv 89.31 (11)

O1iiiÐNa3ÐO2iv 67.4 (2)

O13ÐC1ÐO12 124.0 (4) O13ÐC1ÐO11 123.5 (5) O12ÐC1ÐO11 112.5 (4)

Symmetry codes: (i)ÿx‡y;1ÿx;z; (ii)ÿy;1‡xÿy;z; (iii)xÿy;1ÿy;1 2ÿz; (iv) ÿx;1ÿy;ÿz; (v) 1ÿy;1‡xÿy;z; (vi) xÿy;x;ÿz; (vii) ÿy;xÿy;z; (viii)

xÿy;ÿy;1

2ÿz; (ix)ÿx‡y;ÿx;z; (x)y;x;12ÿz.

Data collection: COLLECT(Hooft, 1998) and DENZO (Otwi-nowski & Minor, 1997); cell re®nement:COLLECTandDENZO; data reduction:COLLECTandDENZO; program(s) used to solve structure:SIR92 (Altomareet al., 1994); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ATOMS(Shape Software, 1999).

The Grant Agency of the Czech Republic is acknowledged for support of projects Nos. 205/93/0900, 205/97/0491 and 203/ 99/M037.

References

Addison, A. W. & Reedijk, J. (1984).J. Chem. Soc. Dalton Trans.pp. 1349± 1356.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Anderson, A., Chieh, C., Irish, D. E. & Tong, J. P. K. (1980).Can. J. Chem.58, 1651±1658.

Brown, I. D. & Altermatt, D. (1985).Acta Cryst.B41, 244±247.

Coppens, P. (1970).Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255±270. Copenhagen: Munksgaard.

Douglass, R. M. (1956).Anal. Chem.28, 10, 1635.

Graziani, R., Bombieri, G. & Forsellini, E. (1972).Dalton J. Chem. Soc. Dalton Trans.pp. 2059±2061.

Hooft, R. W. (1998).COLLECT. Nonius BV, Delft, The Netherlands. Hoppe, R. (1979).Z. Kristallogr.150, 23±52.

Mereiter, K. (1986).Acta Cryst.C42, 1682±1684.

Otwinowski, Z. & Minor, W. (1997).Methods Enzymol.276, 307±326. Rieder, M. (1993).HOPPE.Program for Calculational of MEFIR, ECoN and

Mean from FIRs. Faculty of Science, Charles University, Prague, Czech

Republic.

Shape Software (1999).ATOMS. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Spek, A. L. (1999). PLATON. Version 1999. Utrecht University, The

Netherlands.

(4)

supporting information

Acta Cryst. (2001). E57, i32–i34 [doi:10.1107/S1600536801005992]

Trigonal Na

4

[UO

2

(CO

3

)

3

]

Ivana C

í

sa

ř

ov

á

, Roman Sk

á

la, Petr Ondru

š

and Milan Dr

á

bek

S1. Comment

Recently, we have found a natural triclinic compound of Na4[UO2(CO3)3] composition in Jáchymov, the Czech Republic.

This natural triclinic material does not form crystals suitable for single-crystal study. We recognized that a compound of

the same chemistry but with trigonal symmetry had been described by Douglass (1956), who determined the extinction

symbol, unit-cell dimensions and also additional physical parameters. An attempt to prepare a synthetic analogue of our

natural triclinic compound failed; instead, we synthesized a trigonal dimorph equivalent to the material of Douglass for

which we report a complete structure.

There are chemically similar compounds – NH4[UO2(CO3)3], K4[UO2(CO3)3] and Tl4[UO2(CO3)3] – for which the crystal

structures are known (Graziani et al., 1972; Anderson et al., 1980; Mereiter, 1986; respectively). All these materials

crystallize in the monoclinic space group C2/c. They share the common basic structural motif of UO2(CO3)3 groups with

the compound we synthesized. This group is, in our case, built up from the asymmetric unit (Fig. 1) due to threefold axis

and contains three planar CO3 triangles sharing one of their edges with the UO2O6 polyhedron. The lengths of the U—O

bonds oriented along the direction of the c axis (U1—O1 and U1—O2) are significantly shorter compared to the U—O

distances in the medial plane of the UO2O6 polyhedron (U1—O11 and U1—O12) in the compound Na4[UO2(CO3)3]. The

planes of the CO3 triangles attached to the UO2O6 polyhedron are inclined from the 001 plane. Atoms Na1 and Na2 are

octahedrally coordinated by O13 atoms. The octahedra share a common face and form a chain of alternating polyhedra

around Na1 and Na2 running parallel to the c axis and situated at each unit-cell corner. The octahedron around Na1 is

fairly regular, with quadratic elongation of 1.012 and bond-angle s.u. of 6.87°. On the contrary, the polyhedron around

Na2 departs significantly from ideal geometry, which results in quadratic elongation of 1.121 and bond-angle s.u. of

18.78°. Volumes of both octahedra are comparable; the polyhedron around Na1 has a volume of 19.02 Å3 and that around

Na2 17.40 Å3. Atom Na3 has a coordination number of 5; the polyhedron around it can be described as square pyramidal

as τ = 0.15 (Addison et al., 1984). Three of these polyhedra build up edge-sharing triplets (Fig. 4). The shared edge is

defined by the atoms O1—O2 and it runs parallel to the c axis (Fig. 2). The overall structure motif is apparent from Fig.

3. Triplets of polyhedra around Na3 atoms share vertices of their common edges with vertices of UO2(CO3)3 complexes

adjacent to them in the [001] direction. These complexes, in turn, share edges O11–O12 with laterally neighbouring

square pyramids around Na3 atoms, building up two-dimensional sheets parallel to 001 typical for this structure. The

sheets are stacked along [001] so the next sheet is rotated by 60° around [001] with respect to adjacent one. Finally, each

of three apical carbonate O13 atoms from any UO2(CO3)3 complex is shared by the octahedron around either Na1 or Na2

(depending on the height of the sheet along [001] in the unit cell) and also make a vertex of laterally adjacent triplet of

polyhedra around Na3 (Fig. 4). Using the approach of effective coordination numbers (Hoppe, 1979) and the program of

Rieder (1993), we calculated effective coordination numbers (ECoNs) for central atoms as U1 = 2.24, Na1 = 6.00, Na2 =

6.12, Na3 = 4.76 and C1 = 2.94; for U1 and Na3 polyedrathese ECoNs depart significantly from their ideal values. This

(5)

supporting information

sup-2

Acta Cryst. (2001). E57, i32–i34

sums departing from ideal values. Using the data of Brown & Altermatt (1985) and the program of Wills & Brown

(1999), we calculated bond-valence sums as [central atom, bond valence sum in vu (valance units) and departure in

percent from the ideal oxidation state] U1 6.59 [10], Na1 1.074 [7], Na2 1.02 [2], Na3 1.127 [13], C1 4.033 [1].

S2. Experimental

Clear yellow hexagonal prismatic crystals up to 1 mm long of the title compound have been synthesized from synthetic

triclinic Na4[(UO)2(CO3)3] powder by recrystallization in sealed silica glass tubes under hydrothermal conditions at a

pressure of about 20 MPa and a temperature of 408 K for 3 d. In addition to the crystals of the title compound, we

[image:5.610.127.487.196.497.2]

recovered from the tube an orange powdered material which we identified to contain sodium di- and heptauranates.

Figure 1

View of the asymmetric unit of Na4[UO2(CO3)3] with the atom-numbering scheme. Displacement ellipsoids are at the

(6)
[image:6.610.211.406.71.259.2]

Figure 2

Polyhedral presentation of an edge-sharing triplet of NaO5 polyhedra.

Figure 3

Projection of the crystal structure of Na4[UO2(CO3)3] onto the 100 plane. Note the chain of alternating octahedra around

the Na1 and Na2 atoms parallel to [001] at the unit-cell edge. Colour-coding of polyhedra, red: UO2O6 polyhedron; blue:

[image:6.610.186.425.307.537.2]
(7)

supporting information

sup-4

[image:7.610.197.411.70.285.2]

Acta Cryst. (2001). E57, i32–i34 Figure 4

Polyhedral presentation of a single layer consisting of the UO2-(CO3)3 complex, triplets of polyhedra around Na3 and

octahedra around Na1 or Na2 found in the Na4[UO2(CO3)3] viewed down [001]. Colour-coding of polyhedra, red: UO2O6

polyhedron; blue: planar CO3 triangles; yellow: NaO6 octahedra; green: NaO5 irregular trigonal bipyramid.

(I)

Crystal data

Na4[UO2(CO3)3]

Mr = 542.02 Trigonal, P3c1

a = 9.3380 (2) Å

c = 12.8170 (3) Å

V = 967.89 (4) Å3

Z = 4

F(000) = 968

Dx = 3.720 Mg m−3

Mo radiation, λ = 0.71070 Å Cell parameters from 10249 reflections

θ = 1–27.5°

µ = 17.01 mm−1

T = 293 K Bar, yellow

0.11 × 0.05 × 0.05 mm

Data collection

Nonius KappaCCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 9.091 pixels mm-1

φ and ω scans to fill the Ewald sphere Absorption correction: gaussian

(Coppens, 1970)

Tmin = 0.208, Tmax = 0.617

22328 measured reflections 746 independent reflections 615 reflections with I > 2σ(I)

Rint = 0.090

θmax = 27.5°, θmin = 3.2°

h = −12→12

k = −12→12

l = −16→16

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.024

wR(F2) = 0.062

S = 1.07 746 reflections

60 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

(8)

w = 1/[σ2(F

o2) + (0.0358P)2 + 2.8258P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 2.33 e Å−3

Δρmin = −1.73 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0074 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. One strong reflections 010 were omitted from the final refinement due inaccuracy in measurement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

U1 0.3333 0.6667 0.130224 (17) 0.01212 (18)

Na1 0.0000 0.0000 0.0000 0.0221 (12)

Na2 0.0000 0.0000 0.2500 0.0229 (12)

Na3 −0.1233 (3) 0.5688 (2) 0.12367 (17) 0.0295 (5)

C1 0.0741 (6) 0.3279 (5) 0.1280 (3) 0.0171 (9)

O11 0.0462 (5) 0.4509 (4) 0.1186 (3) 0.0274 (8)

O12 0.2299 (5) 0.3771 (5) 0.1436 (3) 0.0283 (8)

O13 −0.0358 (4) 0.1805 (4) 0.1219 (3) 0.0235 (8)

O1 0.3333 0.6667 0.2714 (6) 0.0228 (15)

O2 0.3333 0.6667 −0.0110 (6) 0.0214 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

U1 0.0117 (3) 0.011 0.0136 (2) 0.005 0.000 0.000

Na1 0.021 (2) 0.021 0.024 (3) 0.010 0.000 0.000

Na2 0.025 (3) 0.023 0.020 (3) 0.012 0.000 0.000

Na3 0.0174 (10) 0.0182 (10) 0.0522 (13) 0.0085 (9) −0.0029 (9) 0.0014 (9)

C1 0.014 (2) 0.014 (2) 0.021 (2) 0.0051 (18) 0.0039 (17) 0.0022 (17)

O11 0.0211 (18) 0.0138 (17) 0.048 (2) 0.0092 (14) 0.0001 (16) 0.0017 (15) O12 0.0125 (16) 0.0139 (17) 0.057 (2) 0.0058 (14) 0.0012 (16) 0.0022 (17) O13 0.0149 (17) 0.0122 (16) 0.040 (2) 0.0042 (14) 0.0005 (14) −0.0015 (14)

O1 0.023 (3) 0.025 0.022 (3) 0.012 0.000 0.000

O2 0.026 (4) 0.024 0.013 (3) 0.012 0.000 0.000

Geometric parameters (Å, º)

U1—O1 1.809 (8) Na2—O13 2.492 (4)

U1—O2 1.810 (7) Na2—Na1xii 3.2043

U1—O12 2.379 (4) Na2—Na3xi 3.940 (2)

(9)

supporting information

sup-6

Acta Cryst. (2001). E57, i32–i34

U1—O12ii 2.380 (4) Na2—Na3xv 3.940 (2)

U1—O11i 2.422 (4) Na2—Na3ii 3.940 (2)

U1—O11 2.422 (4) Na3—O12i 2.287 (4)

U1—O11ii 2.422 (4) Na3—O13xvi 2.320 (4)

U1—C1i 2.865 (4) Na3—O11 2.338 (4)

U1—C1 2.865 (4) Na3—O1xvii 2.486 (5)

U1—C1ii 2.865 (4) Na3—O2x 2.541 (5)

U1—Na3iii 3.784 (2) Na3—C1xvi 3.092 (5)

Na1—O13iv 2.440 (3) Na3—Na3xvi 3.620 (4)

Na1—O13v 2.440 (3) Na3—Na3xi 3.620 (4)

Na1—O13 2.440 (3) Na3—U1xvii 3.784 (2)

Na1—O13vi 2.440 (3) Na3—Na3iii 3.803 (4)

Na1—O13vii 2.440 (3) Na3—U1x 3.868 (2)

Na1—O13viii 2.440 (3) C1—O13 1.242 (5)

Na1—Na2vi 3.2042 C1—O12 1.303 (7)

Na1—Na2 3.2043 C1—O11 1.304 (6)

Na1—Na3ix 3.926 (2) C1—Na3xi 3.092 (5)

Na1—Na3x 3.926 (2) O12—Na3ii 2.287 (4)

Na1—Na3xi 3.926 (2) O13—Na3xi 2.320 (4)

Na1—Na3ii 3.926 (2) O1—Na3iii 2.486 (5)

Na2—O13vii 2.492 (4) O1—Na3xviii 2.486 (5)

Na2—O13viii 2.492 (4) O1—Na3xix 2.486 (5)

Na2—O13xii 2.492 (4) O2—Na3x 2.541 (5)

Na2—O13iii 2.492 (4) O2—Na3xx 2.541 (5)

Na2—O13xiii 2.492 (4) O2—Na3v 2.541 (5)

O1—U1—O2 180.000 (1) O13xii—Na2—Na1 131.21 (8)

O1—U1—O12 85.88 (10) O13iii—Na2—Na1 131.21 (8)

O2—U1—O12 94.12 (10) O13xiii—Na2—Na1 131.21 (8)

O1—U1—O12i 85.88 (10) O13—Na2—Na1 48.79 (8)

O2—U1—O12i 94.12 (10) O13vii—Na2—Na1xii 131.21 (8)

O12—U1—O12i 119.49 (3) O13viii—Na2—Na1xii 131.21 (8)

O1—U1—O12ii 85.88 (10) O13xii—Na2—Na1xii 48.79 (8)

O2—U1—O12ii 94.12 (10) O13iii—Na2—Na1xii 48.79 (8)

O12—U1—O12ii 119.49 (3) O13xiii—Na2—Na1xii 48.79 (8)

O12i—U1—O12ii 119.49 (3) O13—Na2—Na1xii 131.21 (8)

O1—U1—O11i 93.52 (9) Na1—Na2—Na1xii 180.0

O2—U1—O11i 86.48 (9) O13vii—Na2—Na3xi 70.70 (9)

O12—U1—O11i 173.15 (12) O13viii—Na2—Na3xi 110.53 (8)

O12i—U1—O11i 53.67 (12) O13xii—Na2—Na3xi 90.31 (8)

O12ii—U1—O11i 67.22 (12) O13iii—Na2—Na3xi 81.71 (8)

O1—U1—O11 93.52 (9) O13xiii—Na2—Na3xi 162.01 (9)

O2—U1—O11 86.48 (9) O13—Na2—Na3xi 33.63 (9)

O12—U1—O11 53.67 (12) Na1—Na2—Na3xi 65.73 (3)

O12i—U1—O11 67.22 (12) Na1xii—Na2—Na3xi 114.27 (3)

O12ii—U1—O11 173.15 (12) O13vii—Na2—Na3xiv 33.63 (9)

O11i—U1—O11 119.63 (2) O13viii—Na2—Na3xiv 70.70 (9)

(10)

O2—U1—O11ii 86.48 (9) O13iii—Na2—Na3xiv 162.01 (9)

O12—U1—O11ii 67.22 (12) O13xiii—Na2—Na3xiv 90.31 (8)

O12i—U1—O11ii 173.15 (12) O13—Na2—Na3xiv 110.53 (8)

O12ii—U1—O11ii 53.67 (12) Na1—Na2—Na3xiv 65.73 (3)

O11i—U1—O11ii 119.63 (2) Na1xii—Na2—Na3xiv 114.27 (3)

O11—U1—O11ii 119.63 (2) Na3xi—Na2—Na3xiv 104.28 (4)

O1—U1—C1i 90.56 (8) O13vii—Na2—Na3xv 81.71 (8)

O2—U1—C1i 89.44 (8) O13viii—Na2—Na3xv 162.01 (9)

O12—U1—C1i 146.23 (14) O13xii—Na2—Na3xv 33.63 (9)

O12i—U1—C1i 26.77 (14) O13iii—Na2—Na3xv 70.70 (9)

O12ii—U1—C1i 93.65 (14) O13xiii—Na2—Na3xv 110.53 (8)

O11i—U1—C1i 26.93 (14) O13—Na2—Na3xv 90.31 (8)

O11—U1—C1i 93.18 (14) Na1—Na2—Na3xv 114.27 (3)

O11ii—U1—C1i 146.55 (14) Na1xii—Na2—Na3xv 65.73 (3)

O1—U1—C1 90.56 (8) Na3xi—Na2—Na3xv 57.72 (6)

O2—U1—C1 89.44 (8) Na3xiv—Na2—Na3xv 97.84 (6)

O12—U1—C1 26.77 (14) O13vii—Na2—Na3ii 110.53 (8)

O12i—U1—C1 93.65 (14) O13viii—Na2—Na3ii 33.63 (9)

O12ii—U1—C1 146.23 (14) O13xii—Na2—Na3ii 162.01 (9)

O11i—U1—C1 146.55 (14) O13iii—Na2—Na3ii 90.31 (8)

O11—U1—C1 26.93 (14) O13xiii—Na2—Na3ii 81.71 (8)

O11ii—U1—C1 93.18 (14) O13—Na2—Na3ii 70.70 (9)

C1i—U1—C1 119.990 (4) Na1—Na2—Na3ii 65.73 (3)

O1—U1—C1ii 90.56 (8) Na1xii—Na2—Na3ii 114.27 (3)

O2—U1—C1ii 89.44 (8) Na3xi—Na2—Na3ii 104.28 (4)

O12—U1—C1ii 93.65 (14) Na3xiv—Na2—Na3ii 104.28 (4)

O12i—U1—C1ii 146.22 (14) Na3xv—Na2—Na3ii 154.74 (7)

O12ii—U1—C1ii 26.77 (14) O12i—Na3—O13xvi 85.84 (15)

O11i—U1—C1ii 93.17 (14) O12i—Na3—O11 70.15 (16)

O11—U1—C1ii 146.55 (14) O13xvi—Na3—O11 155.48 (16)

O11ii—U1—C1ii 26.93 (14) O12i—Na3—O1xvii 136.50 (19)

C1i—U1—C1ii 119.991 (4) O13xvi—Na3—O1xvii 110.46 (13)

C1—U1—C1ii 119.991 (3) O11—Na3—O1xvii 91.08 (11)

O1—U1—Na3iii 33.53 (3) O12i—Na3—O2x 146.30 (18)

O2—U1—Na3iii 146.47 (3) O13xvi—Na3—O2x 109.34 (14)

O12—U1—Na3iii 94.76 (10) O11—Na3—O2x 89.31 (11)

O12i—U1—Na3iii 53.70 (11) O1xvii—Na3—O2x 67.4 (2)

O12ii—U1—Na3iii 109.24 (10) O12i—Na3—C1xvi 106.38 (16)

O11i—U1—Na3iii 81.14 (9) O13xvi—Na3—C1xvi 20.92 (13)

O11—U1—Na3iii 73.18 (10) O11—Na3—C1xvi 176.39 (15)

O11ii—U1—Na3iii 126.65 (10) O1xvii—Na3—C1xvi 92.22 (11)

C1i—U1—Na3iii 66.02 (9) O2x—Na3—C1xvi 93.32 (11)

C1—U1—Na3iii 84.22 (9) O12i—Na3—Na3xvi 168.08 (14)

C1ii—U1—Na3iii 122.11 (9) O13xvi—Na3—Na3xvi 84.17 (13)

O13iv—Na1—O13v 83.42 (12) O11—Na3—Na3xvi 120.25 (11)

O13iv—Na1—O13 96.58 (12) O1xvii—Na3—Na3xvi 43.26 (11)

O13v—Na1—O13 96.58 (12) O2x—Na3—Na3xvi 44.56 (10)

(11)

supporting information

sup-8

Acta Cryst. (2001). E57, i32–i34

O13v—Na1—O13vi 83.42 (12) O12i—Na3—Na3xi 129.78 (14)

O13—Na1—O13vi 180.0 O13xvi—Na3—Na3xi 144.17 (13)

O13iv—Na1—O13vii 96.58 (12) O11—Na3—Na3xi 60.27 (11)

O13v—Na1—O13vii 180.0 O1xvii—Na3—Na3xi 43.26 (11)

O13—Na1—O13vii 83.42 (12) O2x—Na3—Na3xi 44.56 (10)

O13vi—Na1—O13vii 96.58 (12) C1xvi—Na3—Na3xi 123.31 (12)

O13iv—Na1—O13viii 180.0 Na3xvi—Na3—Na3xi 60.0

O13v—Na1—O13viii 96.58 (12) O12i—Na3—U1xvii 115.04 (13)

O13—Na1—O13viii 83.42 (12) O13xvi—Na3—U1xvii 103.56 (12)

O13vi—Na1—O13viii 96.58 (12) O11—Na3—U1xvii 91.46 (11)

O13vii—Na1—O13viii 83.42 (12) O1xvii—Na3—U1xvii 23.70 (15)

O13iv—Na1—Na2vi 50.20 (8) O2x—Na3—U1xvii 91.12 (14)

O13v—Na1—Na2vi 50.20 (8) C1xvi—Na3—U1xvii 90.96 (10)

O13—Na1—Na2vi 129.80 (8) Na3xvi—Na3—U1xvii 61.42 (3)

O13vi—Na1—Na2vi 50.20 (8) Na3xi—Na3—U1xvii 61.42 (3)

O13vii—Na1—Na2vi 129.80 (8) O12i—Na3—Na3iii 53.38 (11)

O13viii—Na1—Na2vi 129.80 (8) O13xvi—Na3—Na3iii 96.48 (12)

O13iv—Na1—Na2 129.80 (8) O11—Na3—Na3iii 73.50 (12)

O13v—Na1—Na2 129.80 (8) O1xvii—Na3—Na3iii 84.12 (16)

O13—Na1—Na2 50.20 (8) O2x—Na3—Na3iii 146.57 (13)

O13vi—Na1—Na2 129.80 (8) C1xvi—Na3—Na3iii 105.37 (10)

O13vii—Na1—Na2 50.20 (8) Na3xvi—Na3—Na3iii 121.46 (6)

O13viii—Na1—Na2 50.20 (8) Na3xi—Na3—Na3iii 102.48 (2)

Na2vi—Na1—Na2 180.0 U1xvii—Na3—Na3iii 61.68 (6)

O13iv—Na1—Na3ix 33.46 (9) O12i—Na3—U1x 126.78 (13)

O13v—Na1—Na3ix 112.25 (9) O13xvi—Na3—U1x 102.29 (13)

O13—Na1—Na3ix 108.64 (9) O11—Na3—U1x 88.81 (12)

O13vi—Na1—Na3ix 71.36 (9) O1xvii—Na3—U1x 90.05 (16)

O13vii—Na1—Na3ix 67.75 (9) O2x—Na3—U1x 22.64 (13)

O13viii—Na1—Na3ix 146.54 (9) C1xvi—Na3—U1x 92.66 (10)

Na2vi—Na1—Na3ix 66.19 (3) Na3xvi—Na3—U1x 62.09 (3)

Na2—Na1—Na3ix 113.81 (3) Na3xi—Na3—U1x 62.09 (3)

O13iv—Na1—Na3x 71.36 (9) U1xvii—Na3—U1x 113.76 (5)

O13v—Na1—Na3x 33.46 (9) Na3iii—Na3—U1x 161.21 (4)

O13—Na1—Na3x 67.75 (9) O12i—Na3—U1 34.30 (10)

O13vi—Na1—Na3x 112.25 (9) O13xvi—Na3—U1 119.76 (11)

O13vii—Na1—Na3x 146.54 (9) O11—Na3—U1 35.93 (10)

O13viii—Na1—Na3x 108.64 (9) O1xvii—Na3—U1 118.91 (9)

Na2vi—Na1—Na3x 66.19 (3) O2x—Na3—U1 119.78 (9)

Na2—Na1—Na3x 113.81 (3) C1xvi—Na3—U1 140.54 (12)

Na3ix—Na1—Na3x 104.80 (4) Na3xvi—Na3—U1 156.05 (8)

O13iv—Na1—Na3xi 67.75 (9) Na3xi—Na3—U1 96.08 (8)

O13v—Na1—Na3xi 108.64 (9) U1xvii—Na3—U1 107.89 (5)

O13—Na1—Na3xi 33.46 (9) Na3iii—Na3—U1 58.91 (5)

O13vi—Na1—Na3xi 146.54 (9) U1x—Na3—U1 109.66 (5)

O13vii—Na1—Na3xi 71.36 (9) O13—C1—O12 124.0 (4)

O13viii—Na1—Na3xi 112.25 (9) O13—C1—O11 123.5 (5)

(12)

Na2—Na1—Na3xi 66.19 (3) O13—C1—U1 176.7 (3)

Na3ix—Na1—Na3xi 75.20 (4) O12—C1—U1 55.3 (2)

Na3x—Na1—Na3xi 75.20 (4) O11—C1—U1 57.2 (2)

O13iv—Na1—Na3ii 146.54 (9) O13—C1—Na3xi 41.8 (2)

O13v—Na1—Na3ii 67.75 (9) O12—C1—Na3xi 163.8 (3)

O13—Na1—Na3ii 71.36 (9) O11—C1—Na3xi 82.3 (3)

O13vi—Na1—Na3ii 108.64 (9) U1—C1—Na3xi 139.37 (19)

O13vii—Na1—Na3ii 112.25 (9) C1—O11—Na3 153.2 (3)

O13viii—Na1—Na3ii 33.46 (9) C1—O11—U1 95.8 (3)

Na2vi—Na1—Na3ii 113.81 (3) Na3—O11—U1 109.57 (15)

Na2—Na1—Na3ii 66.19 (3) C1—O12—Na3ii 144.4 (3)

Na3ix—Na1—Na3ii 180.0 C1—O12—U1 97.9 (3)

Na3x—Na1—Na3ii 75.20 (4) Na3ii—O12—U1 112.90 (16)

Na3xi—Na1—Na3ii 104.80 (4) C1—O13—Na3xi 117.2 (3)

O13vii—Na2—O13viii 81.30 (12) C1—O13—Na1 118.9 (3)

O13vii—Na2—O13xii 83.99 (15) Na3xi—O13—Na1 111.09 (15)

O13viii—Na2—O13xii 148.55 (15) C1—O13—Na2 113.0 (3)

O13vii—Na2—O13iii 148.55 (15) Na3xi—O13—Na2 109.85 (16)

O13viii—Na2—O13iii 123.64 (16) Na1—O13—Na2 81.01 (10)

O13xii—Na2—O13iii 81.30 (12) U1—O1—Na3iii 122.77 (15)

O13vii—Na2—O13xiii 123.64 (16) U1—O1—Na3xviii 122.77 (15)

O13viii—Na2—O13xiii 83.99 (15) Na3iii—O1—Na3xviii 93.5 (2)

O13xii—Na2—O13xiii 81.30 (12) U1—O1—Na3xix 122.77 (15)

O13iii—Na2—O13xiii 81.30 (12) Na3iii—O1—Na3xix 93.5 (2)

O13vii—Na2—O13 81.30 (12) Na3xviii—O1—Na3xix 93.5 (2)

O13viii—Na2—O13 81.30 (12) U1—O2—Na3x 124.65 (14)

O13xii—Na2—O13 123.64 (16) U1—O2—Na3xx 124.65 (14)

O13iii—Na2—O13 83.99 (15) Na3x—O2—Na3xx 90.9 (2)

O13xiii—Na2—O13 148.55 (15) U1—O2—Na3v 124.65 (14)

O13vii—Na2—Na1 48.79 (8) Na3x—O2—Na3v 90.9 (2)

O13viii—Na2—Na1 48.79 (8) Na3xx—O2—Na3v 90.9 (2)

Symmetry codes: (i) −x+y, −x+1, z; (ii) −y+1, xy+1, z; (iii) −x, −x+y, −z+1/2; (iv) xy, x, −z; (v) y, −x+y, −z; (vi) −x, −y, −z; (vii) −y, xy, z; (viii) −x+y, −x, z; (ix) y−1, −x+y−1, −z; (x) −x, −y+1, −z; (xi) −x+y−1, −x, z; (xii) xy, −y, −z+1/2; (xiii) y, x, −z+1/2; (xiv) x, y−1, z; (xv) y−1, x, −z+1/2; (xvi) −y,

Figure

Figure 1
Figure 2
Figure 4

References

Related documents

Coefficient Final State Root MSE z-Statistic

Wild mushroom, Gruyere cheese, butternut squash, sweet potato, parsnip, dried cranberries, apple cider gastrique, sweet corn, truffle oil, Parmesan, crab, onion, carrot,

*designated by the Minister as an exempt payment under Schedule 1, Table 1, section 1(l) of the AISH General

Results using two exter- nal collections (news and Wikipedia) show that external expansion for retrieval of user generated content is effective; besides, conditioning the

Table 1: An illustration of the effectiveness of Gibbs sampling, compared to Viterbi inference, for the two tasks addressed in this paper: the CoNLL named entity recognition task,

during syntactic analysis, and the other parts of speech only perform in partnership with, and equally subordinate to. syntactic analysis proceeds by checking the

transitional period, one quarter following the monetary tightening shock the short run. interest rate explains 15 percent of the real GDP variance and continues to grow

 Reflections  on  aesthetic