• No results found

Piperazinium chromate(VI)

N/A
N/A
Protected

Academic year: 2020

Share "Piperazinium chromate(VI)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2003). E59, m639±m641 DOI: 10.1107/S1600536803014879 Bikshandarkoil R. Srinivasanet al. C4H12N22+O4Cr2ÿ

m639

metal-organic papers

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Piperazinium chromate(VI)

Bikshandarkoil R. Srinivasan,a

Christian NaÈtherb* and Wolfgang

Benschb

aDepartment of Chemistry, Goa University PO,

Goa 403 206, India, andbInstitut fuÈr

Anorganische Chemie, Christian-Albrechts-UniversitaÈt Kiel, Olshausenstraûe 40, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.002 AÊ

Rfactor = 0.026

wRfactor = 0.082

Data-to-parameter ratio = 23.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The structure of the title complex, (C4H12N2)[CrO4], consists

of tetrahedral [CrO4]2ÿdianions which are connected to the

cyclic organic piperazinium dicationsvia hydrogen bonding. All the atoms are located in general positions.

Comment

The present structural description of piperazinium chromate constitutes a part of our ongoing investigations of compounds resulting from the interaction of organic diamines with group 6 oxo- and thiometalates. Among the investigated complexes we have previously described the structures of ethylenedi-ammonium tetrathiomolybdate (Srinivasan et al., 2001), ethylenediamonium tetrathiotungstate (Srinivasan et al., 2002), 1,3-propanediammonium tetrathiotungstate, N,N,-N0,N0-tetramethylethylenediammonium tetrathiotungstate (Srinivasanet al., 2003a) and ethylenediammonium chromate (Srinivasanet al., 2003b). Some examples of chromates bound to organic cations, such as 2,2-dimethyl-1,3-propanedi-ammonium chromate (Chebbi et al., 2000), 4-ammonio-2,2,6,6,-tetramethylpiperidinium chromate (Chebbi & Driss, 2001), 1,4-butanediammonium chromate (Chebbi & Driss, 2002a) and bis(2-methyl-2-propanammonium) chromate (Chebbi & Driss, 2002b), have also been reported in the recent literature. The extensive use of CrVIcompounds in

combina-tion with organic amines in organic synthesis is one reason for the continued interest in this ®eld. The base-promoted cation exchange reactions developed by us for the synthesis of the sul®de complexes of Mo and W mentioned above can also be used for the synthesis of oxochromates. Thus the title complex, (I), was obtained in good yields by reacting the cyclic diamine piperazine with ammonium chromate.

The structure of (I) consists of tetrahedral [CrO4]2ÿ

dianions and piperazinium dications (Fig. 1). As expected, the piperazinium dication adopts the chair conformation, with internal bond lengths and bond angles (Table 1) in the ranges usually observed in this form (Tran Qui & Palacios, 1990; Tyrselova et al., 1996). The CrO4 tetrahedron in (I) is

distorted, with OÐCrÐO angles ranging from 107.07 (6) to 111.27 (8) (Table 1). The CrÐO bond distances vary from

(2)

metal-organic papers

m640

Bikshandarkoil R. Srinivasanet al. C4H12N22+O4Cr2ÿ Acta Cryst.(2003). E59, m639±m641 1.6176 (14) to 1.6631 (12) AÊ, with a mean CrÐO bond length

of 1.6468 AÊ. This value is generally observed for this type of tetrahedron (Barset al., 1977; Braueret al., 1991; Chebbiet al., 2000; Chebbi & Driss, 2002a). The maximum difference in O O distances in (I) is 0.034 AÊ. This value is of the same order as that observed in (NaNH4)[CrO4] (0.030 AÊ; Khan &

Baur, 1972), in (C4H14N2)[CrO4] (0.037 AÊ; Chebbi & Driss,

2002a) and in (CH6N3)2[CrO4] (0.040 AÊ; Cygleret al., 1976).

In the crystal structure, the anions and cations are connected via NÐH O hydrogen bonding between the O atoms of the chromate dianions and the H atoms of the N atoms. Each chromate is connected to ®ve piperazinium cations, forming a three-dimensional hydrogen-bonding network (Fig. 2). The deformation of the chromate tetra-hedron in (I) is related to the hydrogen bonding interactions. A dependence of the CrÐO distances upon the strength of hydrogen bonds formed has been found in the title complex, with short hydrogen-bonding contacts ranging from 1.78 to 2.22 AÊ (Table 2). Atom O1, which forms two short hydrogen bonds with an average N O distance of 2.785 AÊ, corresponds to the longest CrÐO distance [1.6631 (12) AÊ], while atom O4, which is not involved in any hydrogen bonding, shows the

shortest CrÐO bond length [1.6176 (14) AÊ]. Intermediate CrÐO distances of 1.6451 (12) and 1.6617 (12) AÊ, respec-tively, are found for O3, which has a single H O contact, and O2, which makes two contacts with an average N O distance of 2.807 AÊ. In chromates bound to acyclic organic di-ammonium cations such as 1,4-butanedidi-ammonium, 2,2-di-methyl-1,3-propanediammonium and ethylenediammonium, longer CrÐO distances than in (I) have been reported.

Experimental

(NH4)2[CrO4] (5 mmol) was dissolved in 10 ml distilled water and anhydrous piperazine (5 mmol) was added. The solution was stirred well and ®ltered. The clear yellow ®ltrate was left undisturbed. After a few days, yellow blocks of the title compound crystallized. The crystals were washed with ice-cold water (1 ml), and dried in air. Yield 70% based on Cr. The crystals are stable in air. Analysis calculated for C4H12CrN2O4: C 23.53, H 5.94, N 13.72%; found: C 23.58, H 5.94, N 13.59%.

Crystal data C4H12N22+O4Cr2ÿ Mr= 204.16

Monoclinic,P21=n a= 7.6651 (9) AÊ

b= 12.3726 (18) AÊ

c= 8.4886 (10) AÊ

= 93.766 (12)

V= 803.30 (18) AÊ3 Z= 4

Dx= 1.688 Mg mÿ3

MoKradiation Cell parameters from 105

re¯ections

= 16±20

= 1.40 mmÿ1 T= 293 (2) K Block, yellow 0.180.120.08 mm Data collection

Stoe AED-II four-circle diffractometer

!scans

Absorption correction: numerical (X-SHAPEandX-RED; Stoe & Cie, 1998)

Tmin= 0.810,Tmax= 0.894

4578 measured re¯ections 2350 independent re¯ections

2034 re¯ections withI> 2(I)

Rint= 0.035 max= 30.0 h=ÿ10!1

k=ÿ17!9

l=ÿ11!11 4 standard re¯ections

frequency: 120 min intensity decay: none Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.026 wR(F2) = 0.082 S= 1.06 2350 re¯ections 101 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0429P)2

+ 0.3211P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.36 e AÊÿ3

min=ÿ0.52 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.105 (5)

Table 1

Selected geometric parameters (AÊ,).

Cr1ÐO4 1.6176 (14) Cr1ÐO3 1.6451 (12) Cr1ÐO2 1.6617 (12) Cr1ÐO1 1.6631 (12) N1ÐC4 1.476 (2)

N1ÐC1 1.490 (2) C1ÐC2 1.503 (2) C2ÐN2 1.486 (2) N2ÐC3 1.486 (2) C3ÐC4 1.508 (2)

O4ÐCr1ÐO3 111.27 (8) O4ÐCr1ÐO2 109.97 (7) O3ÐCr1ÐO2 109.96 (7) O4ÐCr1ÐO1 109.23 (8) O3ÐCr1ÐO1 109.25 (6) O2ÐCr1ÐO1 107.07 (6)

C4ÐN1ÐC1 112.01 (12) N1ÐC1ÐC2 109.36 (13) N2ÐC2ÐC1 110.52 (14) C2ÐN2ÐC3 111.48 (12) N2ÐC3ÐC4 109.94 (13) N1ÐC4ÐC3 110.10 (14)

Figure 2

The crystal structure of piperazinium chromate, viewed along thebaxis (intermolecular hydrogen bonding is shown as dashed lines).

Figure 1

(3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N1ÐH1N1 O1i 0.90 1.78 2.6697 (18) 169

N1ÐH2N1 O2ii 0.90 1.81 2.7009 (18) 173

N2ÐH1N2 O3 0.90 1.83 2.709 (2) 164 N2ÐH2N2 O2iii 0.90 2.19 2.9133 (19) 137

N2ÐH2N2 O1iii 0.90 2.22 2.9014 (19) 132

Symmetry codes: (i)ÿx;2ÿy;1ÿz; (ii)x;y;1‡z; (iii)1

2‡x;32ÿy;12‡z.

The H atoms on C and N atoms were positioned with idealized geometry (CÐH = 0.97 AÊ and NÐH = 0.90 AÊ) and re®ned with ®xed isotropic displacement parameters according to a riding model [Uiso(H) = 1.2Ueq(Cmethylene/NÐH)].

Data collection:DIF4 (Stoe & Cie, 1992); cell re®nement:DIF4; data reduction:REDU4 (Stoe & Cie, 1992); program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:XPin

SHELXTL (Bruker, 1998); software used to prepare material for publication:CIFTABinSHELXTL.

This work is supported by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft. BRS thanks the Deutscher Akademischer Austauschdienst (DAAD), Bonn, for a visiting fellowship.

References

Bars, O., Le Marouille, J. Y. & Grandjean, D. (1977).Acta Cryst.B33, 3751± 3755.

Brauer, C., Jannin, M., Puget, R. & Perret, R. (1991).Acta Cryst.C47, 2231± 2232.

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Chebbi, H. & Driss, A. (2001).Acta Cryst.C57, 1369±1370. Chebbi, H. & Driss, A. (2002a).Acta Cryst.E58, m147±m149. Chebbi, H. & Driss, A. (2002b).Acta Cryst.E58, m494±m496.

Chebbi, H., Hajem, A. A. & Driss, A. (2000).Acta Cryst.C56, e333±e334. Cygler, M., Grabowski, M. J., Stepien, A. & Wajsman, E. (1976).Acta Cryst.

B32, 2391±2395.

Khan, A. A. & Baur, W. H. (1972).Acta Cryst.B28, 683±693.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Srinivasan, B. R., Dhuri, S. N., NaÈther, C. & Bensch, W. (2002).Acta Cryst.

E58, m622±m624.

Srinivasan, B. R., Dhuri, S. N., NaÈther, C. & Bensch, W. (2003a).Acta Cryst.

C59, m124±m127.

Srinivasan, B. R., Dhuri, S. N., NaÈther, C. & Bensch, W. (2003b).Indian J. Chem. Sect. A. In the press.

Srinivasan, B. R., Vernekar, B. K. & Nagarajan, K. (2001).Indian J. Chem. Sect. A,40, 563±567.

Stoe & Cie (1992).DIF4 (Version 7.09X/DOS) andREDU4 (Version 7.03). Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (1998). X-SHAPE and X-RED. Version 1.03. Stoe & Cie, Darmstadt, Germany.

Tran Qui, D. & Palacios, E. (1990).Acta Cryst.C46, 1212±1215. TyrselovaÂ, J., Kuchta, L. & Pavelcik, F. (1996).Acta Cryst.C52, 17±19.

(4)

supporting information

sup-1

Acta Cryst. (2003). E59, m639–m641

supporting information

Acta Cryst. (2003). E59, m639–m641 [https://doi.org/10.1107/S1600536803014879]

Piperazinium chromate(VI)

Bikshandarkoil R. Srinivasan, Christian N

ä

ther and Wolfgang Bensch

Piperazinium chromate(VI)

Crystal data

C4H12N22+·O4Cr2−

Mr = 204.16

Monoclinic, P21/n

a = 7.6651 (9) Å b = 12.3726 (18) Å c = 8.4886 (10) Å β = 93.766 (12)° V = 803.30 (18) Å3

Z = 4

F(000) = 424 Dx = 1.688 Mg m−3

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 105 reflections θ = 16–20°

µ = 1.40 mm−1

T = 293 K Block, yellow

0.18 × 0.12 × 0.08 mm

Data collection

Stoe AED-II four-circle diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: numerical

(X-SHAPE and X-RED; Stoe & Cie, 1998) Tmin = 0.810, Tmax = 0.894

4578 measured reflections

2350 independent reflections 2034 reflections with I > 2σ(I) Rint = 0.035

θmax = 30.0°, θmin = 2.9°

h = −10→1 k = −17→9 l = −11→11

4 standard reflections every 120 min intensity decay: none

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.026

wR(F2) = 0.082

S = 1.06 2350 reflections 101 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0429P)2 + 0.3211P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.36 e Å−3

Δρmin = −0.52 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, m639–m641 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cr1 0.21819 (3) 0.910006 (19) 0.17835 (3) 0.02268 (10)

O1 0.03085 (15) 0.90257 (10) 0.26610 (15) 0.0314 (2)

O2 0.20805 (17) 0.81921 (11) 0.03380 (13) 0.0346 (3)

O3 0.38107 (15) 0.88111 (13) 0.30737 (14) 0.0392 (3)

O4 0.2389 (2) 1.02997 (12) 0.10613 (18) 0.0495 (4)

N1 0.14987 (18) 0.91284 (11) 0.74774 (15) 0.0270 (3)

H1N1 0.0788 0.9706 0.7508 0.032*

H2N1 0.1610 0.8842 0.8453 0.032*

C1 0.0691 (2) 0.83133 (14) 0.63617 (18) 0.0291 (3)

H1A 0.0490 0.8631 0.5321 0.035*

H1B −0.0426 0.8083 0.6719 0.035*

C2 0.1892 (2) 0.73577 (14) 0.6280 (2) 0.0328 (3)

H2A 0.2012 0.7006 0.7303 0.039*

H2B 0.1395 0.6841 0.5518 0.039*

N2 0.36406 (18) 0.77052 (13) 0.58131 (16) 0.0330 (3)

H1N2 0.3535 0.7987 0.4834 0.040*

H2N2 0.4349 0.7126 0.5793 0.040*

C3 0.4435 (2) 0.85223 (15) 0.6925 (2) 0.0343 (3)

H3A 0.5551 0.8755 0.6569 0.041*

H3B 0.4638 0.8204 0.7966 0.041*

C4 0.3232 (2) 0.94819 (14) 0.7014 (2) 0.0334 (3)

H4A 0.3729 0.9997 0.7780 0.040*

H4B 0.3110 0.9837 0.5994 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cr1 0.02214 (14) 0.02577 (14) 0.01977 (13) −0.00299 (8) −0.00120 (8) 0.00162 (8)

O1 0.0264 (5) 0.0316 (6) 0.0369 (6) 0.0027 (4) 0.0064 (4) −0.0005 (5)

O2 0.0438 (7) 0.0370 (7) 0.0232 (5) −0.0006 (5) 0.0033 (5) −0.0036 (4)

O3 0.0258 (5) 0.0605 (9) 0.0304 (6) −0.0027 (5) −0.0055 (4) 0.0051 (6)

O4 0.0655 (9) 0.0360 (7) 0.0462 (7) −0.0165 (7) −0.0024 (7) 0.0122 (6)

N1 0.0289 (6) 0.0278 (6) 0.0245 (6) 0.0051 (5) 0.0034 (5) −0.0006 (5)

C1 0.0250 (6) 0.0326 (8) 0.0294 (7) −0.0016 (6) −0.0019 (5) 0.0018 (6)

C2 0.0413 (8) 0.0237 (7) 0.0324 (7) −0.0016 (6) −0.0048 (6) −0.0023 (6)

(6)

supporting information

sup-3

Acta Cryst. (2003). E59, m639–m641

C3 0.0233 (7) 0.0395 (9) 0.0395 (8) 0.0018 (6) −0.0017 (6) −0.0024 (7)

C4 0.0314 (7) 0.0257 (7) 0.0432 (9) −0.0036 (6) 0.0031 (6) −0.0020 (7)

Geometric parameters (Å, º)

Cr1—O4 1.6176 (14) C2—N2 1.486 (2)

Cr1—O3 1.6451 (12) C2—H2A 0.9700

Cr1—O2 1.6617 (12) C2—H2B 0.9700

Cr1—O1 1.6631 (12) N2—C3 1.486 (2)

N1—C4 1.476 (2) N2—H1N2 0.9000

N1—C1 1.490 (2) N2—H2N2 0.9000

N1—H1N1 0.9000 C3—C4 1.508 (2)

N1—H2N1 0.9000 C3—H3A 0.9700

C1—C2 1.503 (2) C3—H3B 0.9700

C1—H1A 0.9700 C4—H4A 0.9700

C1—H1B 0.9700 C4—H4B 0.9700

O4—Cr1—O3 111.27 (8) N2—C2—H2B 109.5

O4—Cr1—O2 109.97 (7) C1—C2—H2B 109.5

O3—Cr1—O2 109.96 (7) H2A—C2—H2B 108.1

O4—Cr1—O1 109.23 (8) C2—N2—C3 111.48 (12)

O3—Cr1—O1 109.25 (6) C2—N2—H1N2 109.3

O2—Cr1—O1 107.07 (6) C3—N2—H1N2 109.3

C4—N1—C1 112.01 (12) C2—N2—H2N2 109.3

C4—N1—H1N1 109.2 C3—N2—H2N2 109.3

C1—N1—H1N1 109.2 H1N2—N2—H2N2 108.0

C4—N1—H2N1 109.2 N2—C3—C4 109.94 (13)

C1—N1—H2N1 109.2 N2—C3—H3A 109.7

H1N1—N1—H2N1 107.9 C4—C3—H3A 109.7

N1—C1—C2 109.36 (13) N2—C3—H3B 109.7

N1—C1—H1A 109.8 C4—C3—H3B 109.7

C2—C1—H1A 109.8 H3A—C3—H3B 108.2

N1—C1—H1B 109.8 N1—C4—C3 110.10 (14)

C2—C1—H1B 109.8 N1—C4—H4A 109.6

H1A—C1—H1B 108.3 C3—C4—H4A 109.6

N2—C2—C1 110.52 (14) N1—C4—H4B 109.6

N2—C2—H2A 109.5 C3—C4—H4B 109.6

C1—C2—H2A 109.5 H4A—C4—H4B 108.2

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1N1···O1i 0.90 1.78 2.6697 (18) 169

N1—H2N1···O2ii 0.90 1.81 2.7009 (18) 173

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, m639–m641

N2—H2N2···O2iii 0.90 2.19 2.9133 (19) 137

N2—H2N2···O1iii 0.90 2.22 2.9014 (19) 132

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical