• No results found

Methyl β N (3 nitro­phenyl­methyl­ene)­di­thio­carb­aza­te

N/A
N/A
Protected

Academic year: 2020

Share "Methyl β N (3 nitro­phenyl­methyl­ene)­di­thio­carb­aza­te"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o1173–o1175 doi:10.1107/S1600536805009281 Zhang, Shan and Xu C

9H9N3O2S2

o1173

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Methyl

b

-

N

-(3-nitrophenylmethylene)-dithiocarbazate

Yan-Ling Zhang,aShang Shana* and Duan-Jun Xub

a

College of Chemical and Materials Engineering, Zhejiang University of Technology, People’s Republic of China, andbDepartment of

Chemistry, Zhejiang University, People’s Republic of China

Correspondence e-mail: shanshang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.032

wRfactor = 0.079

Data-to-parameter ratio = 17.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystals of the title compound, C9H9N3O2S2, were obtained from a condensation reaction ofS-methyl dithiocarbazate and 3-nitrobenzaldehyde. The planar dithiocarbazate moiety subtends an angle of 10.54 (8) with respect to the plane of the nitrophenyl ring. Electron delocalization occurs between the imino and dithiocarboxyl groups. The partially overlapped arrangement of parallel benzene rings of neighboring mol-ecules, with a face-to-face distance of 3.343 (8) A˚ , suggests the existence of–stacking.

Comment

Phenylhydrazone and its derivatives have attracted our attention as they show potential applications in the biological field (Okabe et al., 1993; Hu et al., 2001). As part of our ongoing investigation into the anticancer properties of phenylhydrazone, the title compound, (I), has been prepared and its structure is presented here.

The molecular structure of (I) is shown in Fig. 1. The di-thiocarbazate moiety is planar; its mean plane subtends an

[image:1.610.208.461.539.723.2]

Received 18 March 2005 Accepted 23 March 2005 Online 31 March 2005

Figure 1

(2)

angle of 10.54 (8) with respect to the plane of the benzene ring. This differs from the situation in the related 4-nitro-phenyl isomer, in which both sections of the molecule are coplanar (Duanet al., 1997). The relatively short C8—N3 bond distance (Table 1) suggests a degree of electron delocalization between the imino and dithiocarboxyl groups. The nitro group is tilted out of the benzene plane, with a dihedral angle of 10.6 (2), which may be due to hydrogen bonding between atom O2 of the nitro substituent and the imino group of a neighboring molecule (Table 2 and Fig. 2).

A partially overlapped arrangement of parallel benzene rings [symmetry code: (ii) 1x,y, 1z] is observed in the crystal structur (Fig. 3). The face-to-face distance of 3.343 (8) A˚ clearly suggests the existence ofe – stacking between benzene rings.

Experimental

Methyl dithiocarbazate was synthesized in the manner reported previously (Huet al., 2001). Methyl dithiocarbazate (1.24 g, 10 mmol) and 3-nitrobenzaldehyde (1.50 g, 10 mmol) were dissolved in ethanol (10 ml) and refluxed for 4 h. Fine yellow crystals appeared on cooling. They were separated and washed with cold water three times. Single crystals of (I) were obtained by recrystallization from absolute ethanol.

Crystal data

C9H9N3O2S2 Mr= 255.31 Monoclinic,P21=c a= 8.7176 (4) A˚

b= 7.5589 (3) A˚

c= 17.5879 (7) A˚

= 100.666 (2)

V= 1138.94 (8) A˚3 Z= 4

Dx= 1.489 Mg m3 MoKradiation Cell parameters from 4542

reflections

= 2.4–27.0

= 0.46 mm1 T= 295 (2) K Needle, yellow 0.500.130.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.770,Tmax= 0.952

4646 measured reflections

2611 independent reflections 1703 reflections withI> 2(I)

Rint= 0.021

max= 27.5 h=11!11

k=9!9

l=22!22

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.032 wR(F2) = 0.079 S= 0.88 2611 reflections 146 parameters

H-atom parameters constrained

w= 1/[2(Fo2) + (0.0448P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.21 e A˚ 3

[image:2.610.310.567.65.269.2]

min=0.19 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

S1—C8 1.7457 (17)

S1—C9 1.791 (2)

S2—C8 1.6559 (17)

N2—C7 1.270 (2)

N2—N3 1.3707 (18)

N3—C8 1.340 (2)

C1—C7 1.462 (2)

C8—S1—C9 102.10 (9) S1—C8—S2 125.87 (11)

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

N3—H3 O2i

0.86 2.29 3.125 (2) 163

Symmetry code: (i)x;1 2y;z

1 2.

organic papers

o1174

Zhang, Shan and Xu C

[image:2.610.58.281.74.414.2]

9H9N3O2S2 Acta Cryst.(2005). E61, o1173–o1175

Figure 2

The crystal packing, showing the hydrogen bonding (dashed lines) and parallel arrangement of benzene rings of neighboring molecules.

Figure 3

[image:2.610.313.565.596.647.2]
(3)

Methyl H atoms were placed in calculated positions (C—H = 0.96 A˚ ) and torsion angle was refined to fit the electron density, with

Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated

posi-tions (C—H = 0.93 A˚ and N—H = 0.86 A˚) and included in the final cycles of refinement as riding, withUiso(H) = 1.2Ueq(C,N).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refine-ment:PROCESS-AUTO; data reduction:CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure:SIR92(Altomareet al., 1993); program(s) used to refine structure: SHELXL97 (Shel-drick, 1997); molecular graphics:ORTEP-3 for Windows(Farrugia, 1997) andXP(Siemens, 1994); software used to prepare material for publication:WinGX(Farrugia, 1999).

The work was supported by the Natural Science Foundation of Zhejiang Province of China (grant No. M203027) and the

National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993).J. Appl. Cryst.26, 343–350.

Duan, C.-Y., Tian, Y.-P., You, X.-Z. & Mak, T. C. W. (1997).Polyhedron,16, 4097–4103.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Higashi,, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan. Hu, W., Sun, N. & Yang, Z. (2001).Chem. J. Chin. Univ.22, 2014–2017. Okabe, N., Nakamura, T. & Fukuda, H. (1993).Acta Cryst.C49, 1678–1680. Rigaku (1998).PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002).CrystalStructure.Version 3.00. Rigaku/MSC, 9009 New

Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Siemens (1994).XP.Version 5.03. Siemens Analytical X-ray Instruments Inc.,

Madison, Wisconsin, USA.

organic papers

Acta Cryst.(2005). E61, o1173–o1175 Zhang, Shan and Xu C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o1173–o1175

supporting information

Acta Cryst. (2005). E61, o1173–o1175 [https://doi.org/10.1107/S1600536805009281]

Methyl

β

-N-(3-nitrophenylmethylene)dithiocarbazate

Yan-Ling Zhang, Shang Shan and Duan-Jun Xu

Methyl β-N-(3-nitrophenylmethylene)dithiocarbazate

Crystal data C9H9N3O2S2

Mr = 255.31

Monoclinic, P21/c

Hall symbol: -p 2ybc a = 8.7176 (4) Å b = 7.5589 (3) Å c = 17.5879 (7) Å β = 100.666 (2)° V = 1138.94 (8) Å3

Z = 4

F(000) = 528 Dx = 1.489 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 4542 reflections θ = 2.4–27.0°

µ = 0.46 mm−1

T = 295 K Needle, yellow 0.50 × 0.13 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 10.00 pixels mm-1

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.770, Tmax = 0.952

4646 measured reflections 2611 independent reflections 1703 reflections with I > 2σ(I) Rint = 0.021

θmax = 27.5°, θmin = 2.4°

h = −11→11 k = −9→9 l = −22→22

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.032

wR(F2) = 0.079

S = 0.88 2611 reflections 146 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0448P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.21 e Å−3

Δρmin = −0.19 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o1173–o1175

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 0.09695 (6) 0.48574 (7) 0.39342 (3) 0.04758 (15) S2 0.10856 (6) 0.62236 (8) 0.23266 (3) 0.05584 (17) N1 0.53123 (18) 0.1284 (2) 0.66293 (8) 0.0434 (4) N2 0.39713 (16) 0.37137 (19) 0.39098 (7) 0.0377 (3) N3 0.33002 (17) 0.44926 (19) 0.32250 (7) 0.0421 (4) H3 0.3809 0.4545 0.2851 0.050* O1 0.42125 (18) 0.2272 (2) 0.66359 (8) 0.0672 (4) O2 0.57772 (17) 0.0236 (2) 0.71532 (7) 0.0628 (4) C1 0.60959 (18) 0.2208 (2) 0.46639 (8) 0.0341 (4) C2 0.54034 (18) 0.2238 (2) 0.53179 (8) 0.0338 (4) H2 0.4491 0.2874 0.5319 0.041* C3 0.60982 (19) 0.1308 (2) 0.59610 (8) 0.0344 (4) C4 0.7453 (2) 0.0358 (3) 0.59985 (9) 0.0447 (4) H4 0.7896 −0.0251 0.6445 0.054* C5 0.8132 (2) 0.0342 (3) 0.53498 (11) 0.0519 (5) H5 0.9047 −0.0294 0.5355 0.062* C6 0.7467 (2) 0.1262 (3) 0.46917 (10) 0.0455 (5) H6 0.7947 0.1246 0.4261 0.055* C7 0.5337 (2) 0.3088 (2) 0.39532 (9) 0.0382 (4) H7 0.5850 0.3189 0.3536 0.046* C8 0.1858 (2) 0.5173 (2) 0.31329 (9) 0.0383 (4) C9 −0.0876 (2) 0.5930 (3) 0.36350 (13) 0.0679 (6) H9A −0.0709 0.7141 0.3507 0.102* H9B −0.1457 0.5886 0.4048 0.102* H9C −0.1451 0.5336 0.3189 0.102*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o1173–o1175

C5 0.0310 (10) 0.0730 (14) 0.0536 (10) 0.0146 (10) 0.0127 (8) 0.0107 (10) C6 0.0358 (10) 0.0641 (13) 0.0401 (9) 0.0041 (9) 0.0161 (7) 0.0021 (9) C7 0.0391 (10) 0.0430 (10) 0.0337 (8) −0.0017 (8) 0.0102 (7) −0.0001 (8) C8 0.0404 (10) 0.0370 (10) 0.0357 (8) −0.0033 (8) 0.0022 (7) −0.0028 (8) C9 0.0408 (12) 0.0903 (17) 0.0733 (14) 0.0088 (11) 0.0122 (10) 0.0031 (13)

Geometric parameters (Å, º)

S1—C8 1.7457 (17) C2—C3 1.373 (2) S1—C9 1.791 (2) C2—H2 0.9300 S2—C8 1.6559 (17) C3—C4 1.373 (2) N1—O1 1.2171 (19) C4—C5 1.379 (2) N1—O2 1.2258 (18) C4—H4 0.9300 N1—C3 1.4661 (19) C5—C6 1.382 (2) N2—C7 1.270 (2) C5—H5 0.9300 N2—N3 1.3707 (18) C6—H6 0.9300 N3—C8 1.340 (2) C7—H7 0.9300 N3—H3 0.8600 C9—H9A 0.9600 C1—C6 1.386 (2) C9—H9B 0.9600 C1—C2 1.395 (2) C9—H9C 0.9600 C1—C7 1.462 (2)

C8—S1—C9 102.10 (9) C5—C4—H4 121.3 O1—N1—O2 122.74 (15) C4—C5—C6 120.72 (17) O1—N1—C3 119.06 (15) C4—C5—H5 119.6 O2—N1—C3 118.18 (15) C6—C5—H5 119.6 C7—N2—N3 117.10 (13) C5—C6—C1 120.94 (15) C8—N3—N2 120.62 (13) C5—C6—H6 119.5 C8—N3—H3 119.7 C1—C6—H6 119.5 N2—N3—H3 119.7 N2—C7—C1 119.44 (14) C6—C1—C2 118.78 (15) N2—C7—H7 120.3 C6—C1—C7 121.04 (14) C1—C7—H7 120.3 C2—C1—C7 120.11 (15) N3—C8—S2 120.76 (13) C3—C2—C1 118.60 (15) N3—C8—S1 113.36 (12) C3—C2—H2 120.7 S1—C8—S2 125.87 (11) C1—C2—H2 120.7 S1—C9—H9A 109.5 C2—C3—C4 123.47 (15) S1—C9—H9B 109.5 C2—C3—N1 117.79 (15) H9A—C9—H9B 109.5 C4—C3—N1 118.70 (15) S1—C9—H9C 109.5 C3—C4—C5 117.49 (16) H9A—C9—H9C 109.5 C3—C4—H4 121.3 H9B—C9—H9C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A N3—H3···O2i 0.86 2.29 3.125 (2) 163

Figure

Figure 1The molecular structure of (I), shown with 30% probability displacementellipsoids.
Table 1

References

Related documents

limitation de l’égalité d’accès aux positions des autorités publiques rémunératrices et stratégiquement importantes, favorisant ainsi le népotisme et

Fur samtliche genannten Veroffentlichungen sind in der Cro­ nos-Datenbank van Eurostat Zeitreihen verfugbar, und sie konnen auf Wunsch in Form van Ustenausdrucken oder

PRODOTTI TRANSFORMATI DI CERE.ALI E Dl RISO SCI AOPPI F PROOOTT I DEL SETT ORE DEL LO /UCCHERO. TUTTO

The Uruguay Round - General Agreement on Tariffs and Trade (GATT).. The Community and the United States cooperated to launch the Uruguay Round of

Los aportes del Análisis Crítico del Discurso (ACD), son útiles para este estudio por cuanto que se trata de un campo interdisciplinario que se ocupa de las relaciones entre

In the second stage, we evaluate the preference for linear hedging by measuring the extent of total notional hedged through linear contracts over the total notional amount of

Now, if we look at the migration pattern according to the duration of residence, we find that for majority of the states, as of 2001, a large volume of migrants came to their

We introduce ALTO , an interactive framework that combines both active learning selections with topic model overviews to both help users induce a label set and assign labels