• No results found

Weighted boundedness of multilinear operators associated to singular integral operators with non smooth kernels

N/A
N/A
Protected

Academic year: 2020

Share "Weighted boundedness of multilinear operators associated to singular integral operators with non smooth kernels"

Copied!
18
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Weighted boundedness of multilinear

operators associated to singular integral

operators with non-smooth kernels

Daqing Lu

*

*Correspondence:

ldqcslgdx@163.com

College of Mathematics, Changsha University of Science and Technology, Changsha, 410077, P.R. China

Abstract

In this paper, we establish the weighted sharp maximal function inequalities for a multilinear operator associated to a singular integral operator with non-smooth kernel. As an application, we obtain the boundedness of the operator on weighted Lebesgue and Morrey spaces.

MSC: 42B20; 42B25

Keywords: multilinear operator; singular integral operator; sharp maximal function;

weightedBMO; weighted Lipschitz function

1 Introduction and preliminaries

As the development of singular integral operators (see [, ]), their commutators and mul-tilinear operators have been well studied. In [–], the authors prove that the commutators generated by the singular integral operators andBMOfunctions are bounded onLp(Rn)

for  <p<∞. Chanillo (see []) proves a similar result when the singular integral op-erators are replaced by the fractional integral opop-erators. In [, ], the boundedness for the commutators generated by the singular integral operators and Lipschitz functions on Triebel-Lizorkin andLp(Rn) ( <p<) spaces is obtained. In [, ], the boundedness for

the commutators generated by the singular integral operators and the weightedBMOand Lipschitz functions onLp(Rn) ( <p<∞) spaces is obtained (also see []). In [, ], some singular integral operators with non-smooth kernels are introduced, and the boundedness for the operators and their commutators is obtained (see [–]). Motivated by these, in this paper, we study multilinear operators generated by singular integral operators with non-smooth kernels and the weighted Lipschitz andBMOfunctions.

In this paper, we study some singular integral operators as follows (see []).

Definition  A family of operatorsDt,t> , is said to be an ‘approximation to the identity’

if, for everyt> ,Dtcan be represented by a kernelat(x,y) in the following sense:

Dt(f)(x) =

Rnat(x,y)f(y)dy

for everyfLp(Rn) withp, anda

t(x,y) satisfies

at(x,y)≤ht(x,y) =Ctn/ρ

|x–y|/t,

(2)

whereρis a positive, bounded and decreasing function satisfying

lim r→∞r

n+

ρr= 

for some> .

Definition  A linear operatorT is called a singular integral operator with non-smooth kernel ifTis bounded onL(Rn) and associated with the kernelK(x,y) so that

T(f)(x) =

RnK(x,y)f(y)dy

for every continuous function f with compact support, and for almost allx not in the support off.

() There exists an ‘approximation to the identity’{Bt,t> }such thatTBthas the

asso-ciated kernelkt(x,y) and there existc,c>  so that

|x–y|>ct/

K(x,y) –kt(x,y)dxc for allyRn.

() There exists an ‘approximation to the identity’{At,t> }such thatAtT has the

as-sociated kernelKt(x,y) which satisfies

Kt(x,y)≤ctn/ if|x–y| ≤ct/

and

K(x,y) –Kt(x,y)≤c/|xy|–nδ if|xy| ≥ct/

for someδ> ,c,c> . Moreover, letmbe a positive integer andbbe a function onRn. Set

Rm+(b;x,y) =b(x) –

|α|≤m

α!D

α

b(y)(xy)α.

The multilinear operator related to the operatorTis defined by

Tb(f)(x) =

Rn

Rm+(b;x,y)

|x–y|m K(x,y)f(y)dy.

Note that the commutator [b,T](f) =bT(f) –T(bf) is a particular operator of the multi-linear operatorTbifm= . The multilinear operatorTbis a non-trivial generalization of

the commutator. It is well known that commutators and multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors (see [–]). The main purpose of this paper is to prove sharp maximal inequalities for the multilinear operatorTb. As an application, we obtain the weightedLp-norm inequality and Morrey

(3)

Now, let us introduce some notations. Throughout this paper,Qwill denote a cube of

Rnwith sides parallel to the axes. For any locally integrable functionf, the sharp maximal

function off is defined by

M#(f)(x) =sup Qx

|Q|

Q

f(y) –fQdy,

where, and in what follows,fQ=|Q|–

Qf(x)dx. It is well known that (see [, ])

M#(f)(x)sup

Qxc∈Cinf

|Q|

Q

f(y) –cdy.

Let

M(f)(x) =sup Qx

|Q|

Q

f(y)dy.

Forη> , letM#η(f)(x) =M

#

(|f|η)/η(x) andM

η(f)(x) =M(|f|η)/η(x).

For  <η<n, ≤p<∞and the non-negative weight functionw, set

,p,w(f)(x) =sup Qx

w(Q)–/n

Q

f(y)pw(y)dy

/p

.

We write,p,w(f) =Mp,w(f) ifη= .

The sharp maximal functionMA(f) associated with the ‘approximation to the identity’ {At,t> }is defined by

M#A(f)(x) =sup x∈Q

|Q|

Q

f(y) –AtQ(f)(y)dy,

wheretQ=l(Q)andl(Q) denotes the side length ofQ. Forη> , letMA#,η(f) =M

#

A(|f|

η)/η.

TheApweight is defined by (see []), for  <p<∞,

Ap=

wLlocRn:sup Q

|Q|

Q

w(x)dx  |Q|

Q

w(x)–/(p–)dx p–

<∞

and

A=

wLplocRn:M(w)(x)≤Cw(x), a.e..

Given a non-negative weight functionw. For ≤p<∞, the weighted Lebesgue space

Lp(Rn,w) is the space of functionsf such that

f Lp(w)=

Rn

f(x)pw(x)dx

/p

<∞.

For  <β<  and the non-negative weight functionw, the weighted Lipschitz space

Lipβ(w) is the space of functionsbsuch that

b Lipβ(w)=sup

Q

w(Q)β/n

w(Q)

Q

b(y) –bQpw(x)–pdy

/p

(4)

and the weightedBMOspaceBMO(w) is the space of functionsbsuch that

b BMO(w)=sup

Q

w(Q)

Q

b(y) –bQ p

w(x)–pdy

/p

<∞.

Remark () It has been known that (see [, ]), forbLipβ(w),wAandxQ,

|bQbkQ| ≤Ck b Lipβ(w)w(x)w

kQβ/n.

() It has been known that (see [, ]), forbBMO(w),wAandxQ,

|bQbkQ| ≤Ck b BMO(w)w(x).

() LetbLipβ(w) orbBMO(w) andwA. By [], we know that spacesLipβ(w)

orBMO(w) coincide and the norms b Lipβ(w)or b BMO(w)are equivalent with respect to different values ≤p<∞.

Definition  Letϕbe a positive, increasing function onR+, and let there exist a constant

D>  such that

ϕ(t)≤(t) fort≥.

Letwbe a non-negative weight function onRnandfbe a locally integrable function onRn.

Set, for ≤η<nand ≤p<n/η,

f Lp,η,ϕ(w)= sup

x∈Rn,d>

ϕ(d)–/n

Q(x,d)

f(y)pw(y)dy

/p

,

whereQ(x,d) ={y∈Rn:|x–y|<d}. The generalized fractional weighted Morrey space is defined by

Lp,η,ϕRn,w=fLlocRn: f Lp,η,ϕ(w)<∞.

We writeLp,η,ϕ(Rn) =Lp,ϕ(Rn) ifη= , which is the generalized weighted Morrey space.

Ifϕ(d) =,δ> , thenLp,ϕ(Rn,w) =Lp,δ(Rn,w), which is the classical Morrey space (see

[, ]). Ifϕ(d) = , thenLp,ϕ(Rn,w) =Lp(Rn,w), which is the weighted Lebesgue space

(see []).

As the Morrey space may be considered as an extension of the Lebesgue space, it is natural and important to study the boundedness of the operator on the Morrey spaces (see [, –]).

2 Theorems and lemmas

We shall prove the following theorems.

(5)

exists a constant C> such that,for any fC∞(Rn)andx˜Rn,

M#A,η

Tb(f)(x˜)≤C |α|=m

DαbBMO(w)w(x˜)Mr,w(f)(x˜).

Theorem  Let T be a singular integral operator with non-smooth kernel as given in Def-inition,wA,  <η< ,  <r<∞,  <β< and DαbLipβ(w)for allαwith|α|=m.

Then there exists a constant C> such that,for any fC (Rn)andx˜Rn,

M#A,ηTb(f)(x˜)≤C |α|=m

b

Lipβ(w)w(x˜),r,w(f)(x˜).

Theorem  Let T be a singular integral operator with non-smooth kernel as given in Defi-nition,wA,  <p<∞and DαbBMO(w)for allαwith|α|=m.Then Tbis bounded

from Lp(Rn,w)to Lp(Rn,w–p).

Theorem  Let T be a singular integral operator with non-smooth kernel as given in Def-inition,wA,  <p<∞,  <D< nand DαbBMO(w)for allαwith|α|=m.Then Tb

is bounded from Lp,ϕ(Rn,w)to Lp,ϕ(Rn,w–p).

Theorem  Let T be a singular integral operator with non-smooth kernel as given in Def-inition,wA,  <β< ,  <p<n/β, /q= /pβ/n and DαbLipβ(w)for allαwith

|α|=m.Then Tbis bounded from Lp(Rn,w)to Lq(Rn,w–q).

Theorem  Let T be a singular integral operator with non-smooth kernel as given in Def-inition,wA,  <β< ,  <D< n,  <p<n/β, /q= /pβ/n and DαbLipβ(w)for

allαwith|α|=m.Then Tbis bounded from Lp,β,ϕ(Rn,w)to Lq,ϕ(Rn,w–q).

To prove the theorems, we need the following lemmas.

Lemma (see [, p.]) Let <p<q<∞,and for any function f ≥,we define that,for

/r= /p– /q,

f WLq=sup

λ>

λxRn:f(x) >λ/q, Np,q(f) =sup Q

fχQ Lp/ χQ Lr,

where thesupis taken for all measurable sets Q with <|Q|<∞.Then

f WLqNp,q(f)≤q/(qp)/p f WLq.

Lemma (see [, ]) Let T be a singular integral operator with non-smooth kernel as given in Definition.Then T is bounded on Lp(Rn,w)for wA

pwith <p<∞,and weak

(L,L)bounded.

Lemma ([, ]) Let{At,t> }be anapproximation to the identity’.For anyγ > , there exists a constant C> independent ofγ such that

(6)

forλ> ,where D is a fixed constant which only depends on n.Thus,for fLp(Rn),  <p< ∞,  <η<∞and wA,

(f)Lp(w)CM #

A,η(f)Lp(w).

Lemma (see [, ]) Let≤η<n, ≤s<p<n/η, /q= /pη/n and wA.Then

,s,w(f)Lq(w)C f Lp(w).

Lemma (see [, ]) Let{At,t> }be anapproximation to the identity’,  <D< n,

 <p<∞,  <η<∞,wAand wA.Then

(f)Lp,ϕ(w)CM #

A,η(f)Lp,ϕ(w).

Lemma (see [, ]) Let≤η<n,  <D< n, s<p<n/η, /q= /pη/n and wA.Then

,s,w(f)Lq,ϕ(w)C f Lp,η,ϕ(w).

Lemma (see []) Let b be a function on Rnand DαALq(Rn)for allαwith|α|=m and any q>n.Then

Rm(b;x,y)≤C|xy|m

|α|=m

| ˜Q(x,y)|

˜ Q(x,y)

b(z)qdz

/q

,

whereQ is the cube centered at x and having side length˜ √n|xy|.

Lemma  Let{At,t> }be anapproximation to the identity’,wAand bBMO(w).

Then,for every fLp(w),p> ,  <r<andx˜Rn,

sup Q˜x

|Q|

Q

AtQ

(bbQ)f

(y)dyC b BMO(w)w(x˜)Mr,w(f)(x˜),

where tQ=l(Q)and l(Q)denotes the side length of Q.

Proof We write, for any cubeQwithx˜∈Q,

|Q|

Q

AtQ

(bbQ)f

(x)dx

≤ 

|Q|

Q

RnhtQ(x,y)

b(y) –bQ

f(y)dy dx|Q|

Q

Q

htQ(x,y)b(y) –bQ

f(y)dy dx

+

k= 

|Q|

Q

k+Q\kQhtQ(x,y)

b(y) –bQ

f(y)dy dx

(7)

We have, by Hölder’s inequality,

IC

|Q||Q|

Q

Q

b(y) –bQ

f(y)dy dx|Q|C

Q

b(y) –bQw(y)–/rf(y)w(y)/rdy

|Q|C

Q

b(y) –bQ r

w(y)–rdy

/r Q

f(y)rw(y)dy

/r

|Q|C b BMO(w)w(Q)/r

w(Q)/r

w(Q)

Q

f(y)rw(y)dy

/r

C b BMO(w)

w(Q)

|Q| Mr,w(f)(x˜) ≤C b BMO(w)w(x˜)Mr,w(f)(x˜).

ForII, notice forxQandy∈k+Q\kQ, then|x–y| ≥k–tQandhtQ(x,y)≤C

s((k–)) |Q| ,

then

IIC

k=

s(k–) 

|Q||Q|

Q

k+Q

b(y) –bQ

f(y)dy dx

C

k=

kns(k–) 

|k+Q|

×

k+Q

b(y) –bk+Q

+ (bk+QbQ)f(y)dy

C

k=

kns(k–)k+Q–

k+Q

b(y) –bk+Qr

w(y)–rdy

/r

×

k+Q

f(y)r w(y)dy

/r

+C

k=

kns(k–)k+Q–k b BMO(w)w(x˜)

k+Q

f(y)rw(y)dy

/r

×

|k+Q|

k+Qw

(y)–/(r–)dy (r–)/r

×

|k+Q|

k+Qw(y)dy

/r

k+Qwk+Q–/r

C b BMO(w)

k=

kkns(k–)w(k+Q)

|k+Q| +w(x˜)

×

w(k+Q)

k+Q

f(y)rw(y)dy

/r

C b BMO(w)

k=

(8)

where the last inequality follows from

k=

k(k–)ns(k–)≤C

k=

k–(k–)<

for some> . This completes the proof.

Lemma  Let{At,t> }be anapproximation to the identity’,wA,  <β< ,  <r<∞

and bLipβ(w).Then,for every fLp(w),p> andx˜∈Rn,

sup Q˜x

|Q|

Q

AtQ

(bbQ)f

(y)dyC b Lipβ(w)w(x˜),w,r(f)(x˜).

The same argument as in the proof of Lemma  will give the proof of Lemma , we omit the details.

3 Proofs of theorems

Proof of Theorem  It suffices to prove forfC∞(Rn) and some constantC

 that the following inequality holds:

|Q|

Q

Tb(f)(x) –AtQ

Tb(f)(x)ηdx

/η

C

|α|=m

DαbBMO(w)w(x˜)Mr,w(f)(x˜),

wheretQ=d andddenotes the side length ofQ. Fix a cubeQ=Q(x,d) andx˜∈Q. Let

˜

Q= √nQandb˜(x) =b(x) –|α|=m

α!(D

αb)

˜

Qxα, thenRm(b;x,y) =Rm(b˜;x,y) andDαb˜= b– (Dαb)

˜

Qfor|α|=m. We write, forf=fχQ˜ andf=fχRn\ ˜Q,

Tb(f)(x) =

Rn

Rm(b˜;x,y)

|x–y|m K(x,y)f(y)dy

|α|=m

α!

Rn

(xy)αDαb˜(y)

|xy|m K(x,y)f(y)dy

+

Rn

Rm+(b˜;x,y)

|xy|m K(x,y)f(y)dy

=T

Rm(b˜;x,·) |x–·|m f –T

|α|=m

α!

(x–·)αDαb˜

|x–·|m f +T ˜ b(f

)(x)

and

AtQT

b(f)(x) =

Rn

Rm(b˜j;x,y)

|x–y|m Kt(x,y)f(y)dy

|α|=m

α!

Rn

(xy)αDαb˜(y)

|xy|m Kt(x,y)f(y)dy

+

Rn

Rm+(b˜;x,y)

|x–y|m Kt(x,y)f(y)dy

=AtQT

Rm(b˜;x,·)

|x–·|m f –AtQT

|α|=m

α!

(x–·)αDαb˜

|x–·|m f +AtQT

˜ b(f

(9)

then

|Q|

Q

Tb(f)(x) –AtQT

b(f)(x)η

dx /ηC  |Q| Q T

Rm(b˜;x,·) |x–·|m f (x)

ηdx /η +C  |Q| Q T

|α|=m

α!

(x–·)αDαb˜

|x–·|m f (x)

ηdx /η +C  |Q| Q AtQT

Rm(b˜;x,·) |x–·|m f (x)

ηdx /η +C

|Q|

Q

AtQT

|α|=m

α!

(x–·)αDαb˜

|x–·|m f (x)

ηdx /η +C  |Q| Q

T˜b(f)(x) –AtQT

˜ b(f

)(x)

η

dx

/η

=I+I+I+I+I.

ForI, noting thatwA,wsatisfies the reverse of Hölder’s inequality

|Q|

Q

w(x)pdx

/p|Q|C

Q w(x)dx

for all cubeQand some  <p<∞(see []). We takeq=rp/(r+p– ) in Lemma  and have  <q<randp=q(r– )/(rq), then by Lemma  and Hölder’s inequality, we get

Rm(b˜;x,y)≤C|xy|m

|α|=m

| ˜Q(x,y)|

˜ Q(x,y)

Dαb˜(z)qdz

/q

C|xy|m

|α|=m | ˜Q|–/q

˜ Q(x,y)

Dαb˜(z)qw(z)q(–r)/rw(z)q(r–)/rdz

/q

C|xy|m |α|=m

| ˜Q|–/q

˜ Q(x,y)

b˜(z)rw(z)–rdz

/r

×

˜ Q(x,y)

w(z)q(r–)/(rq)dz

(rq)/rq

C|xy|m

|α|=m

| ˜Q|–/qDα

bBMO(w)w(Q˜)/r| ˜Q|(rq)/rq

×

| ˜Q(x,y)|

˜ Q(x,y)

w(z)pdz

(rq)/rq

C|xy|m

|α|=m

Dα

bBMO(w)| ˜Q|–/qw(Q˜)/r| ˜Q|/q–/r

×

| ˜Q(x,y)|

˜ Q(x,y)

w(z)dz

(10)

C|xy|m

|α|=m

DαbBMO(w)| ˜Q|–/qw(Q˜)/r| ˜Q|/q–/rw(Q˜)–/r| ˜Q|/r–

C|xy|m

|α|=m

DαbBMO(w)w(Q˜) | ˜Q|

C|xy|m |α|=m

DαbBMO(w)w(x˜).

Thus, by theLs-boundedness ofT(see Lemma ) for  <s<randwA⊆Ar/s, we obtain

I≤

C |Q| Q T

Rm(b˜;x,·) |x–·|m f (x)

dx

C

|α|=m

DαbBMO(w)w(x˜)

|Q|

Rn

T(f)(x)

s dx

/s

C

|α|=m

DαbBMO(w)w(x˜)|Q|–/s

Rn

f(x)

s dx

/s

C

|α|=m

Dα

bBMO(w)w(x˜)|Q|–/s

˜ Q

f(x)s

w(x)s/rw(x)–s/rdx

/s

C

|α|=m

DαbBMO(w)w(x˜)|Q|–/s

˜ Q

f(x)rw(x)dx

/r ˜ Q

w(x)–s/(rs)dx

(rs)/rs

C

|α|=m

b

BMO(w)w(x˜)|Q|

–/sw(Q˜)/r

w(Q˜)

˜ Q

f(x)rw(x)dx

/r

×

| ˜Q|

˜ Q

w(x)–s/(rs)dx

(rs)/rs

| ˜Q|

˜ Q

w(x)dx

/r

| ˜Q|/sw(Q˜)–/r

C

|α|=m

b

BMO(w)w(x˜)Mr,w(f)(x˜).

ForI, by the weak (L,L) boundedness ofT(see Lemma ) and Kolmogorov’s inequality (see Lemma ), we obtain

I≤C

|α|=m

|Q|

Q

TDαbf˜

(x)ηdx

/η

C

|α|=m |Q|/η–

|Q|/η

T(bf˜

)χQ

χQ /(–η)

C

|α|=m

|Q|T

Dαbf˜ WL

C

|α|=m

|Q|

Rn

Dα˜

b(x)f(x)dx

C

|α|=m

|Q|

˜ Q

Dαb(x) –DαbQ˜w(x)–/rf(x)w(x)/rdx

C

|α|=m

|Q|

˜ Q

Dαb(x) –DαbQ˜rw(x)–rdx

/r ˜ Q

f(x)rw(x)dx

(11)

C |α|=m

|Q|D

α

bBMO(w)w(Q˜)/rw(Q˜)/r

w(Q˜)

˜ Q

f(x)rw(x)dx

/r

C

|α|=m

b

BMO(w)

w(Q˜)

| ˜Q| Mr,w(f)(x˜)

C

|α|=m

b

BMO(w)w(x˜)Mr,w(f)(x˜).

ForIandI, by Lemma  and similar to the proof ofIandI, we get

I≤

C |Q|

Q

T

Rm(b˜;x,·) |x–·|m f (x)

dx

C

|α|=m

b

BMO(w)w(x˜)Mr,w(f)(x˜),

I≤C

|α|=m

|Q|

Q

TDαbf˜

(x)ηdx

/η

C

|α|=m

DαbBMO(w)w(x˜)Mr,w(f)(x˜).

ForI, note that|x–y| ≈ |x–y|forxQandyRn\Q. We have, by Lemma  and similar to the proof ofI,

Rm(b˜;x,y)≤C|xy|m

|α|=m

Dα

bBMO(w)w(x˜).

Thus, by the conditions onKandKt, andwA⊆Ar,

Tb˜(f)(x) –AtQT

˜ b(f

)(x)

Rn

|Rm(b˜;x,y)|

|xy|m K(x,y) –Kt(x,y)f(y)dy

+

|α|=m

α!

Rn

|b˜

(y)||(xy)α|

|x–y|m K(x,y) –Kt(x,y)f(y)dy

≤ ∞

k=

|α|=m

DαbBMO(w)w(x˜)

k+Q\˜ kQ˜

|x–y|n+δ

f(y)w(y)/rw(y)–/rdy

+C |α|=m

k=

k+Q˜

b

k+Q˜ –

b

˜ Q

|x–y|n+δ

f(y)w(y)/rw(y)–/rdy

+C |α|=m

k=

k+Q˜

Dαb(y) –Dαbk+Q˜

|x–y|n+δ

f(y)w(y)/rw(y)–/rdy

C

|α|=m

DαbBMO(w)w(x˜)

k=

k d

δ

(kd)n+δ

kQ˜

f(y)rw(y)dx

/r

×

|kQ˜|

kQ˜

w(y)–/(r–)dy

(r–)/r

|kQ˜|

kQ˜

w(y)dy

/r

(12)

+C |α|=m

k=

(kd)n+δ

kQ˜

Dαb(y) –DαbkQ˜

r

w(y)–rdy

/r

×

kQ˜

f(y)rw(y)dy

/r

C

|α|=m

DαbBMO(w)w(x˜)

k=

k–

w(kQ˜)

kQ˜

f(y)rw(y)dx

/r

+C |α|=m

DαbBMO(w)

k=

–kδw(

kQ˜)

|kQ˜|

w(kQ˜)

kQ˜

f(y)rw(y)dx

/r

C

|α|=m

b

BMO(w)w(x˜)Mr,w(f)(x˜)

k=

k–

C

|α|=m

b

BMO(w)w(x˜)Mr,w(f)(x˜).

Thus

I≤C

|α|=m

Dα

bBMO(w)w(x˜)Mr,w(f)(x˜).

These complete the proof of Theorem .

Proof of Theorem  It suffices to prove forfC∞(Rn) and some constantC

that the following inequality holds:

|Q|

Q

Tb(f)(x) –AtQ

Tb(f)(x)ηdx

/η

C

|α|=m

b

Lipβ(w)w(x˜),r,w(f)(x˜),

wheretQ=dandddenotes the side length ofQ. Fix a cubeQ=Q(x,d) andx˜∈Q. Similar to the proof of Theorem , we have, forf=fχQ˜ andf=fχRn\ ˜Q,

|Q|

Q

Tb(f)(x) –AtQT

b(f)(x)η

dx /η ≤  |Q| Q T

Rm(b˜;x,·) |x–·|m f (x)

ηdx /η +  |Q| Q T

|α|=m

α!

(x–·)αDαb˜

|x–·|m f (x)

ηdx /η + 

|Q|

Q

AtQT

Rm(b˜;x,·) |x–·|m f (x)

ηdx /η + 

|Q|

Q

AtQT

|α|=m

α!

(x–·)αDαb˜

|x–·|m f (x)

ηdx /η +  |Q| Q

Tb˜(f

)(x) –AtQT

˜ b(f

)(x)

η

dx

/η

(13)

ForJandJ, by using the same argument as in the proof of Theorem , we get

Rm(b˜;x,y)≤C|xy|m

|α|=m | ˜Q|–/q

˜ Q(x,y)

b˜(z)qw(z)q(–r)/rw(z)q(r–)/rdz

/q

C|xy|m

|α|=m | ˜Q|–/q

˜ Q(x,y)

Dαb˜(z)rw(z)–rdz

/r

×

˜ Q(x,y)

w(z)q(r–)/(rq)dz

(rq)/rq

C|xy|m

|α|=m

| ˜Q|–/qDα

bLip

β(w)w(Q˜)

β/n+/r| ˜Q|(rq)/rq

×

| ˜Q(x,y)|

˜ Q(x,y)

w(z)pdz

(rq)/rq

C|xy|m

|α|=m

DαbLip

β(w)| ˜Q|

–/qw(Q˜)β/n+/r| ˜Q|/q–/r

×

| ˜Q(x,y)|

˜ Q(x,y)

w(z)dz

(r–)/r

C|xy|m |α|=m

b

Lipβ(w)| ˜Q|

–/qw(Q˜)β/n+/r| ˜Q|/q–/rw(Q˜)–/r| ˜Q|/r–

C|xy|m |α|=m

DαbLip

β(w)

w(Q˜)β/n+

| ˜Q|

C|xy|m

|α|=m

DαbLip

β(w)w(Q˜)

β/nw(x˜).

Thus

J≤C

|α|=m

DαbLip

β(w)w(Q˜)

β/nw(x˜)|Q|–/s

Rn

f(x)sdx /s

C

|α|=m

DαbLip

β(w)w(

˜

Q)β/nw(x˜)|Q|–/s

˜ Q

f(x)rw(x)dx

/r

×

˜ Q

w(x)–s/(rs)dx

(rs)/rs

C

|α|=m

Dα

bLip

β(w)w(x˜)| ˜Q|

–/sw(Q˜)/r

w(Q˜)–/n

˜ Q

f(x)r w(x)dx

/r

×

| ˜Q|

˜ Q

w(x)–s/(rs)dx

(rs)/rs

| ˜Q|

˜ Q

w(x)dx

/r

| ˜Q|/sw(Q˜)–/r

C

|α|=m

Dα

bLip

β(w)w(x˜),r,w(f)(x˜),

J≤C

|α|=m

|Q|

˜ Q

Dαb(x) –DαbQ˜w(x)–/rf(x)w(x)/rdx

C

|α|=m

|Q|

˜ Q

Dαb(x) –DαbQ˜rw(x)–rdx

/r ˜ Q

f(x)rw(x)dx

(14)

C |α|=m

|Q|D

α

bLip

β(w)w(Q˜)

β/n+/rw(Q˜)/rβ/n

w(Q˜)–/n

˜ Q

f(x)rw(x)dx

/r

C

|α|=m

b

Lipβ(w)

w(Q˜)

| ˜Q| ,r,w(f)(x˜)

C

|α|=m

b

Lipβ(w)w(x˜),r,w(f)(x˜).

ForJandJ, by Lemma  and similar to the proof ofJandJ, we get

J≤

C |Q|

Q

T

Rm(b˜;x,·) |x–·|m f (x)

dx

C

|α|=m

DαbLip

β(w)w(x˜),r,w(f)(x˜),

J≤C

|α|=m

|Q|

Q

TDαbf˜

(x)ηdx

/η

C

|α|=m

b

Lipβ(w)w(x˜),r,w(f)(x˜).

ForJ, by Lemma  and similar to the proof ofJ, fork≥, we have

Rm(b˜;x,y)≤C|xy|m

|α|=m

DαbLip

β(w)w

kQ˜β/nw(x˜).

Thus

Tb˜(f)(x) –AtQT

˜ b(f

)(x)

Rn

|Rm(b˜;x,y)|

|xy|m K(x,y) –Kt(x,y)f(y)dy

+

|α|=m

α!

Rn

|b˜

(y)||(xy)α|

|x–y|m K(x,y) –Kt(x,y)f(y)dy

≤ ∞

k=

|α|=m

DαbLip

β(w)w(x˜)w

kQ˜β/n

×

k+Q\˜ kQ˜

|x–y|n+δ

f(y)w(y)/rw(y)–/rdy

+C |α|=m

k=

k+Q˜

b

k+Q˜ –

b

˜ Q

|x–y|n+δ

f(y)w(y)/rw(y)–/rdy

+C |α|=m

k=

k+Q˜

Dαb(y) –Dαbk+Q˜

|x–y|n+δ

f(y)w(y)/rw(y)–/rdy

C

|α|=m

DαbLip

β(w)w(x˜)

k=

k d

δ

(kd)n+δw

kQ˜β/n

kQ˜

f(y)rw(y)dx

/r

×

|kQ˜|

kQ˜

w(y)–/(r–)dy

(r–)/r

|kQ˜|

kQ˜

w(y)dy

/r

(15)

+C |α|=m

k=

(kd)n+δ

kQ˜

Dαb(y) –DαbkQ˜

r

w(y)–rdy

/r

×

kQ˜

f(y)rw(y)dy

/r

C

|α|=m

DαbLip

β(w)w(x˜)

k=

k–

w(kQ˜)–/n

kQ˜

f(y)rw(y)dx

/r

+C |α|=m

DαbLip

β(w)

k=

–kδw(

kQ˜)

|kQ˜|

w(kQ˜)–/n

kQ˜

f(y)rw(y)dx

/r

C

|α|=m

DαbLip

β(w)w(x˜),r,w(f)(x˜).

This completes the proof of Theorem .

Proof of Theorem Choose  <r<pin Theorem  and noticew–pA, then we have, by Lemmas  and ,

Tb(f)

Lp(w–p)

Tb(f)

Lp(w–p)CM#A,η

Tb(f) Lp(w–p)

C

|α|=m

DαbBMO(w)wMr,w(f)Lp(w–p)

=C |α|=m

DαbBMO(w)Mr,w(f)Lp(w)

C

|α|=m

DαbBMO(w) f Lp(w).

This completes the proof of Theorem .

Proof of Theorem Choose  <r<pin Theorem  and noticew–pA

, then we have, by Lemmas  and ,

Tb(f)Lp,ϕ(w–p)

Tb(f)Lp,ϕ(w–p)CM #

A,η

Tb(f)Lp,ϕ(w–p)

C

|α|=m

Dα

bBMO(w)wMr,w(f)Lp,ϕ(w–p)

=C |α|=m

b

BMO(w)Mr,w(f)Lp,ϕ(w)

C

|α|=m

b

BMO(w) f Lp,ϕ(w).

This completes the proof of Theorem .

Proof of Theorem Choose  <r<pin Theorem  and noticew–qA

, then we have, by Lemmas  and ,

Tb(f)Lq(w–q)

Tb(f)Lq(w–q)CM#A,η

Tb(f)Lq(w–q)

C

|α|=m

DαbLip

β(w)

(16)

=C |α|=m

DαbLip

β(w)

,r,w(f)Lq(w)

C

|α|=m

DαbLip

β(w) f L p(w).

This completes the proof of Theorem .

Proof of Theorem Choose  <r<pin Theorem  and noticew–qA

, then we have, by Lemmas  and ,

Tb(f)Lq,ϕ(w–q)

Tb(f)Lq,ϕ(w–q)CM #

A,η

Tb(f)Lq,ϕ(w–q)

C

|α|=m

DαbLip

β(w)wMβ,r,w(f)Lq,ϕ(w–q) =C

|α|=m

DαbLip

β(w),r,w(f)Lq,ϕ(w)

C

|α|=m

Dα

bLip

β(w) f Lp,β,ϕ(w).

This completes the proof of Theorem .

4 Applications

In this section we shall apply the theorems of the paper to the holomorphic functional calculus of linear elliptic operators. First, we review some definitions regarding the holo-morphic functional calculus (see []). Given ≤θ<π. Define

=

zC:arg(z)≤θ∪ {}

and its interior by. SetS˜θ=\ {}. A closed operatorLon some Banach spaceEis said

to be of typeθif its spectrumσ(L)⊂and for everyν∈(θ,π], there exists a constant

such that

|η|(ηIL)–≤, η∈ ˜/.

Forν∈(,π], let

HSμ

=f :→C:f is holomorphic and f L∞<∞

,

where f L∞=sup{|f(z)|:z}. Set

Sμ

=

gHSμ

:∃s> ,∃c>  such thatg(z)≤c |z| s

 +|z|s

.

IfLis of typeθandgH∞(Sμ), we defineg(L)∈L(E) by

g(L) = –(πi)–

(17)

where is the contour {ξ =re±iφ : r} parameterized clockwise around S θ with

θ<φ<μ. If, in addition,Lis one-to-one and has a dense range, then, forfH∞(Sμ),

f(L) =h(L)–(fh)(L),

whereh(z) =z( +z)–.Lis said to have a bounded holomorphic functional calculus on the sectorif

g(L)≤N g L

for someN>  and for allgH∞(Sμ).

Now, letLbe a linear operator onL(Rn) withθ<π/ so that (–L) generates a holomor-phic semigroupezL, ≤ |arg(z)|<π/ –θ. Applying Theorem  of [] and Theorems -, we get the following.

Corollary Assume that the following conditions are satisfied:

(i) The holomorphic semigroupezL,≤ |arg(z)|<π/ –θis represented by the kernels az(x,y)which satisfy,for allν>θ,an upper bound

az(x,y)≤cνh|z|(x,y)

forx,yRn,and≤ |arg(z)|<π/ –θ,whereht(x,y) =Ctn/s(|x–y|/t)andsis a

positive,bounded and decreasing function satisfying

lim r→∞r

n+

sr= .

(ii) The operatorLhas a bounded holomorphic functional calculus inL(Rn);that is,for

allν>θ andgH∞(Sμ),the operatorg(L)satisfies

g(L)(f)L≤ g L∞ f L.

Then Theorems-hold for the multilinear operator g(L)bassociated to g(L)and b.

Competing interests

The author declares that he has no competing interests.

Author’s contributions

The author completed the paper, and read and approved the final manuscript.

Acknowledgements

Project was supported by Scientific Research Fund of Hunan Provincial Education Departments (13C1007).

Received: 18 January 2014 Accepted: 24 May 2014 Published: 24 July 2014

References

1. Garcia-Cuerva, J, Rubio de Francia, JL: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 16. North-Holland, Amsterdam (1985)

2. Stein, EM: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993)

3. Coifman, RR, Rochberg, R, Weiss, G: Factorization theorems for Hardy spaces in several variables. Ann. Math.103, 611-635 (1976)

(18)

5. Pérez, C, Trujillo-Gonzalez, R: Sharp weighted estimates for multilinear commutators. J. Lond. Math. Soc.65, 672-692 (2002)

6. Chanillo, S: A note on commutators. Indiana Univ. Math. J.31, 7-16 (1982)

7. Janson, S: Mean oscillation and commutators of singular integral operators. Ark. Mat.16, 263-270 (1978)

8. Paluszynski, M: Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ. Math. J.44, 1-17 (1995)

9. Bloom, S: A commutator theorem and weighted BMO. Trans. Am. Math. Soc.292, 103-122 (1985)

10. Hu, B, Gu, J: Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces. J. Math. Anal. Appl.340, 598-605 (2008)

11. He, YX, Wang, YS: Commutators of Marcinkiewicz integrals and weighted BMO. Acta Math. Sin. Chin. Ser.54, 513-520 (2011)

12. Duong, XT, McIntosh, A: Singular integral operators with non-smooth kernels on irregular domains. Rev. Mat. Iberoam.15, 233-265 (1999)

13. Martell, JM: Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications. Stud. Math.161, 113-145 (2004)

14. Deng, DG, Yan, LX: Commutators of singular integral operators with non-smooth kernels. Acta Math. Sci.25, 137-144 (2005)

15. Liu, LZ: Sharp function boundedness for vector-valued multilinear singular integral operators with non-smooth kernels. J. Contemp. Math. Anal.45, 185-196 (2010)

16. Liu, LZ: Multilinear singular integral operators on Triebel-Lizorkin and Lebesgue spaces. Bull. Malays. Math. Sci. Soc. 35, 1075-1086 (2012)

17. Zhou, XS, Liu, LZ: Weighted boundedness for multilinear singular integral operators with non-smooth kernels on Morrey space. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.104, 115-127 (2010)

18. Cohen, J, Gosselin, J: On multilinear singular integral operators onRn. Stud. Math.72, 199-223 (1982) 19. Cohen, J, Gosselin, J: A BMO estimate for multilinear singular integral operators. Ill. J. Math.30, 445-465 (1986) 20. Ding, Y, Lu, SZ: Weighted boundedness for a class rough multilinear operators. Acta Math. Sin.17, 517-526 (2001) 21. Garcia-Cuerva, J: WeightedHpSpaces. Dissert. Math., vol. 162 (1979)

22. Di Fazio, G, Ragusa, MA: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal.112, 241-256 (1993)

23. Peetre, J: On convolution operators leavingLp,λ-spaces invariant. Ann. Mat. Pura Appl.72, 295-304 (1966) 24. Peetre, J: On the theory ofLp,λ-spaces. J. Funct. Anal.4, 71-87 (1969)

25. Di Fazio, G, Ragusa, MA: Commutators and Morrey spaces. Boll. Unione Mat. Ital., A5, 323-332 (1991) 26. Liu, LZ: Interior estimates in Morrey spaces for solutions of elliptic equations and weighted boundedness for

commutators of singular integral operators. Acta Math. Sci. Ser. B25, 89-94 (2005)

27. Mizuhara, T: Boundedness of some classical operators on generalized Morrey spaces. In: Harmonic Analysis: Proceedings of a Conference Held in Sendai, Japan, pp. 183-189 (1990)

doi:10.1186/1029-242X-2014-276

Cite this article as:Lu:Weighted boundedness of multilinear operators associated to singular integral operators

References

Related documents

Transcriptomic analysis of this mutant trophoblast in comparison with another mutant trophoblast carrying a paternally derived Xist null allele revealed that, although the

Dietary habits: Using the same interview schedule, dietary pattern of the male tribal cancer patients was elicited by obtaining information with regards to their

There has been considerable interest in the development of novel compounds with anticonvulsant, antidepressant, analgesic, anti- inflammatory, anti platelet, anti

It remains possible, however, that early oogenesis is a temperature-sensitive period for mitochondrial quality that later manifests as reduced embryonic hatch rate, consistent

Primary data on post-harvest handling, storage &amp; gaps, increment in yield and yield loss, marketing, income, access to agricultural inputs, food shortage and

21.841/2004, that discipline the accountability of political parties, have been edited on the basis of the Corporate Law 6404/76 it is outdated, and that is why

In the investigation, synthesis of Ag-nano particles were prepared by using polysaccharide, isolated from leaves of Mentha piperita and characterized by using UV-VIS

The objective of the project is to develop a comprehensive database of Nuclear Receptor (NR) Superfamily-Ligand. Nuclear Receptor Superfamily represents one of the most