• No results found

PF Simulation Using Matlab

N/A
N/A
Protected

Academic year: 2021

Share "PF Simulation Using Matlab"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

One line diagram of a

One line diagram of a five bus system :

five bus system :

INPUT :

INPUT :

%clear

%clear

basemva = 100

basemva = 100; ; accuracy = 0.0accuracy = 0.0001; accel = 1.6; maxiter = 100;001; accel = 1.6; maxiter = 100; %

% Ybus Ybus ELEMENTS ELEMENTS CALCULATION, CALCULATION, 5 5 BUSES BUSES 7 7 LINES LINES USINGUSING

%

% GAUSS-SEIDEL GAUSS-SEIDEL METHODMETHOD

%

% Bus Bus Bus Bus Voltage Voltage Angle Angle ---Load--- ---Load--- ---Generator--- ---Generator--- Static Static MvarMvar

%

% No No code code Mag. Mag. Degree Degree MW MW Mvar Mvar MW MW Mvar Mvar Qmin Qmin Qmax Qmax +Qc/-Ql+Qc/-Ql

busdata=[1 busdata=[1 1 1 1.02 1.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 00 2 2 0 0 1.00 1.00 0.0 0.0 60.0 60.0 30.0 30.0 0.0 0.0 0.0 0.0 0 0 0 0 00 3 3 2 2 1.04 1.04 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0 0 0 0 00 4 4 0 0 1.0 1.0 0.0 0.0 40.0 40.0 10.0 10.0 0.0 0.0 0.0 0.0 0 0 0 0 00 5 5 0 0 1.0 1.0 0.0 0.0 60.0 60.0 20.0 20.0 0.0 0.0 0.0 0.0 0 0 0 0 0];0]; %

% Line Line codecode

%

% Bus Bus bus bus R R X X 1/2 1/2 B B = = 1 1 for for lineslines

%

% nl nl nr nr p.u. p.u. p.u. p.u. p.u. p.u. > > 1 1 or or < < 1 1 tr. tr. tap tap at at bus bus nlnl

linedata=[1 linedata=[1 2 2 0.100 0.100 0.400 0.400 0.0 0.0 11 1 1 4 4 0.150 0.150 0.600 0.600 0.0 0.0 11 1 1 5 5 0.050 0.050 0.200 0.200 0.0 0.0 11 2 2 3 3 0.050 0.050 0.200 0.200 0.0 0.0 11 2 2 4 4 0.100 0.100 0.400 0.400 0.0 0.0 11 3 3 5 5 0.050 0.050 0.200 0.200 0.0 0.0 1 1 ];];

(2)

lfybus % form the bus admittance matrix %lfgauss % Load flow solution by Gauss-Seidel method %lfnewton % Load flow solution by Newton-Raphson method %decouple % Load flow solution by Fast Decoupled method %busout % Prints the power flow solution on the screen %lineflow % Computes and displays the line flow and losses

OUTPUT :

Ybus =

Columns 1 through 4

2.1569 - 8.6275i -0.5882 + 2.3529i 0 -0.3922 + 1.5686i -0.5882 + 2.3529i 2.3529 - 9.4118i -1.1765 + 4.7059i -0.5882 + 2.3529i

0 -1.1765 + 4.7059i 2.3529 - 9.4118i 0

-0.3922 + 1.5686i -0.5882 + 2.3529i 0 0.9804 - 3.9216i -1.1765 + 4.7059i 0 -1.1765 + 4.7059i 0 Column 5 -1.1765 + 4.7059i 0 -1.1765 + 4.7059i 0 2.3529 - 9.4118i

(3)

INPUT :

%clear

basemva = 100; accuracy = 0.0001; accel = 1.6; maxiter = 100;

% POWER FLOW CALCULATION, 5 BUSES 7 LINES USING % GAUSS-SEIDEL METHOD

% Bus Bus Voltage Angle ---Load--- ---Generator--- Static Mvar % No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0 2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0 3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0 4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0 5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0]; % Line code

% Bus bus R X 1/2 B = 1 for lines

% nl nr p.u. p.u. p.u. > 1 or < 1 tr. tap at bus nl linedata=[1 2 0.100 0.400 0.0 1 1 4 0.150 0.600 0.0 1 1 5 0.050 0.200 0.0 1 2 3 0.050 0.200 0.0 1 2 4 0.100 0.400 0.0 1 3 5 0.050 0.200 0.0 1 ];

lfybus % form the bus admittance matrix

lfgauss % Load flow solution by Gauss-Seidel method %lfnewton % Load flow solution by Newton-Raphson method %decouple % Load flow solution by Fast Decoupled method busout % Prints the power flow solution on the screen lineflow % Computes and displays the line flow and losses

OUTPUT :

Power Flow Solution by Gauss-Seidel Method Maximum Power Mismatch = 9.32572e-005

No. of Iterations = 25

Bus Voltage Angle ---Load--- ---Generation--- Injected No. Mag. Degree MW Mvar MW Mvar Mvar 1 1.020 0.000 0.000 0.000 65.141 32.921 0.000 2 0.955 -3.942 60.000 30.000 0.000 0.000 0.000

(4)

3 1.040 2.001 0.000 0.000 100.000 47.685 0.000 4 0.923 -8.009 40.000 10.000 0.000 0.000 0.000 5 0.993 -2.073 60.000 20.000 0.000 0.000 0.000 Total 160.000 60.000 165.141 80.607 0.000

Line Flow and Losses

--Line-- Power at bus & line flow --Line loss-- Transformer from to MW Mvar MVA MW Mvar tap 1 65.141 32.921 72.987 2 19.802 12.263 23.292 0.521 2.086 4 24.807 11.741 27.446 1.086 4.344 5 20.546 8.908 22.394 0.241 0.964 2 -60.000 -30.000 67.082 1 -19.280 -10.178 21.802 0.521 2.086 3 -57.325 -23.696 62.029 2.110 8.442 4 16.602 3.874 17.048 0.319 1.275 3 100.000 47.685 110.788 2 59.435 32.138 67.568 2.110 8.442 5 40.572 15.543 43.448 0.873 3.491 4 -40.000 -10.000 41.231 1 -23.721 -7.397 24.848 1.086 4.344 2 -16.283 -2.599 16.489 0.319 1.275 5 -60.000 -20.000 63.246

(5)

INPUT :

%clear

basemva = 100; accuracy = 0.0001; accel = 1.6; maxiter = 100;

% POWER FLOW CALCULATION, 5 BUSES 7 LINES USING

% NEWTON-RAPHSON METHOD

% Bus Bus Voltage Angle ---Load--- ---Generator--- Static Mvar % No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0 2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0 3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0 4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0 5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0]; % Line code

% Bus bus R X 1/2 B = 1 for lines

% nl nr p.u. p.u. p.u. > 1 or < 1 tr. tap at bus nl linedata=[1 2 0.100 0.400 0.0 1 1 4 0.150 0.600 0.0 1 1 5 0.050 0.200 0.0 1 2 3 0.050 0.200 0.0 1 2 4 0.100 0.400 0.0 1 3 5 0.050 0.200 0.0 1 ];

lfybus % form the bus admittance matrix

%lfgauss % Load flow solution by Gauss-Seidel method lfnewton % Load flow solution by Newton-Raphson method %decouple % Load flow solution by Fast Decoupled method busout % Prints the power flow solution on the screen lineflow % Computes and displays the line flow and losses

OUTPUT :

Power Flow Solution by Newton-Raphson Method Maximum Power Mismatch = 3.56144e-007

No. of Iterations = 4

Bus Voltage Angle ---Load--- ---Generation--- Injected No. Mag. Degree MW Mvar MW Mvar Mvar 1 1.020 0.000 0.000 0.000 65.150 32.916 0.000 2 0.955 -3.941 60.000 30.000 0.000 0.000 0.000

(6)

3 1.040 2.001 0.000 0.000 100.000 47.684 0.000 4 0.923 -8.008 40.000 10.000 0.000 0.000 0.000 5 0.993 -2.073 60.000 20.000 0.000 0.000 0.000 Total 160.000 60.000 165.150 80.599 0.000

Line Flow and Losses

--Line-- Power at bus & line flow --Line loss-- Transformer from to MW Mvar MVA MW Mvar tap 1 65.150 32.916 72.993 2 19.800 12.264 23.291 0.521 2.086 4 24.805 11.743 27.444 1.086 4.344 5 20.544 8.909 22.393 0.241 0.964 2 -60.000 -30.000 67.082 1 -19.279 -10.178 21.801 0.521 2.086 3 -57.321 -23.698 62.026 2.110 8.441 4 16.600 3.876 17.046 0.319 1.275 3 100.000 47.684 110.787 2 59.431 32.139 67.564 2.110 8.441 5 40.569 15.545 43.445 0.873 3.490 4 -40.000 -10.000 41.231 1 -23.719 -7.399 24.846 1.086 4.344 2 -16.281 -2.601 16.487 0.319 1.275 5 -60.000 -20.000 63.246

(7)

INPUT :

%clear

basemva = 100; accuracy = 0.0001; accel = 1.6; maxiter = 100;

% POWER FLOW CALCULATION, 5 BUSES 7 LINES USING

% FAST-DECOUPLED METHOD

% Bus Bus Voltage Angle ---Load--- ---Generator--- Static Mvar % No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0 2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0 3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0 4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0 5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0]; % Line code

% Bus bus R X 1/2 B = 1 for lines

% nl nr p.u. p.u. p.u. > 1 or < 1 tr. tap at bus nl linedata=[1 2 0.100 0.400 0.0 1 1 4 0.150 0.600 0.0 1 1 5 0.050 0.200 0.0 1 2 3 0.050 0.200 0.0 1 2 4 0.100 0.400 0.0 1 3 5 0.050 0.200 0.0 1 ];

lfybus % form the bus admittance matrix

%lfgauss % Load flow solution by Gauss-Seidel method %lfnewton % Load flow solution by Newton-Raphson method decouple % Load flow solution by Fast Decoupled method busout % Prints the power flow solution on the screen lineflow % Computes and displays the line flow and losses

OUTPUT :

Power Flow Solution by Fast Decoupled Method Maximum Power Mismatch = 9.98889e-005

No. of Iterations = 7

Bus Voltage Angle ---Load--- ---Generation--- Injected No. Mag. Degree MW Mvar MW Mvar Mvar 1 1.020 0.000 0.000 0.000 65.156 32.914 0.000 2 0.955 -3.941 60.000 30.000 0.000 0.000 0.000

(8)

3 1.040 2.001 0.000 0.000 100.000 47.680 0.000 4 0.923 -8.008 40.000 10.000 0.000 0.000 0.000 5 0.993 -2.073 60.000 20.000 0.000 0.000 0.000 Total 160.000 60.000 165.156 80.594 0.000

Line Flow and Losses

--Line-- Power at bus & line flow --Line loss-- Transformer from to MW Mvar MVA MW Mvar tap 1 65.156 32.914 72.998 2 19.801 12.265 23.291 0.521 2.086 4 24.805 11.742 27.444 1.086 4.343 5 20.545 8.911 22.394 0.241 0.964 2 -60.000 -30.000 67.082 1 -19.279 -10.179 21.801 0.521 2.086 3 -57.321 -23.699 62.027 2.110 8.441 4 16.599 3.875 17.045 0.319 1.275 3 100.000 47.680 110.786 2 59.432 32.140 67.565 2.110 8.441 5 40.569 15.547 43.446 0.873 3.490 4 -40.000 -10.000 41.231 1 -23.719 -7.399 24.846 1.086 4.343 2 -16.280 -2.600 16.486 0.319 1.275 5 -60.000 -20.000 63.246

References

Related documents

parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with

The disparity in wives ’ mental health out- comes associated with experiencing financial stress and relationship dissatisfaction in combination with their husbands ’

Discussant 1 (group 1) observed that online learning is comparable in quality of education offered to learners with traditional ways of learning if not better

This study was conducted in a health insti- tution in which data for associated risk factors for drug resistance were collected using a pretested questionnaire and sputum

The FTIR Spectra of carvedilol with the polymers PVP K30, Poloxamer 407 and HPMC K15 revealed the major functional groups of Carvedilol were same or nearly

indicates the modifiers mixes might have exposed to rutting and then contribute low performance on structure. While AC10 A10E M2 B4 and AC10 A20E M6 B7 modifiers are

Changes in the bacteria were shown by the lowered cost when the ancestral plasmids were introduced into evolved bacteria that had been cured of their (evolved) plasmids.