VOL. 14 NO. (1991) 45-54
SOME FUNCTIONALS
FOR COPULAS
C.ALSINA
Dcpartament
de Matemtiques EstadisticaETSAB,
UniversitatPoli6:cnica de Catalunya 08028 Barcelona, Spain.and
A. DAMAS and J.J. QUESADA
Departamento
deMatemticaAplicada Universidad de Granada18071 Granada, Spain.
(Received November 14, 1989 and in revised form April 8, 1990)
ABSTRACT. In
this paper westudysome functionals operatingonthesetof then-copulasdefinedon
[0,1 ]n.
Conditionsunder which such functionals are welldefined are determined and some counterexamplesaredescribed.The study of thefixed points(n-copulas)
for thesefunctionalsisalso considered, and, finally,someopenproblemsarepresented.KEY WORDS AND PIIRASES.
N-increasing[unctions, connecting copula,n-copula. 1980AMS SUBJEC CLASSIFICATION
CODE. 62H05.1.
INTRODUCTION.
In
1959, Abe Sklar introduced the concept ofacopula.Sincethen,
theory of copulas has been playingan importantrolein Mathematicsandinparticularin Mathematical Statistics and ProbabilityTheory.Many
applicationsof thetheoryofcopulashave beenproposedinthese parts of Mathematics.In
any case, we think that many of the advantages and possibilities of using copulasinProbabilityTheoryremainstilltobe developed.
Thetheory of copulashasbeen foundtobe of greatinterestwhen describing thedependence betweentwoormorerandomvariables,which is givenbytheir joint distribution function.
Severalinterestingpapersdealingwith this
problem
and othershave been written in the last fewyears.We
shouldmentionSchweizerandSklar[2
3],
SchweizerandWolff[4-
5],
Genestand Mackay[6],
and Wolff7].
In
SchweizerandWolff[4-5]
severalnonparametric measures ofdependence forrandom variablesaredefinedbyusing the associatedcopula. Someproperties and interesting resultsarepresented. Wolff
[7]
hasmadeadetailedstudyof these measures ofdependence.Genest
andMackay[6]
haveconsidered some familiesofcopulasand have studied properties forthem. Recently,Alsina andQuesada [8]
havestudiedthe relationships betweensome pairs of copulas.In
thispaper, we studysomefunctionalsoperating onthesetofthe copulasdefined on[0,1 ]n
and we determine the conditions under which these functionals are well defined. Some counterexamples describing the validityof these conditions are given.We
also study the fixedpointsIn
section2we give a brief introductiontothetheoryof copulas. Section 3 isdevotedtothe studyofthe functionals defined on thesetofcopulas.In
section4 we consider the caseH*
H
andin section5westudythe copulasthatarefixed pointsfor thesefunctionals.Section6contains someopen problemsand conclusions.
2.
COPULAS.
A
functionCfrom[0,1]
ninto[0.1
issaidtobe n-increasing if theC-volumeofanyn-box on[0,1]
isnon-negative,thatistosay, ifVc(N
)_>0 for any n-boxN =[(x,y)]
C[0,1]
with x(x
Xn),
Y(Yl,
Yn),
xi-<
Yi, 1, 2 n, where theC-volume of the n-boxN
isgivenby
Vc(N)
Y’.e(z
zn).
C (z
zn)
>_ 0(2.1)
where if z x foranevennumber ofi’s.
(z
Zn)
ifz x foranodd number ofi’s. andthe sumin
(2.1)
isextendedtoallvertices ofN.
Now,
let us consider the definitionof n-copuladuetoA.
Sklar in1959:Definition 2.1.
A
n-dimensionalcopula or,briefly, an-copulais a functionC
from[0,1
]n
into[0,1
thatsatisfiesthe followingconditions:(i)
C(1
,l,xi,
,l)=x
for every suchthat _<i_<nand everyxie[0,1].
(ii)
C(x
xn)--0
if xi=0
forsomeiwith l_<i_<n. (iii) C is n-increasing.Some easy examplesofn-copulasarethefunctions
II, M
andW
respectively defined byH(xj,
x2x,)
x.x
2x,
M(x,
x2 xn)
Min(x,
x_x,)
W(x,
x2, xn)
Max
(x+x2+...+xn-n+l,0)
and while
H
andM
arealwaysn-copulas,W
is acopula only whenn 2.It
iseasy to show that copulasareuniformlycontinuousfunctionsandthattheyare increasingineach variable.Also,any copula C satisfies thatW(x,
X2Xn)
_
C(Xl,
X2Xn)
_
M(Xl,
x2,Xn)
for every(XI,
X2Xn)
e [0,1
In.
Thefundamental resultinthetheoryofcopulasgives us an idea of the importance of acopula, becauseit isshown thatacopulaisafunctionrelating the joint distribution function ofarandom
vectorwith its marginal distribution functions. Namely, the keyresultinthe theory of copulas
assertsasfollows:
THEOREM
2.2.Let
X,
X
2X
n be n random variables defined on a common probability spaceandletFI,
F
2F
n andG
be the marginaldistribution functionsand thejoint distribution function respectively. Then, thereexists an-copula C such thatG(t,
2n)
C(F(t0, F2(t
2)
Fn(tn))
(2.2)
forevery
t,
2R.
The copula Ciscalledaconnectingcopula ofX,
X
2X
and, ifF
1,F
F
are continuous, then C is unique. Other’ise,C
is uniquely determined on(Ran
FI)
x(Ran
F
2)
x x(Ran
Fn).
As
aconsequence of Theorem 2.2 we canobserve thattheconnectingcopulaof n random variables is afunctionthat containsall theinformationabout the dependence of the randomvariables. Thisisone thereasons for proposingmeasuresofdependence for randomvariables intermsofthe connectingcopula.(See
SchweizerandWolff[4-5]
andWolff[7].
THEOREM 2.3.
Let
X
l,X
X
be n random variables defined on a commonprobabilityspaceand havingcontinuonsmarginaldistributions functions.If C istheconnecting
copula,then
(i) C
II
ifand only ifX
l,X
X
areindependent.(ii) C
M
ifandonlyifeachrandomvariableX
i, l,2 n isan increasingfunctionoftheotherones.
(iii)
For
n=2, C=W
ifand only if each random variableX.(i
1,2)
is adecreasing function of theotherone.
Thecases (ii) and (iii) correspondwith total and positive, and total and negative dependence of therandomvariables,respectively.
Moreresults and applicationscanbefoundintheabovementioned works and alsointhe book
"ProbabilisticMetricSpaces" bySchweizerand Sklar
[3],
whereawholechapterisdevotedtothe theoryofcopulas.Now,
ourinterestis tostudysome functionals operating on thesetofthen-copulas.These functionals havetobe well defined,that istosay, wehavetodetermine the conditions under which the functionals mapcopulasintocopulas.3.
THE FUNCTIONALS.
Let
C be anyn-copula, andletP
be a fixedn-copula.We
consider the functional defined for anyn-copula C as followsC*(Xl,
xXn)
h.P(Xl,
x2Xn)
+(l-h)
f(xl,
x2 xn)
(3.1)
+
C(al(Xl,
xXn),
an(X
x2, xn)
for every
(Xl,
x2 xn)
[0,1In,
where f is afunction definedon[0,1In,
al a2 a arefunctions defined from
[0,1]
into[0,11
andh[0,1].
Firstofall,wewant tostudyconditions for the functionsf,al,
a;
a whichassure usthat
C*
isan-copulafor anyn-copula.Later,
wewill consider the caseII*
H
andwewillstudy the fixed pointsfor thesefunctionals,thatis, then-copulas C such that C Co.If h 1, then
C*
P
for any n-copulaC
andit is atrivial case.From
nowon,wewill consider h[0,1). In
thenextresult westudyconditions onf,a1,a2 a wich ensure thatC*
satisfies conditions (i) and (ii) of definiton 2.1foranyn-copula C.
LEMMA
3.1. LetC*
beasdefinedin(3.1). For
anyn-copula C the followingstatement is true:(i)
C*(l
l,xi,l)=x
for every suchthat lgi<n andeveryxi[0,1],
and
(ii)
C*(x
xn)=0
if x1=0
for some with lgi<nif andonlyif
f(xl
Xn
XlXn
C(al(X
xn)
tXn(Xl,
Xn))
for any(x
Xn)
[0,1]n
such thatx...x
=xj for somejwith lgj<n.PROOF.
Suppose(xi
Xn)
[0,1]
such that some xi= 0 andC*(x
Xn)
0.Since
P
isa copula we havef(xi
xn)=. C(al(X
xn),
an(X
Xn)
).
Similarly,given(l,...,
1, xi, l)[0,1]
n,
ifC*(l
l,xi,l)=xl
wehave thatx h.x +
(l-h).
f(l,
1, xi, 1,1)
++
C(0[l(l
1,x1)
n(l
1, xi,1))
In
theotherdirection, letussuppose thatfix
Xn)
X XC(Gtl(X
Xn)
Gtn(X
Xn))
for any (x x
n)
E[0,1
]n
such that x x xj forsomej, _< _<n.In
this case wegetC*(
x
xn)
..P(x
xn)
+(1-.).
x
xwhichcompletestheproof.
Now,
wewant to find conditions on f and al,a2 a independently of the copulaC,
whicharenecessary and sufficientforC*
tosatisfy conditions(i)and(ii)
of definition 2.1.From
nowon,wewill denoteby theunitinterval
[0,1],
and n[0,1]
n.
Also,J
willdenote the subsetof givenby
J={ (x
Xn)
EIn
Xl...Xn=Xi for some i, l_<i_<nFirst, let usprovethefollowingtechnicalresult:
PROPOSITION
3.2. Ifl-l*(xl,
x xn)
M*(x,
x_ xn)
then for everyn
(x,
x xn)
J,
thereissomej,<
<
n, such thatII oti(x,
x2 xn)
aj(Xl,
x2Xn).
i=l
PROOF. If
II*(x,
x
xn)
M*(x,
x2 xn)
then, bydefinition,II(a(x
xn)
0tn(X
xn))
M(a(x
xn)
an(X
Xn))
andtheresultisproved.
LEMMA
3.3.Let
C*
beasdefined in(3.1).
Thenthe followingstatement istrue:For
everyn-copulaC,
(i)
C*(I
l,xi,l)=x
foreveryisuchthat<
i< nandeveryxi[0,l],
and
(ii)
C*(x
xn)=0
ifxi--0
for someiwith l<i<n ifand only if(iii)
f(x
Xn)
X Xfl
(Xi(X
Xn)
for every(X
X EJ,
i=l
and
(iv) for every
(xl
xn)
J
thereissomej, <_ <_n,such that[-I
ai(x
1, xn)
i=l
%(xt
x.).
PROOF.
Let
C*
besatisfying(i) and (ii),inparticular forC
II
and by using lemma 3.1 we get(iii). Also, byhypothesisII*.
andM*
are in the conditionsofproposition 3.2 and(iv)isobtained.
In
theotherdirection,let us consider(0,
x2 xn)
EJ,
thenby (iii).C*(O,
x2, xn)
(l-i).
I
oti(O,
x2 xn)
+i=l
C(Otl(0
x2, xn)
an(0,
x2, xn))
and by(iv)wehave
C*(0,
x2 xn)
0. The remaining cases can similarly beproved.Lemma3.3statesnecessary and sufficient conditions for fand
a,
a2 a in order tohave
C*
satisfy(i)
and(ii) ofthe which definitionof n-copulaC. It
onlyremainstostudyconditions guaranteeC*
isn-increasing. The theoremprovides thesolutionforthisproblem.
THEOREM
3.4.Let
C*
be as defined in(3.1).
Iff(x
xn)
is n-increasing, (iii) and(iv)
onproposition3.3aresatisfied, andeither oneof thetwofollowingconditions hold:(v)
Every
function depends solely ofone variable, whichisdifferent for each.
Allai’s
aremonotone but thenumber ofthem that are decreasing, iseven.1)
C*
isan-copula for every n-copula C.2)
IfC
<
C2, thenC*< C2".
PROOF. Letussuppose that
(v)
issatisfied.By
applying lemma3.3,since(iii)and(iv) hold,wehave forC*
the conditions(i)and(ii)of definition 2.1.Itonlyremains to prove thatC*
isn-increasing.
Let
N
[(a
an),(b
bn)]
bean-box,N
Cn. We
havetoshow thatE
t(Z
Zn)
C*(Z
Zn)
>
0(3.2)
where the sumisextendedtoallverticesof
N.
Suppose that, by
(v),
Gt only dependsonx for 1,2 n.Then,bytakinginto accountthat
P
is an-copulaandfisn-increasing,(3.2)
isequivalenttoproving thatY’-
E(Z
Zn). C((Gtl(Zl)
Otn(Zn)
>
0 (3.3) Let c(c,
c cn)
be givenby cGti(ai)
if ct isincreasingand coti(bi)
if ai isdecreasing, and d
(d,
dE tin)
givenby dti()
if 0t isincreasing and dcti(a
t)
if tx isdecreasing.ClearlyN
[c,d]
is an-boxon[0,1]
andforeveryvertex(z,
z z ofN,
wehave(ZI,Z
Zn)=
(GtI(ZI),
GtE(Z2)
Ctn(Zn)).
Thus
(3.3)
isreducedtoprovingY’-
E(GtI(ZI)
Ctn(Zn)
C(Otl(Zl)
Gtn(Zn)
_> 0whichissatisfiedbecause C isan-copula. Therefore
C*
is an-copula.Letussupposethat(vi)holds instead of
(v). Now,
C*
willbe n-increasing ifweprove that.
(ZI,
Z2Zn).
C(l(Z
Zn)
n(Z
Zn)
>_ 0Suppose,
fordxample,
that noneoftheai’s
dependsonx,
then)-’.
(ZI
Z2 Zn) C(GtI(Z
Zn)
Ot.n(Z
Zn))
E
E(al,
Z2Zn).
C(t(a,
Zn)
17.n(a
Zn))
++ Y
(bl,
z2Zn)
C(l(b
Zn)
(xn(b
Zn))
0 because6(al,
z2Zn)
(bl,
z2 zn)
andcti(al,
z2Zn)
ai(bl,
z2 zn)
fori-1,2 n.
It
isobviousthat ifC
_< C2, thenC*
_<C2".
COUNTEREXAMPLE.
It
seemsreasonabletothinkthatconditions(v)
and(vi)intheorem 3.4 could be too strong. This is not the case, and to illustrate this, we give the following counterexamplewhichshowsus that either one ofthose hypothesis are needed.Let
C*(x,y)
be givenbyC*(x,
y)X.H(x, y)
+(1-.).
f(x, y)
+C(0t(x,y), tx2(x,y))
and let us consider
tx(x,
y)
Miny.(x+y),
y},
t2(x,y
)--
x andf(x,y)
0. Then f is2-increasingand(iii)and(iv)aresatisfied, butneither
(v)
or(vi) hold. Also,weobservethat tand x areincreasingand continuousfunctionsandthereforewe eliminatetheideathat continuity couldchange the conditionsof ourproblem. Ifweconsiderthe values
x
3/4, x2 1, Yl 1/8,Y2
1/2 and CM,
thenwe getM*(3/4,
1/8)
+M*(I,
1/2)-
M*(3/4,
1/2)-
M*(I,
1/8)
4.
THE CASE
II*
H.
Onceweknowthe conditions for
C*
beingan-copula,we areinterestedinthestudyof the particular cases in which then-copulaH
remainsfixed, thatistosayH*
II.
Thetheoremprovides the solution for thisproblem:THEOREM
4.1.Let
C*
beasdefined in(3.1).
The followingconditions are equivalent: (i)H
*=
H.
X Xn
.
P
(Xl
Xn)
(ii)
f(x
xa)
I
0ti(x
xa)
i"l
for every x x
n)
I".
(iii)
C*(x
xn)
x
xn ++
(1").
C(G[I(X
In)
Cln(X
Xn)
1
Cli(x
Xn)
i=l
forevery X Xll
In.
PROOF.
(i) (ii). IfFI*--FI,
thenn
.P(x
xn)
+(1-.).
f(x
xn)
+i[I.l
(Gi(X
Xn)
X X andwe get(ii).
(ii)
(iii).
By
substituting finthegeneral
expression ofC*
wehave(iii).(iii)
(i).
Ifwe putC
II
in(iii),
wegetII*
H.
We
observethatC*
in (iii) canbeseen in the general form(3.1)
whereP
II
and fisgivenby
f(x
xn)
x xlal
(xt
Xn)
for every(Xl
xn)
n.
We
willuse thisi=l
facttoprove thefollowingresult:
THEOREM
4.2.Let
C*
begivenby (iii) intheorem 4.1. Ifthere exists one variablex
(1
_< _<n)
suchthat noneof thefunctions i dependsonx,
and for every(x
x)
J
thereissome
k,
<
k _< n, such thatI
(xt,
...,x
n)
Ctk(X
Xn),
theni=l
1)
C*
isan-copula for every n-copulaC.
2)
II*
II.
3)
For
everyn-copulaC,
C _>II
C*
_>H
and C _<H
C*
_<II.
PROOF. SinceC*
has thegeneral form(3.1)
whereP
II
andf(Xl
Xn)
Xl
Xn
(Xi(Xl
Xn)
andbyusing thesecond hypothesisofthe functions0q,we can apply lemma 3.3 andtherefore
C*
satisfiesconditions(i)
and(ii)
ofdefinition2.1.In
ordertobe abletousetheorem 3.4 which assures usthatC*
is an-copula,
itisenoughtoshow thatf(xi
xn)
is n-increasing.Let
N
[(a
an),(b
bn)]
be a n-boxinIn,
andsuppose,forexample,that none of the funtionscq
dependson xi.Then,E
(z,
z2Zn).
1
ai(Z,
z2Zn)
E
(a,
z2Zn).
fi
ff.i(al,
Z2 Zn)
i-I
n
+ Y"
6(bl’
z2zn)
"i
q(bl’
z2Zn)
0SOME FUNCTIONALS FOR COPULAS 51
i, g <_n.Therefore,
E
((ZZn)
f(zZn)
Y’- ((ZZn)
Z Z_
0and
C*
is an-copula.By
theorem 4.1,it isclear thatII*
I1,andtheproofof3)isobvious.REMARK.
We
canobservethathypothesis(v)
oftheorem3.4 doesnotworkintheorem 4.2.Letussuppose, forexample,that cx onlydependsonx
for 1, 2 n, and the number of functions thataredecreasingiseven.In
thiscasewehave thatE
(z
Zn). C(c(z)
n(Zn))
>-
0,andinordertoassurethat
C*
isn-increasing we havetoprove that fisn-increasing, thatis tosay, -Y’-((Zl,
ZZn). (Xl(Zl). Gt2(Z2)...
0tn(Zn)
_) 0.But,
"
E(zI,
z2Zn)"
1(Zl)"
t2(z2)
n(Zn)
E
e(bl,z2,z).
0t
(bl). 2(Z2)
n(Z
n)
++
"
(bl,
z2
Zn)"
l
(al). 2(z2
(n(Zn)
Y"
(bl,
z2
Zn)"
(l(bl)" l(al)
OrE(Z2)
n(Zn)"
Repeating the sameprocesswecan obtainY’.
(Zl,
ZZn). Gtl(Zl) 2(Z2)
n(Zn)
fi
Gti(bi)
i(ai)
_
0i=l
because,by
(v)
all the functions Ot aremonotone and the number of them that are decreasing iseven, andtherefore
f(x,
x2 xn)
isnotn-increasing.5.
FIXED
COPULAS.
Now,
weareinterested in finding thesecopulasthatremainfixedfor the functionalswe arestudying. First,we consider
X
z
(0,
l) andthenwewill see innexttheorem that the answer for this problemistheexistenceanduniqueness ofan-copula C such thatCo*
Co.THEOREM
5.1.Let
C*
beasdefined in(3.1),
andXe(0,1).
If f(x x
n)
P(xXn)-
P(tXl(X
Xn)
0tn(X
Xn)),
thenC*=C
C=P.
PROOF.
Let
II
C-PII
supC(x
x)-P(x
xn)
I.
Then(x Xn)(In
II
c*-PII
I-
C((ll
O[n)-P(cx,,
Gin)
-<
(x n) n
_<
x
l-
supC(Xl
Xn)" P(xI’
xn)
(x n)(
whichconcludestheproof.
COROLLARY
5.2.Let
C*
be as in theorem 5.1.Then,the followingis true:(i)
c**=c
c=P
(ii)
IfC
o=C
andCn+
-Cn*,
for n=0,1, 2, then(C
n}
P.
PROOF. From
theorem 5.1.(i)
isunisspelled.For
proving(ii)
it is enough to see that]ICR- Pl[ <_11-X
.
]lc- P[I
andthereforewhen n increasesthen-copulaCn
isascloseaswewishtothe n-copula
P.
COROLLARY6.3. Let
C*
beasdefinedin (3.1) with %%o
e(0,1), and let C be any n-copula.The following conditions are equivalent:(i)
Co*=
Co.(ii)
C*(Xl
Xn)
Co(X
Xn)
+(1-o)"
C(a
an) Co(a
an)
].
(iii)Co*
C and C istheonly n-copulathat is fixed for this functional. PROOF. (i) (ii). IfCo*--C
o, thenCo(x
x,)
Xo.P(x
xn)
+(1-%o)
.[
f(x
xn)
++
o(O(x
x,,)
n(X
x))
C*(x
xn)
xInI
a (x xn)
+C(a
an)
i=l i=l
If
ai(a(x
xn)
an(X
Xn)
x for 1, 2 n, thenC**
C for every n-copula C.PROOF. This casecorrespondswith X 0 and
H*
H.IfwecomputeC**
weobtainC**(x
xn)
x.ai(x
xn)
+C*(a
an)
C(XI
Xn).
iffil
6.
CONCLUSIONS
AND REMARKS.
The results presentedinthis paper are interesting in their own right, and lead ustoseveral openproblems.
A
briefdescriptions ofsomeof themfollows.First, let
F
l,F
2F
be themarginaldistribution functionsofarandom vector andletF
beitsjoint distribution function andletussuppose that Cisa connectingcopulaassociatedwith F. If
C*
isthen-copulathat we obtain when applying the functional definedby(3.1)
toC,
then the problemistofindthe relationships betweenF
andF*,
whereF*
isthejoint distribution functionof a random vector having
FI,
F2
F
as marginal distribution functions andC’as
aconnectingcopula.
In
short,theproblemconsists in finding the relationships between the joint distribution functions with connectingn-copulas C andC*.
Anotherproblemis togeneralize the functionalinthesensethat the one defined here could be seen as aparticular case.
We
observe that if we considerC(x
xn)
X.P(x
xn)
+(I-X).
f(x
Xn)-
C(a
an)
1,
Therefore,Co(Xl
Xn)
o"
P(xI
Xn)
f(x x
n)
Co(a
an)
1- X andbysubstituting in the expressionof
C*
we obtain (ii).(ii) (iii).
We
canwrite (ii) in the following wayC*(X
Xn)
)%o.Co(Xl
Xn)
+(1-Xo).
C(a
an)
++
Co(X
xn)
Co(a
aBy
applyingtheorem 5.1, whereP(x
xn)
Co(Xl
xn)
andf(x X
n)
Co(X
Xn)- Co(al(Xl
Xn)
an(X
Xn))
weobtain (iii). Onthe otherhand (iii) (i) istrivial.Now
wewillstudyconditionsunderwhich the functional will have the property thatC**
C for everyn-copula C.Theresultgives us conditions for a,
a a in particular cases ofC*
wherethatpropertyholds.thensimilar properties andresultsforthis functional canbeshown.
In
any case the problem is toextendthesetwocasestoamoregeneral functional.
Itwouldalso be very interestingto study the copulasthat we obtainwhenapplyingthe functionaltosomeknowncopulas.
ACKNOWLEDGEMENT.
Theauthors wouldliketothankthereferee forhelpful
comments whichimproved the presentationofthepaper.REFERENCES.
I.
Sklar, A.
"Functionsde rdpartion hndimensions etleursmarges".
Publ.Inst.
Statisf. Univ. Pads 8,(1959),
229 231.2. Schweizer,
B.
andSklar,A. "Mesure
ale6toirede l’informationetmdsure de I’information par unensemble d’observateurs".C.R.
Acad.Sci. Pads 272A.(1971),
149 152. 3. Schweizer,B.
andSklar, A.
"Probabilistic MetricSpaces".
Elsevier Science Publishing, Co.,In_c., New
York,(1983).
4. Schweizer,
B.
andWolff,E.F.
"Sur
une mesurededdpendence pourles variables aldatoires".C.R.
Acad. Sci. Pads 283A,(1976),
659-661.5. Schweizer,
B.
andWolff, E.F. "On
nonparametric measures ofdependence for random variables".Ann.
Statist. 9,(198 l),
879 885.6.
Genest, C.
andMackay,R.J.
"Copulas archim6diennes et families de lois bidimensionelles dontles margessont donn6es".Revue
Canadienne de Statistio_ue v. 14N2" (1986),
145- 159.
7.
Wolff, E.F.
"Measures
of dependence derived from copulas". Ph.D.
Thesis, Univ. ofMassachusetts, (1977).
8. Alsina,
C.
and Quesada,J.J. "On
the associativity ofC(x,y)
and x C (x,l-y)". Proc.
18th.Int. SvmD.
onMultiple-ValuedLogic,PalmadeMallorca, Spain,(1988).
52 53. 9.Sklar,
A.
"Random variables, joint distribution functions, and copulas". Kybemetika 9,