cracked beam

Top PDF cracked beam:

Study on Effect of Crack Inclination and Location on Natural Frequency for Inclined Edge Cracked Beam using Free Vibration

Study on Effect of Crack Inclination and Location on Natural Frequency for Inclined Edge Cracked Beam using Free Vibration

It has been observed that the natural frequency changes significantly due to the presence of cracks depending upon inclination and depth of cracks. The results of the crack parameters have been obtained from the comparison of the results of the un-cracked and cracked cantilever beam during the Modal analysis using ANSYS software. It has been observed that the natural frequency changes substantially due to the presence of cracks depending upon location and size of cracks. It has been observed that when the crack positions are constant i.e. at particular crack location, the natural frequencies of a cracked beam are inversely proportional to the crack depth. The natural frequency of the cracked beam decreases with increase the crack depth. the change in frequencies is not only a function of crack depth, and crack inclination, but also of the mode number.

6 Read more

Study On Vibration Analysis Of Inclined Edge Cracked Beam With Fixed Free Boundary Condition Using Ansys Software

Study On Vibration Analysis Of Inclined Edge Cracked Beam With Fixed Free Boundary Condition Using Ansys Software

The Beam is modeled in ANSYS Software. Element SOLID45 is used for the 3-D modeling of solid structures. Material properties are provided which is briefly listed in Table 1. After that 12 models are prepared with various inclination angles for crack with the location of crack as center of beam. After that the beam is meshed. The natural frequency of the cracked beam is found by the well known Finite Element (FEM) Software ANSYS. Modal analysis is carried out using the Block Lanczos method for finding the natural frequencies. The fixed free boundary condition was applied by constraining the nodal displacement in both x and y direction. The results are tabulated in Table 1

5 Read more

Paradigm for natural frequency of an un cracked cantilever beam and its 
		application to cracked beam

Paradigm for natural frequency of an un cracked cantilever beam and its application to cracked beam

open and closed crack leads to a model with point finite elements. In the case of cracked beams, the crack breathing law is quite simple, since there are only two states for the stiffness matrix: when the crack is open and when it is closed. With this behavior, the stiffness variation is assumed as step function, according to the instantaneous bending moments that is applied to the crack section, as Qian et al. [11] and Sundermeyer and Weaver [12] analyzes a simply supported cracked beam, model by two beams segments joined by a spring that represents cracked section. Each segment is treated as a continuous element, which obeys the differential partial equation of Euler-Bernoulli. On the other hand, Tsai and Wang [13] uses the Timoshenko’s theory in order to model the beam section. Qian et al. [11] formulate a method of crack location in cantilever beams, based on the change that this failure produces in the natural frequencies and mode shapes of the system. Saavedra et al. [14] presented a theoretical and experimental dynamic behaviour of different multi-beams systems containing a transverse cracks. The additional flexibility that the crack generates in its vicinity is evaluated using strain energy density function given by the linear fracture mechanics theory. Based on this flexibility, a new cracked finite element stiffness matrix is deduced, which can be used subsequently in the FEM analysis of crack systems. Chaiti et al. [15] addresses the problem of vibrations of a cracked beam. In general, the motion of such a beam can be very complex. The focus of this paper is the modal analysis of a cantilever beam with a transverse edge crack. The non- linearity mentioned above has been modelled as a piecewise-linear system. In an attempt to define effective

16 Read more

Crack Detection In Beams Using Experimental Model Data And Finite Element Model”

Crack Detection In Beams Using Experimental Model Data And Finite Element Model”

positioning of it. The slight variations in the values are because of the various assumptions taken during numerical analyses which are slight different from the assumption taken during theoretical analysis by the authors. So the present numerical investigation proofs to be handy for such analysis of cracked beam, and it can be said that for evaluating the relative natural frequency and amplitude of the multi cracked beam numerical investigation gives sufficient information regarding the matter.

12 Read more

An Overview of Disarray in Vibration Analysis of Cracked Rectangular Cantilever Beam Supriya D. Sankpal Arun V. Bhosale

An Overview of Disarray in Vibration Analysis of Cracked Rectangular Cantilever Beam Supriya D. Sankpal Arun V. Bhosale

The presence of cracks in a structure is usually detected by adopting a linear approach through the monitoring of changes in its dynamic response features, such as natural frequencies and mode shapes. But these linear vibration procedures do not always come up to practical results because of their inherently low sensitivity to defects. Since a crack introduces non-linearities in the system, their use in damage detection merits to be investigated. With this aim the present paper is devoted to analyzing the peculiar features of the non-linear response of a cracked beam. The problem of a cantilever beam with an asymmetric edge crack subjected to a harmonic forcing at the tip is considered as a plane problem and is solved by using two-dimensional finite elements; the behaviour of the breathing crack is simulated as a frictionless contact problem. The modification of the response with respect to the linear one is outlined: in particular, excitation of sub- and super-harmonics, period doubling, and quasi-impulsive behaviour at crack interfaces are the main achievements. These response characteristics, strictly due to the presence of a crack, can be used in non-linear techniques of crack identification. [3]

5 Read more

Modal Analysis of Beam with Varying Crack Depth

Modal Analysis of Beam with Varying Crack Depth

Sharma P.K., et al. (2014) were conduct the work for finite element analysis of both un-cracked and cracked cantilever beam. CAD design developed using CATIA software was the input file for this analysis. Totally 10 models of cracked beam having various cross sections were analysed. The results obtained from the finite element analysis were verified by theoretical method [5]. Chandradeep Kumar, et al. (2014) were conduct the Finite element analysis of a beam using MATLAB and ANSYS then the results are compared with theoretical calculations. Lastly harmonic analysis also performed to check the results [6].

7 Read more

Vibration Analysis of Cracked Cantilever Beam for Varying Crack Size And Location

Vibration Analysis of Cracked Cantilever Beam for Varying Crack Size And Location

The natural frequency decreases as the crack depth increases in a structural part. Firstly determination of natural frequency of different modes of vibration is done for un-cracked beam theoretically (then FEA analysis in ANSYS and by using FFT analyzer in experimental work. Here total 10 models have been used taking different combinations of relative crack location and relative crack depth. Certain steps are followed to carry on analysis by FFT analyzer for experimentation. It is clear from analysis that the natural frequency of different modes of vibration can be precisely obtained from these methods and tabulated in tables. A comparison is made in between theoretical values of natural frequencies with the ANSYS values of natural frequencies and experimental values of natural frequencies. The result shows that all the values obtained by three methods are closed to the agreement.

7 Read more

Free Vibration Characteristics Of Edge Cracked Functionally Graded Beams By Using Finite Element Method

Free Vibration Characteristics Of Edge Cracked Functionally Graded Beams By Using Finite Element Method

The differential equations of motion are obtained by using Hamilton’s principle. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. The cracked beam is modeled as an assembly of two sub-beams connected through a massless elastic rotational spring. Material properties of the beam change in the thickness direction according to exponential distributions. In the study, the effects of the location of crack, the depth of the crack and different material distributions on the natural frequencies and the mode shapes of the functionally graded beams are investigated in detail. Also, some of the present results are compared with the previously published results to establish the validity of the present formulation.

8 Read more

HARMONIC ANALYSIS OF A CRACKED CANTILEVER BEAM USING ANSYS WORKBENCH

HARMONIC ANALYSIS OF A CRACKED CANTILEVER BEAM USING ANSYS WORKBENCH

crack is modeled as piecewise linear system with bilinear natural frequency while geometric nonlinearities are incorporated in a cubic Duffing’s term. The reduced order model was able to match the original FEM data to desired accuracy with only first two POD modes of the system and capture the change in frequency introduced by the damage. Robustness of the macromodel is checked under different loading conditions viz. changed forcing frequency, pressure loading and damping. Natural frequency of the cracked beam reduces due to presence of local flexibility in the form of breathing crack and is observed from FFT of the forced vibration response.

9 Read more

Vibration analysis of a cantilever beam 
		for oblique cracks

Vibration analysis of a cantilever beam for oblique cracks

Due to limited fatigue strength, the fatigue cracks ours in the material under service conditions. Cracks are also found inside the material due to poor manufacturing processes. Single sided cracks are produced in the material as a result of fluctuating loads. Crack generally may be of two types, transverse cracks and oblique cracks. The magnitude and orientation of the manufacturing defect decides the origin of either transverse cracks or oblique cracks in the beam. Hence it is very essential to study the effect of top side and bottom side oblique cracks on the beam. Out of two cracks i.e. top side or bottom side cracks, one crack will be comparatively more critical, hence it requires much attention. Crack get propagated in the material due to the action of fatigue load and at the end, it gives catastrophic failure. Understanding the dynamics of the cracked beam is of most importance because various vibration parameters like natural frequency, resonant amplitude of uncracked and cracked cases of a beam used as a basic criteria in the crack detection by vibration methods. In this study, most practical spring steel material (EN 47) is considered for the cantilever beam. ANSYS software used to find the natural frequency and zero frequency deflection of cracked cases of beams. Stiffness of defective beams is calculated by a conventional formula (Load / deflection). In this study, it is found that the value of stiffness and natural frequencies for top side cracked cases are comparatively on lower side than bottom side cracked cases when crack angle equal to 20 0 . It is also found that up to 10 0 crack angle, the algebraic sum of stiffness of top side cracked cases is equal to the algebraic sum of stiffness of bottom side cracked cases. This condition is true also for natural frequency. It is also observed that, when crack angle is 20 0 , then presence of top side crack and bottom side crack of the same configuration in the cantilever beam is a function of natural frequency, when cantilever beam is of a square cross section.

8 Read more

Experimental and finite-element free vibration analysis and artificial neural network based on multi-crack diagnosis of non-uniform cross-section beam

Experimental and finite-element free vibration analysis and artificial neural network based on multi-crack diagnosis of non-uniform cross-section beam

different papers on multiple cracks, respective influences, and identification methods in some structures such as beams, pipes, rotors etc. Lee [11] used FEM to solve forward problem in a multi-cracked beam. In this paper, an inverse problem was solved iteratively for the locations and depths of the cracks using the Newton- Raphson method. Patil and Maiti [12] identified multiple cracks using frequency measurements. Their procedure presented an explicit linear relationship between the changes of natural frequencies and damage parameters. Mazanoglu et al. [13] performed the vibration analysis of multi-cracked variable cross-section beams using the Rayleigh–Ritz approximation method. Binici [14] presented a parametric study on the effect of cracks and axial force levels on the eigenfrequencies. A new method for natural frequency analysis of beams with an arbitrary number of cracks was developed by Khiem and Lien [15]. Cam et al. [16] studied the vibrations of cracked beam as a result of impact shocks to obtain information about location of cracks and depth of beams.

11 Read more

Verification of mathematical model of a 
		cracked cantilever beam to U shape cracks

Verification of mathematical model of a cracked cantilever beam to U shape cracks

Dynamic individuality of cracked and intact materials is dissimilar; it means that the reliability of both the materials is not same. So, the vibration analysis of a cracked beam or shafts is one of the most severe problems in various machinery. The investigation of cracked beams for various vibration parameters are very much needed because of its practical importance. Measurement of natural frequencies, vibration modes of cracked and un- cracked beam is used as a basic criterion in crack detection. Most of the cracks may be a of fatigue type and occurs in the beam in service due to the limited fatigue strength. In the literature many studies deal with the structural safety of beams. Kocharla et al. [1] studied that presence of crack in a structure changes the vibration properties of the beam like natural frequency and mode shape. These change in vibration properties used in inverse problem for the crack detection. In this study, they treated the turbine blades as a cantilever beam. Vibration analysis of a cantilever beam extended successfully to develop online crack detection methodology in turbine blade. Cantilever beam is modeled with two U-notches and observed the influence of one U-notch on the other for natural frequencies and mode shapes. By using central difference approximation, the curvature mode shapes were calculated from the displacement mode shapes. The depth and location corresponding to any peak on this curve becomes possible notch parameters. Babu et al. [2] treated turbine blade as a cantilever beam and a shaft as a simply supported beam. Vibration analysis of a cantilever beam and simply supported beam is extended successfully to

11 Read more

MODAL ANALYSIS OF A CRACKED CANTILEVER BEAM USING ANSYS WORKBENCH

MODAL ANALYSIS OF A CRACKED CANTILEVER BEAM USING ANSYS WORKBENCH

K. H. Barad et al. [4] detected the crack presence on the surface of beam-type structural element using natural frequency. First two natural frequencies of the cracked beam have been obtained experimentally and used for detection of crack location and size. Detected crack locations and size are compared with the actual results. The effect of crack location and depth on natural frequency is presented and compared.

8 Read more

Vibration Analysis of Cracked Cantilever Beam – A Review

Vibration Analysis of Cracked Cantilever Beam – A Review

explained that, fault detection in a single cracked beam has been worked out. To identify location and the depth of crack in a beam containing single transverse crack is done through conceptual and experimental analysis respectively. It has come to noticed that a crack in a beam has great effect on dynamic characteristics of beam. The strain energy density function also applied to examine the few more flexibility produced because of the presence of crack. Considering the flexibility an additional stiffness matrix is taken away and it is used to obtain the natural frequency and mode shape of the cracked beam of different end conditions. The difference of mode shapes of cantilever beam, simply supported beam and Clamped – Clamped beam in between the first three mode shapes of cracked and un-cracked respectively beam with its amplified view at the location of the crack are studied. The theoretical analyses are carried out of the crack structure. Finally for the validation of result are matched with the both theoretical and experimental analysis. It is found that the agreed between their results is excellent. The comparisons of result in both methodologies written above are performed. The future work on the problem of fault recognition of a cracked beam can be carried by using more advanced hybrid techniques with the help of finite element method and artificial intelligence technique.

5 Read more

Free Vibrational Analysis of Cracked and Un cracked Cantilever Beam

Free Vibrational Analysis of Cracked and Un cracked Cantilever Beam

It is already known that the natural frequency decreases as the crack depth increases in a structural part. Firstly determination of natural frequency of different modes of vibration is done for un-cracked beam theoretically (solving Euler’s Equation for Beam in vibration analysis),then FEA analysis in ANSYS and by using FFT analyser in experimental work. Here total 10 models have been usedtaking different combinations of relative crack location and relative crack depth. Several steps have been shown to develop a natural frequency modal based on FEA which is explained through an example and all the frequency values are tabulated in chapter 5 along with the knowledge of finite element analysis. Certain steps are followed to carry on analysis by FFT analyser for experimentation. Several decisions are made to carry out experimental work in chapter 6. The brief information has been obtained due to experimentation. It is clear from analysis that the natural frequency of different modes of vibration can be precisely obtained from these methods and tabulated in table 8.1. The variation of natural frequency with crack depth and location is shown in Fig. 8.1 and 8.2

18 Read more

Shear strengthening of cracked RC beam using external post-tensioning

Shear strengthening of cracked RC beam using external post-tensioning

The third specimen RCB3 was loaded the same way as RCB2 and observed similar progress in ini- tial crack propagation. The cracks were repaired with epoxy injection and allowed for a week to cure the resin and to develop a good bond. Then the specimen was prestressed to 150 kN, similar to RCB2, and reloaded. An interesting result was ob- served in the crack propagation. A new shear crack was initiated that lead to failure of the beam (Figure 8). The repaired crack did not open-up again during the subsequent loading. This proved that the epoxy repair was properly done. Furthermore, it has in- creased the capacity of the member to 310 kN, 58%

5 Read more

Free Vibration Analysis of Cracked and Un cracked Cantilever Beam

Free Vibration Analysis of Cracked and Un cracked Cantilever Beam

Abstract : Early detection of damage is of special concern for engineering structures. A comparatively recent development for the diagnosis of structural crack location and size by using the finite element method and Fuzzy logics techniques has improved. The traditional methods of damage detection includes visual inspection or instrumental evaluation .A method based on measurement of natural frequencies is presented for detection of the location and size of a crack in a cantilever beam. Numerical and programming in MATLAB is used for solving the Euler equation for un-crack beam to obtain first three natural frequencies of different modes of vibration considering boundary conditions for the beam.

7 Read more

An Experimental Study of Modal Parameter of Cantilever Beam with Various Cracked Condition

An Experimental Study of Modal Parameter of Cantilever Beam with Various Cracked Condition

Kamble and Chavan [5] identified the crack in cantilever beam by using experiment and wavelet analysis. In this study crack was modeled by rotational spring and equation was developed for non-dimensional spring stiffness. Now by taking first three natural frequencies by vibration measurement, curves of crack equivalent stiffness were plotted and the intersection of the three curves indicated the crack location and size. The experiment on cantilever was done with single crack at different position and different depth size by FFT Analyzer and the natural frequency obtained was compared with ANSYS package. The time- amplitude data obtained was further used in the wavelet analysis to obtain time-frequency data. The above data played vital role to find the small crack parameters which affect the dynamic properties of the system.

8 Read more

Numerical Study on FRP Retrofitted RC Beam Suffering from IC Debonding

Numerical Study on FRP Retrofitted RC Beam Suffering from IC Debonding

Numerical modelling of RC beam model was done using ANSYS 16.2 WORKBENCH, a finite element software for mathematical modelling and analysis. The dimensions of all the specimens are same. width of beam is 200mm, a depth is 450mm and the length is 4000mm.The beam were under- reinforced using three 12mm deformed steel bars as the internal tension reinforcement and two 12mm deformed steel bars as the internal compression reinforcement, and 10mm deformed steel bars with a centre to-centre spacing of 100mm as the stirrups and M35 grade of concrete is used. For concrete, steel and GFRP, Analysis requires input data for material properties are shown in Table 1 and Table 2. Figure 1 showing modelled view of RC beam and Figure 2 showing modelled view of reinforcement.

6 Read more

Finite Element Simulation of Simple Bending Problem and Code Development in C++

Finite Element Simulation of Simple Bending Problem and Code Development in C++

The theoretical and software based simulation work for simple bending problem were performed by considering example of cantilever beam. Numerical simulations for simple and cracked cantilever beams using finite element stiffness method, analytical beam theory and finite element package (ANSYS) were evaluated and then results were verified with code generated in C++ language. The results gathered by mathematical modeling are very beneficial. They enable a better understanding and ability to predict deformation process; however, when using the mathematical modeling assumptions may have to be made. In order to compensate, a factor of safety is always added into the equations when the results are going to be used in applications.

15 Read more

Show all 5072 documents...